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Abstract

Deep neural networks (DNNs) have improved NLP tasks significantly, but training
and maintaining such networks could be costly. Model compression techniques,
such as, knowledge distillation (KD), have been proposed to address the issue;
however, the compression process could be lossy. Motivated by this, our work
investigates how a distilled student model differs from its teacher, if the distillation
process causes any information losses, and if the loss follows a specific pattern. Our
experiments aim to shed light on the type of tasks might be less or more sensitive
to KD by reporting data points on the contribution of different factors, such as the
number of layers or attention heads. Results such as ours could be utilized when
determining effective and efficient configurations to achieve optimal information
transfers between larger (teacher) and smaller (student) models.

1 Introduction

DNNs have contributed significantly to enabling advances in many tasks, including NLP. In this
context, deep refers to a large number of neural parameters. With the advancements in the computing
hardware, training of DNNs with billions of parameters is now feasible. However, it does not
necessarily mean that utilizing them for different setups has become easier. The computational
complexity, storage requirements, and added latency still make their deployment in real-world
difficult. This issue is more pronounced on the ever-smaller devices, with limited processing and
storage capacity.

To make DNNs useful for low-budget settings, there are a number of approaches have been developed
for model compression Cheng et al. (2017), which fall under one of the following categories of
Pruning (Blalock et al., 2020), Quantization Courbariaux et al. (2015); Sindhwani et al. (2015); Wu
et al. (2015); Zhai et al. (2016), or knowledge distillation (KD) (Sanh et al., 2019; Gou et al., 2020;
Passban et al., 2020). Our work focuses on KD in the hope of understanding what part of knowledge
is transferred during distillation. Specifically, the research question we aim to answer is what type
of information is lost during the distillation process? It might not be possible to fully dissect this
concept but it is defiantly worthwhile to understand what classes, sets of tasks, and parameters are
impacted more than others during distillation, so that the right mitigation can be put in place to
account for the loss.

2 Background

KD refers to transferring knowledge from a bigger or deeper model, called teacher (T ), to a smaller
or shallower model, called student (S). The term was first coined in Bucila et al. (2006), and
then elaborated by Hinton et al. (2015), where KD was presented as a compression framework.
Compression is achieved by a student model imitating its teacher’s output. The output of a DNN is
usually a class probability:

p(zi, T ) =
exp(zi/T )∑
j exp(zj/T )



where zi is the i-th class’s logit and T is called the temperature. The loss function for distillation is
usually formulated as:

LKD = Loss(p(zt, T ), p(zs,S))
where the Loss function is often a KL divergence Gou et al. (2020), and zs and zt are the logits for
the student and teacher models, respectively. The total loss is then an interpolation of the task loss
(Ltask), and the KD loss:

L = α× Ltask + η × LKD

with α and η (usually η = 1− α) as the weight values to indicate the contribution of each term to the
learning process.

3 Related Work

According to Gou et al. (2020), KD approaches can be categorized into the following types of: i)
Response-based KD, where the logits of the output layers are matched between the teacher and the
student models (Sanh et al., 2019); ii) Feature-based KD, where the outputs of specific intermediate
hidden layers as well as those of the final layers are used to train the student model (Sun et al.,
2019; Wu et al., 2020); and iii) Relation-based KD which is similar to the feature-based approach
as both the intermediate and final output layers are utilized in training, but instead of using specific
layers, a relationship between different layers is explored (Passban et al., 2020). In this paper, we
use the response-based and feature-based KD approaches in our experiments, which enable us to
keep the setup more manageable to investigate the problem. Relation-based KD introduces multiple
moving/tunable factors which makes it enigmatic to justify and understand if the losses captured in
the experiments are rooted in KD or in layer-to-layer communications.

The research on the topic of KD is of great interest to many, and there are myriad of prior work on
various aspects of it. However, to the best of our knowledge, the following papers are the closest
to our research point of view. Hooker et al. (2019) looked at the question of what compressed
neural networks forget. They ask the question of whether the test accuracy is the best measure to
determine whether the compressed model can generalize. They looked at the cases where the top
level performance metrics are similar between the base and compressed model; however, some of the
classes are dis-proportionally impacted by the compression. They tried to understand what makes
some of the classes more sensitive to performance degradation. Their work specifically focused on
image recognition and is on the pruning and quantization sides, not KD, but the way they probed
DNNs is conceptually similar to our investigating.

