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Abstract

Pretrained Language Models (PLMs) have become the de facto starting point for
fine-tuning on downstream tasks. However, as model sizes continue to increase,
traditional fine-tuning of all parameters becomes challenging. To address this,
parameter-efficient fine-tuning (PEFT) methods have gained popularity as a means
to adapt PLMs effectively. In parallel, recent studies have revealed the presence of
activation sparsity within the intermediate outputs of the MLP blocks in transform-
ers. Low activation density enables efficient model inference on sparsity-aware
hardware. Building upon this insight, in this work, we propose a novel density loss
that encourages higher activation sparsity (equivalently, lower activation density) in
the pre-trained models. In our experiments, we demonstrate the effectiveness of our
proposed approach DEFT by employing mainstream PEFT techniques like LoRA,
Adapter, Prompt/Prefix Tuning. DEFT consistently achieves substantial reductions
in activation density. For example, on the T5-Base model, DEFT leads to reductions
of average 47.77% in encoder density and 81.82% in decoder density compared to
PEFT. These trends are mirrored across various GeLU activation-based models,
including ViT-Base (86M), ViT-Large (307M), RoBERTa-Base (125M), RoBERTa-
Large (355M), and GPT2 (117M), with density reductions ranging from 29.61%
to 56.68%.

1 Introduction

With the advent of pre-trained Large language models [1, 2, 3], fine-tuning [4] these models to adapt
to a task has become prevalent. These models, with billions of parameters, demand substantial time,
energy, and memory, leading to a significant environmental impact [5]. To mitigate this, parameter-
efficient fine-tuning techniques have emerged [6, 7, 8, 9]. While various approaches focus on pruning
[10, 11], distillation [12], or quantization [13, 14]. In contrast to all these techniques, we accelerate
the model inference by increasing the activation sparsity. This is achieved by modifying the loss
function to penalize high activation density.

Recent studies [15, 16] have uncovered a notable trait within the transformer architecture. Specifically,
in the intermediate outputs of MLP (Multi-Layer Perceptron) blocks with ReLU activations, only
a fraction of neurons activate for a given input, introducing sparsity in activation maps. Building
on this, we propose a density loss to enhance activation sparsity in pre-trained models, effectively
reducing activation density.

This induced sparsity bears significant energy-saving potential, especially on specialized hardware
like ASICs (Application Specific Integrated Circuits) [17], which capitalize on zero-skip operations.
By promoting sparsity, unnecessary computations on zero-valued activations are skipped, leading
to reduced power consumption and more efficient model inference. This approach is particularly
advantageous in resource-constrained environments or applications with strict energy constraints.
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Figure 1: (a) Comparison between the activation patterns (in the intermediate output of MLP) after adapting to
downstream tasks with PEFT and our proposed DEFT method. (b, c) Comparison of Activation Density (%) and
Accuracy (%) for GLUE benchmark datasets using BERTBASE with Adapter for PEFT and DEFT.

In this work, we delve into the concept of activation sparsity and its potential benefits in optimizing
transformer models. We present Density Efficient Fine-Tuning (DEFT) and demonstrate its effective-
ness through experiments on well-known benchmarks, showcasing reduced activation density while
maintaining competitive performance across diverse downstream tasks. We provide the illustration of
our proposed method DEFT in 1a and we showcase the strength of our proposed method DEFT com-
pared to PEFT in Figure (1b, 1c) for 8 datasets from GLUE benchmark when adapting BERTBASE

model with the adapter module. Our proposed method DEFT leads to sparser activation patterns
compared to PEFT. Figure 1b displays the average density (%) in MLP layers, while 1c shows the
accuracy (%) on the validation dataset. DEFT maintains competitive performance with PEFT while
reducing activation density.

To the best of our knowledge, we are the first to demonstrate that a significant degree of activation
sparsity can be attained using a small number of trainable parameters. This is particularly notable
in GeLU models. Prior studies primarily concentrated on ReLU-based models for investigating
activation sparsity [17], as ReLU tends to induce more sparsity in activation maps. Our approach,
combining parameter-efficient fine-tuning (PEFT) and activation sparsity, paves the way for resource-
friendly transformer models across various applications.