Michel et al. (2019a) looked at the attention-based models in NLP and tried to determine if all
attention heads are necessary when making predictions. They made an observation that for a set of
tasks, during inference time, having sixteen heads for attention is not necessarily better than having
only one attention head. This form of investigation is also similar to what we carried out in our
research.

In Wang et al. (2020), the authors proposed a KD method for Transformers which is task-agnostic.
Their method does not require a certain architecture guarantee for the student model and showed
improvements on various GLUE tasks. The task-independent nature of this work makes it suitable to
investigate the behaviour of KD methods.

To the best of our knowledge, there has been no work performed on determining how KD affects
different inference tasks, and how it affects classes with different labels. In this paper, we focus
on these research questions. We believe, this could be of great use since existing NLP models are
typically large, but the real-world use cases dictate limited resources. Understanding what information
is lost (or retained) for a given configuration in a given task, can help guide system designers optimize
their setup.

4 Models and Experimental Hypotheses

For our experiments, we use a 12-layer RoBERTa base model (Liu et al., 2019) as the teacher. It is a
well-studied and widely used model in the NLP community, which makes the reproduction of our
work easier for other researchers. In each distillation setup, we keep all the configuration parameters
untouched apart from the one that is of interest, e.g. we fix all the configuration parameters except
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the number of hidden layers. Then, we distill the base model into different student models each
with a different number of hidden layers. The same approach is used for all the other configuration
parameters. This leads to training of 3L, 6L, 9L, 4AH, 8AH, 384D, 516D, and 6L_384D students,
where L, AH, and D stand for Layer, Attention Head, and Dimension, respectively, i.e. 9L refers to a
model that is identical to its teacher but it only has 9 layers.

When reducing the size of the teacher model (from 12 to fewer layers), we had to come up with a
mapping strategy to carry out the layer-to-layer distillation. After investigating a comprehensive set
of mappings, the solution we arrived at was to always connect the first and last layers of the student
and teacher models in all configurations. For internal layers, in 6L, with the exception of the third
layer we skipped every other teacher layer and connected the rest uniformly. For 3L, we connected
the fifth layer of the teacher to the middle layer of the student. In 9L, we connected the first 2 and
the last 5 layers of the student to the first 2 and last 5 layers of the teacher, and aligned the third and
fourth student layers to the fourth and sixth teacher layers, respectively. Similar to the number of
layers, we also investigated the impact of tighter layers by shrinking the widths of the internal units to
516 and 384. We evaluated the distilled models over 8 tasks from GLUE (Wang et al., 2018), using
the standard training and development sets from the various GLUE tasks.

In regard to hyper-parameter, for distilling all configurations, the hard, intermediate, and KD loss
weights are each equally set to 0.33. The temperature is set to 2 and each batch processes 12 instances.
For fine-tuning, the learning rate of 5e− 5 worked best. Adam (Kingma and Ba, 2014) with β1 = 0.9
and β2 = 0.999 was used as the optimizer, and the number of epoch for fine-tuning was 10.

5 Experimental Results

Table 1 summarizes all our observations. These numbers can be interpreted from different perspectives
and can vary in different settings. However, our findings show that: SST2 and QQP are the most
resistant tasks (datasets) in the presence of KD whereas RTE is the most sensitive one. CoLA is
also impacted severely since it loses most of the information through the KD process, across all
configurations. QNLI, MRPC, and STSB are only impacted slightly and behave similarly. MNLI is
in the middle of these two extremes; KD impacts it to some extent but not as much as the sensitive
group. Apart from MNLI, there is a direct relation between the size of the training set and the KD
loss, i.e. the smaller the set, the higher the loss. However, MNLI breaks this pattern as it has the
largest dataset among all but still shows relatively high losses. This could be due to the complex
nature of the inference task. It is the only dataset with 3 classes, compared to others with ≤ 2 classes.

CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

baseline 0.62 0.88 0.92 0.93 0.9 0.8 0.95 0.91
9L 0.59 0.83 0.89 0.9 0.89 0.68 0.93 0.87
6L 0.6 0.83 0.87 0.9 0.88 0.69 0.91 0.88
3L 0.4 0.77 0.81 0.85 0.83 0.58 0.91 0.81

516D 0.55 0.81 0.87 0.88 0.89 0.62 0.9 0.87
384D 0.53 0.8 0.88 0.87 0.87 0.65 0.9 0.86
8AH 0.55 0.81 0.87 0.88 0.88 0.61 0.92 0.85
4AH 0.55 0.81 0.88 0.88 0.89 0.61 0.92 0.85

6L_384D 0.47 0.78 0.85 0.84 0.87 0.62 0.91 0.84

Table 1: The performance scores of KD models. STSB and CoLA use Pearson-Spearman and
Matthews correlation coefficients. MRPC and QQP use the average of Accuracy and F1 scores and
others rely on accuracy as their evaluation metric.

Reducing the number of layers up to a certain threshold is the best form of KD with only marginal
losses. Both 9L and 6L show acceptable losses while reducing the number of layers to 3 was a drastic
change and impacted the model significantly. The loss introduced by modifying the width of the
hidden layers depends on the nature of the task and the dataset, but our results indicate that it can
still be considered as a reasonable KD alternative. The loss is defiantly larger than that of the layer
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reduction but still is in an acceptable range. Combining both ideas, namely reducing the number and
width of layers together is harmful and causes serious deterioration.

Different researchers (Michel et al., 2019b; Parnami et al., 2021) have previously reported that the
number of attention heads can be reduced with almost no significant impact on final results. With this
assumption, we were expecting marginal losses after changing the number of heads but it did not
happen in our case. We noticed that the number of heads plays a critical role in KD.

By investigating more data points and different aspects of the results, we hope to find a pattern for
losses introduced by KD. We thus produced a heatmap of student-teacher disagreements in Figure 1
based on the results from Table 1. As the figure shows, the highest losses belong to 3L models and
more challenging datasets are RTE and CoLA on average. The heatmap simply visualized which
tasks or models behave similarly.

Figure 1: How much distillation degrades the student model. The intensity of the color of the cells
(and numbers inside) show the percentage of disagreement between the student and teacher models,
e.g. [CoLA][3L] = 35 indicates that 3L is 35% weaker than its teacher on the CoLA dataset.

5.1 Response Time

KD is a compression strategy so we expect faster engines as the result of this process. To study how
KD impacts models’ response time we measured the number of samples per second each model can
process under a common setting. Results of this experiment are reported in Table 2. We used a p3.8x
environment with a set of four V100 GPUs (from AWS). Across all configurations and models we
see a faster response time. However, students with fewer attention heads break this pattern. In theory,
reducing the number of heads should also help with the speed increase whereas this is not observed
in our experiments. Multiple factors, such as implementation techniques, hardware, non-optimal
matrix multiplication etc can lead to this result, for example, in Transformers, parallelism mainly
comes from the multi-head attention mechanism, where different heads can attend to different parts
of the input sequence simultaneously. Each attention head processes a different subspace of the input,
which allows for parallelization. Therefore, reducing the number of attention heads can reduce the
scope of parallelism, which might lead to slow down in inference.

CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

baseline 49.1 185.8 172 184.5 186.7 165.6 180.6 181.3
9L 50.4 184.2 175.8 183.7 185.3 170.6 182.5 183.8
6L 56 278.1 262.3 277.5 280.4 260.5 260.1 275.5
3L 57.3 324.2 305 321.2 324.5 301.9 318.4 316.4
516D 51.9 210.4 195.6 210.1 211.1 191 205.6 208.6
384D 54 262 240.8 260.3 265.2 231.5 253.5 256.9
8AH 46.9 152.7 139.3 153.6 154.2 140.5 150.8 153
4AH 47.8 153.9 138.5 152.3 154.2 133.6 149.2 150.3
6L_384D 59 408.4 387.1 403.7 408.7 379.2 389 397.7

Table 2: The number of samples processed by each model per second.
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5.2 Aggregating Quantitative Results

We aggregated results from Tables 1 and 2 to be able to design a distillation recipe based on quality and
speed gains of student models, e.g the loss for both 3L and 6L_384D is comparable but considering
the faster response time, 6L_384D seems to be a better alternative. We incorporated our findings
and summarized them in Table 3, which aims to facilitate selecting the right KD configuration in
different applications. The ✓, ✗, and ? signs in the table indicate whether KD is worthwhile or not.
For example, [Layer][CoLA] = ✓ means no matter which layer-reduction strategy we use, the loss we
get from KD is almost consistent, thus we can lean towards a higher compression rate by eliminating
more layers and distillation is worthwhile. On the contrary, ✗ shows that the KD approach is harmful.
Unlike the two aforementioned signs, ? is a sign of uncertainly, meaning KD may or may not succeed
and it depends on the setup.

Comparing these factors side-by-side could justify whether KD is a reasonable option or not, i.e from
Table 3, STSB is immune to all configuration modifications but the attention heads. That means, we
can safely reduce the number of layers or shrink the hidden layers yet expect similar high-quality
results. From a response-time perspective (shown with Speed in the table), it is also worth considering
KD for STSB. However, modifying the number of attention heads can yield some inconsistencies,
so we would consider KD for STSB only when it is possible to keep the number of attend heads
untouched. The table only shows results for CoLA, RTE, and STSB. For the other five tasks, the
signs are ✓ across all factors.

CoLA RTE STSB

Layer ✓ ? ✓
Att. Head ? ✗ ?

Hidden Dim ✗ ✗ ✓
Speed ? ✓ ✓

Table 3: Scenarios in which KD could be lossy.

6 Conclusion and Future Work

In this paper, we designed a set of experiments to better understand what sort of information is likely
to be lost during the distillation process. We focused on different factors, such as, the number of
layers or the width of each layer, and showed how they affect the final performance. Our observations
showed that in general, the number of layers is not that sensitive to KD, as long as there is no drastic
reduction. The width of the hidden layers, on the other hand, showed the highest sensitivity. This
feature seems to be quite fragile, and once changed, the final performance changes proportionally.
The number of attention heads also shows high sensitivity. We could gain some insight about the
behaviour of distilled models via our experiments, but we (as the community) are still far from
decoding the problem and deriving conclusions. In our future work, we plan to run more experiments
with different teachers, and expand our experiments’ domain by testing more datasets and tasks. We
are in the era of large language models, and smaller models do not receive enough attention. However,
they still have their applications, and most of real-world problems can be solved effectively and
efficiently by the right choice of such compact models.
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7 Appendix

Student Models: Table 4 provides detailed information about the student models and their
configuration.

Model Layer Attention
Heads

Layer Di-
mension. Parameter

Teacher 12 12 768 124M
9L 9 12 768 103M
6L 6 12 768 82M
3L 3 12 768 61M
8AH 12 8 768 124M
4AH 12 4 768 124M
516D 12 12 516 65M
384D 12 12 384 41M
6L_384D 6 12 384 30M

Table 4: Distillation configurations used in our experiments. RoBERTa base is the teacher model.
The last columns shows the number of total parameters of each model.

Datasets: Table 5 provides detail information about experimental datasets.

Corpus Task Train Dev

MRPC Paraphrase 3.7k 408
RTE NLI 2.5k 276
QNLI QA/NLI 108k 5.7k
CoLA Acceptability 8.5K 1K
MNLI NLI 393k 20k
SST2 Sentiment 67k 872
QQP Paraphrase 364k 40k
STSB Textual Similarity 5.7K 1.5K

Table 5: The statistics of the tasks/datasets from the GLUE collection (Wang et al., 2018). Apart
from STSB which is a regression task and MNLI which has 3 classes, all the other tasks fall under
binary classification.