2 Methodology

2.1 Background and Notations

In Transformers, the position-wise feed-forward networks employ a two-layer MLP. We measure the
activation sparsity at the intermediate output of this two-layer MLP, following the works of [16] and
[15]. Consider an input X ∈ RB×K×dmodel , where B is the batch size, K is the sequence length and
dmodel denotes the dimensionality of the input features. Given an input matrix X , the output of the
two-layer MLP can be described as:

Y (X;W (1),W (2)) = f
(
XW (1)

)
W (2) (1)

Here W (1) ∈ Rdmodel×dff and W (2) ∈ Rdff×dmodel are the learnable parameters of the MLP layers. dff
represents the hidden dimension of the MLP block, and f is the non-linear activation function.

To measure the sparsity of neuron activations, we first define the activation pattern as :

O = f
(
XW (1)

)
(2)

The matrix O ∈ RB×K×dff is the activation pattern. Following [16], we can define the vector s ∈ Rdff

as the average across the batches and sequence length of matrix O to represents the final feature map.
So, we can measure the sparsity of neurons by counting the number of non-zeros in the feature map s.

2.2 DEFT: Parameter and Activation Density Efficient Fine-tuning

In this section, we introduce our proposed Density loss in DEFT. Our goal is to reduce the activation
density (or increase activation sparsity) in MLP blocks for given inputs.
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Previous work by [16] used a step function to count the number of positive elements precisely, but this
operation is non-differentiable and cannot be used for our purpose of reducing activation density in
an end-to-end learning setup. Therefore, to approximate the number of non-zero entries in the sparse
vector s, we use the hyperbolic tangent function with a scaling parameter β for ReLU-activation
based models, [18] used the similar function for their purpose of generating adversarial inputs for
sparsity attacks. We also use a differentiable approximation of the l0 norm [17] for GeLU and other
activation based models.

tanh(x, β) =
eβ·x − e−β·x

eβ·x + e−β·x (3) l̂0(x) =

n∑
i=1

(
x2
i

x2
i + ϵ

)
(4)

By adjusting the value of β in Equation 3, we can control the abruptness to approximate the step
function (and therefore sparsity) of the values. Higher values of β make the function more closely
resemble the step function. In Equation 4, ϵ ∈ R is a parameter dictating the quality of the
approximation—lower values of ϵ correspond to better approximations.

We can define the density loss Ldensity(x) with tanh approximation as follows:

Ldensity(x) =
1

n

∑
L

∑
i

tanh(sli , β) (5)

Here, n is the total number of neurons in all the MLP layers, L is the total number of layers in the
transformer and sl is the final feature map as defined earlier for the layer l. The summation is across
all the layers and the elements of the vector sl. We can similarly define the loss with l̂0 norm.

In DEFT, we fine-tune the model for downstream tasks by exclusively training specialized parameter-
efficient modules, freezing the pretrained transformer parameters. DEFT leverages established
PEFT techniques like Prompt Tuning, Prefix Tuning, Adapters, and LoRA (details in Supplementary
material).

For DEFT, we solve the following optimization problem:

argmin
Φ

Ltotal =LT (D; {Θ,Φ}) + α · Ldensity (D; {Θ,Φ})

Here, Φ are tunable parameters, and Θ denotes the frozen pre-trained parameters. LT integrates
task-specific objectives on dataset D. α balances task performance and activation sparsity induction.
Higher α values encourage sparser activations. Refer to Supplementary material Algorithm 1 for the
DEFT algorithm.

The tunable parameters Φ encompass a range of modules like Adapters, LoRA, Prefix-Tuning, and
Prompt-Tuning. By introducing a small fraction of trainable parameters (a few % only), we trigger
activation sparsity within the MLP blocks, yielding twofold efficiency gains: (1) Activation Sparsity
for hardware acceleration, and (2) Efficient training and storage, reducing both time and memory
usage without compromising task performance.

3 Experiments

Our method was rigorously tested on a range of datasets: GLUE [19] for BERT; For {RoBERTa,
GPT2} we used SST-2 dataset from GLUE; SQuAD [20] for question answering (T5), and CIFAR-10
[21] for vision tasks (ViT). We employed a suite of techniques including Adapter, LoRA, Prefix-
Tuning, and Prompt Tuning for BERT; and {Adapter, LoRA} for T5 models. For GeLU-based models,
we used an Adapter for our experiments. Further details about datasets, models and evaluation metrics
can be found in the supplementary material. The results were averaged across 5 random seeds.