Qualitative Analysis: In addition to the quantitative experiments reported in the paper, we ran
a set of qualitative analyses. We mainly extracted four types of instances from our datasets where
i) the teacher and all student models match the true label (TL); ii) the teacher and only a subset of
performant students agree with TL; iii) only the teacher is able to produce TL, and finally iv) both the
teacher and students fail to match TL. In total, we picked 140 instances and manually analyzed them,
in the hope of finding common patterns in these instances. Table 6 shows a subset of our samples.

For the last group where both the teacher and all students fail to detect the correct class we could not
find any explainable logic and it is not quite clear why even a strong teacher model cannot learn the
task. However, for other categories we noticed some commonalities across different datasets. For
trivial examples, all the teacher and student models easily solve the task because we believe the input
is compatible with the nature of the task, i.e. in the CoLA example provided in the table, the task is
to check the grammatical correctness of the input and the short length of it makes the job relatively
straightforward. Similarly, in the second sample from QQP, the words “billion” and “Googol” carry
strong signals which makes comparison of Q1 and Q2 easy.

For slightly complex examples where sentences are long or the wording varies in the input tuples,
only student models with a higher learning capacity can succeed. The higher the capacity of the
student, the higher its chance to mimic its teacher, e.g in the RTE example only the weakest model
(3L) fails to predict the right class. Occurrence of common phrases such as “Two British”, “clashes”,
or “police station” also makes compering S1 and S2 less complicated and students equipped with
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Dataset Example TL T 9L 6L 516D 384D 3L

CoLA Dana walked and Leslie ran 1 1 1 1 1 1 1

QQP
Q1: How many zeroes are there in one bil-
lion? 0 0 0 0 0 0 0
Q2: How many zeroes does a Googol have?

RTE

S1: Two British soldiers have been arrested
in the southern Iraq city of Basra, sparking
clashes outside a police station where they
are being held

1 1 1 1 1 1 0

S2: Two British tanks, sent to the police
station where the soldiers are being held,
were set alight in clashes

QNLI
Q: What religion is the western region
mostly? 1 1 1 1 0 0 0
A: The upper part of Kenya’s Eastern Re-
gion is home to 10% of the country’s Mus-
lims, where they constitute the majority re-
ligious group.

QQP
Q1: Which is the best laptop below
rs60000? 0 0 1 1 1 1 1
Q2: Which is the best laptop to buy under
50k?

MRPC

S1: While dioxin levels in the environment
were up last year , they have dropped by 75
percent since the 1970s, said Caswell 0 0 1 1 1 1 1

S2: The Institute said dioxin levels in the
environment have fallen by as much as 76
percent since the 1970s

RTE

S1: Today’s best estimate of giant panda
numbers in the wild is about 1,100 individ-
uals living in up to 32 separate populations
mostly in China’s Sichuan Province, but
also in Shaanxi and Gansu provinces

1 0 0 0 0 0 0

S2: There are 32 pandas in the wild in
China

Table 6: A subset of samples studied in our qualitative analysis. TL stands for True Label and T is
the teacher prediction.

better memory/learning modules can benefit from it. In the case of QNLI the situation is slightly
more challenging. The way the same concept is phrased is different from Q1 to Q2 thus only (really)
high-capacity models are able to judge correctly. Also, in this scenario, the very same short-length
feature that was useful in CoLA hurts the QNLI model as a longer sequence (in Q) could provide the
model with more context.

What we summarized here, clearly, does not universally apply to all KD models and datasets, and
it is just our observation but it was interesting to see how there may exit a common pattern in the
failed/successful cases. Moreover, we found out that regardless of the dataset, model architecture, and
task, existing NLP models as well as KD techniques need serious (if not revolutionary) modifications.
We encountered examples which are trivial to comprehend for us (as humans) but our best models
failed to tackle. The last RTE example in the table could be one of them. Finally, we witnessed
multiple cases of memorization rather than learning, the well-known shortcoming of neural models,
where by changing a single word in a long sentence the behaviour of the model changes completely
(as soon as the model is exposed to an unfamiliar input it fails to respond).
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