In addition to task-specific metrics, we evaluated activation sparsity. This was quantified by computing
the density (%) of non-zero values in the intermediate activation matrix of the MLP block for each
layer. The average density across all layers and the validation set was reported. We also report the
Density Change (%) across different datasets and methods, similar to the energy consumption ratio in
[22], which is calculated as:

Density Change(%) =

(
DensityPEFT − DensityDEFT

DensityPEFT

)
× 100
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Method Performance ViT-Base (86M) ViT-Large (307M) RoBERTa-Base (125M) RoBERTa-Large (355M) GPT2 (117M)

PEFT
Trainable (%) (2.04%) (2.04%) (1.17%) (1.17%) (1.87%)
Metric (↑) 98.13 ± 0.03 99.04 ± 0.06 94.19 ± 0.24 96.02 ± 0.54 88.38 ± 0.19
Density (↓) 84.84 ± 0.09 99.91 ± 0.00 99.59 ± 0.0 93.90 ± 0.06 99.96 ± 0.00

DEFT
Metric (↑) 97.75 ± 0.09 98.31 ± 0.08 94.15 ± 0.34 95.80 ± 0.39 88.34 ± 0.39
Density (↓) 77.74 ± 0.09 70.33 ± 2.47 70.78 ± 0.04 40.68 ± 0.29 70.51 ±1.15
Density Change (%) (↑) 8.38 29.61 28.93 56.68 29.46

Table 1: Peformance Comparison on different GeLU models using Adapter module with PEFT and DEFT.

Model Module (% Trainable) Loss Type SQuAD

F1 Exact-Match Enc-Density Dec-Density

T5- Small
Adapter (0.33%) PEFT 82.58± 0.08 74.48± 0.07 4.76± 0.01 4.07± 0.03

DEFT 82.41± 0.11 74.19± 0.13 3.51± 0.07 1.95± 0.01

Density Change(%) 26.26 52.08

(60M) LoRA (0.96%) PEFT 82.60± 0.06 74.54± 0.10 4.80± 0.01 3.97± 0.01
DEFT 82.38± 0.09 74.19± 0.13 3.33± 0.02 1.51± 0.02

Density Change(%) 30.62 61.96

T5- Base
Adapter (0.40%) PEFT 88.28± 0.04 81.19± 0.05 2.64± 0.02 3.22± 0.04

DEFT 88.21± 0.04 81.08± 0.12 1.61± 0.03 0.96± 0.05

Density Change(%) 39.01 70.19

(220M) LoRA (0.78%) PEFT 88.33± 0.03 81.30± 0.02 2.70± 0.01 3.19± 0.01
DEFT 88.42± 0.04 81.40± 0.05 1.41± 0.01 0.58± 0.002

Density Change(%) 47.77 81.82

Table 2: Performance comparison of different methods on Question Answering Dataset (SQuAD) with T5SMALL

and T5BASE .
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Figure 2: Layerwise Non-zeros (density): Layerwise non-zeros for different models with Adapter module on
the validation set (For CIFAR-10, we used Test-set) of different tasks following Table 1.

3.1 Results

The performance using the Adapter module and tanh approximation on the GLUE benchmark with
the BERTBASE (ReLU) model is summarized in Fig. 1 (b,c) and detailed in Table 3 of supplementary
material with extra results on the different modules. For DEFT, activation sparsity is enhanced with
marginal to no impact on downstream performance. Tables 1 and 2 present the performance of various
GeLU and T5 models respectively. Notably, DEFT consistently reduces activation density across all
models, showcasing its effectiveness. Larger models, in particular, demonstrate more pronounced
sparsity patterns with DEFT, for example, with RoBERTa-Base we achieve a Density-Change(%) of
28.93 while RoBERTa-Large achieves 56.68 with the same number of trainable parameters.

In Figure 2, we provide detailed layerwise density plots. These visualizations illustrate DEFT’s
success in promoting activation sparsity across layers in different models.

4 Conclusion

In this work, we introduced DEFT, an innovative extension to PEFT designed to induce activation
sparsity in MLP layers of frozen pre-trained transformer blocks. Through extensive experiments
on diverse datasets spanning language and vision modalities, we demonstrated DEFT’s capacity to
significantly reduce activation density without compromising downstream performance compared to
PEFT. This contribution opens up fresh avenues for density-efficient PEFT of pretrained language
models.
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