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1 Method Details

Here we give more details on datasets, models and model training.

1.1 Datasets

Table S1: Datasets

Prediction Sequence Dataset # of Sequences Average Seq.

Level Diversity Train Validation Test Length

per
Protein

Mutational
Landscapes

GFP 21446 5362 27217 237.0
AAV 28626 3181 50776 736.3
GB1 2691 299 5743 265.0

Diverse
Datasets

Stability 53614 2512 12851 45.0
Meltome 22335 2482 3134 544.5
Sub. Loc. 9503 1678 490 519.9

per
Residue

Disorder 1056 118 117 118.1
Sec. Str. 9712 1080 364 255.0

We subdivided the datasets according to two aspects, prediction task level and sequence diversity
(Table 1). The prediction task level indicates whether a prediction is either done for each residue in a
protein individually, e.g. secondary structure, or for each protein, e.g. subcellular localization. The
sequence diversity field distinguishes between datasets containing multiple, diverse proteins from
datasets containing mutational landscapes of a single protein which are commonly generated in deep
mutational scanning experiments [1].

Mutational landscapes. This subgroup comprises fitness landscapes for the green fluorescent
protein (GFP), the adeno-associated virus 2 (AAV2) capsid protein VP-1 and the GB1 binding domain
of the Protein G. All three are per protein regression tasks that measure prediction performance
by ranking the correlation between the predicted and the experimentally measured property on
the respective test sets. For the GFP dataset this means that the property/fitness is a measure of
fluorescence intensity, with experimental data being generated by Sarkisyan et al. [2] and the data
used here being split by Rao et al. [3]. Training and validation set sequences are all within Hamming
distance 3 of the wildtype sequence. Sequences in the test set show four or more mutations. Fitness
for the AAV task measures viability for packaging of a DNA payloads. Bryant et al. [4] mutated a
28-amino acid window to create the original data. We used the “2-vs-rest” data split from the FLIP
benchmark [5]. This means sequences up to two mutations from wildtype are in the training and
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validation set, while all variants with more mutations belong to the test set. The fitness score for the
GB1 binding domain landscape represents a combined measure of stability and binding affinity. In
the original experiment Wu et al. [6] mutate four positions, the „three-vs-rest“ data split is also taken
from FLIP which is a Hamming distance 3 split like the GFP dataset.

Diverse datasets, per protein prediction. The diverse per protein subgroup also consists of three
prediction tasks. The first two datasets focus on stability prediction formulated as regression tasks
alike the fitness landscapes above. Stability uses the experimental dataset by Rocklin et al. [7] which
measured protease susceptibility of de novo designed miniproteins. We reused the data split from
Rao et al. [3], where training and validation sets consist of sequences from four design cycles while
the test set holds seventeen 1-Hamming distance neighborhoods to promising candidates. It simulates
a common challenge in guided protein design. Meltome utilizes data from the meltome atlas [8],
which measures thermostability for proteins from 13 species. We used the “mixed” split from the
FLIP benchmark, which divides the entire dataset in clusters using MMseqs [9] with a 20% sequence
identity threshold. This allows to study generalization capabilities by minimizing information leakage
between training/validation data (80% of the clusters) and the test set (remaining 20% of the clusters).
The third dataset is based on the DeepLoc [10] data for training with the training/validation split and
a novel test dataset (“setHARD”) curated by Stärk et al. [11]. The task for this dataset is subcellular
localization prediction, presented as a 10-class multiclass prediction problem. Again, MMseqs was
used to remove all sequences with more than 20% pairwise sequence similarity to the training and
validation data to minimize information leakage to the test dataset.

Diverse datasets, per residue prediction. The disorder dataset is based on the CheZOD [12]
dataset which uses nuclear magnetic resonance spectroscopy data. We use the data splits generated
by Ilzhöfer et al. [13] which apply MMseqs clustering at 20% identify threshold to reduce sequence
similarity of the test set to the training data. The task is to predict CheZOD scores [14] which
resemble a continuous scale to quantify the level of disorder of each individual residue in a protein.
Finally, we also benchmarked the commonly used secondary structure prediction task using data from
“NetSurfP-2.0 [15], to classify for each residue in a protein whether it is either helix (H), strand (E),
or other/random coil (C)). We reused the redundancy reduced split created by Elnaggar et al. [16]
including their “NEW364” test set. Both datasets also have binary flags indicating for each residue
whether they were experimentally resolved and should be used for training and evaluation.

1.2 Models

All models used in this work are listed in Table 2 including their corresponding Huggingface
checkpoint.

Table S2: Models

Model Architecture
(Pretraining)

Number of
Parameters
(Encoder)

Encoder
Layers

Emb.
Size

Huggingface
Model Checkpoint*

Ankh Base

Enc-Dec

736 M 48 768 ankh-base
Ankh Large 1.9 B 48 1536 ankh-large

ProtT5 1.2 B 24 1024 prot_t5_xl_uniref50
ProstT5 1.2 B 24 1024 ProstT5

ESM2 8M

Enc

8 M 6 320 esm2_t6_8M_UR50D
ESM2 35M 35 M 12 480 esm2_t12_35M_UR50D
ESM2 150M 150 M 30 640 esm2_t30_150M_UR50D
ESM2 650M 650 M 33 1280 esm2_t33_650M_UR50D

ESM2 3B 3.0 B 36 2560 esm2_t36_3B_UR50D

* to get the complete checkpoint name usable in transformers, query this name on
https://huggingface.co/
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1.3 Model Training

Intra-model evaluation. We chose the following method to compare pretrained with finetuned
models: For the pretrained embedding results we generated embeddings for all mentioned datasets.
For per protein tasks, we took the average over the sequence length which results in a 1 x embed-
ding_size vector per protein. For per residue tasks all valid residue embeddings and their respective
label were used. This also leads to a vector of size 1 x embedding_size per residue. Afterwards we
trained a single fully connected layer of size 32, which takes these embeddings as input and outputs
either a single value (regression) or is followed by an output layer with one neuron for each possible
output class, followed by a softmax layer to get a probability distribution. Training was done until
training loss did not reduce any further. Each individual training was run 5 times with different
random seed initialization.

For finetuning we put the same fully connected layer (size 32) on top of the language model encoder
as a prediction head. For ProtT5 and Ankh we also used average pooling of the last hidden states
over the sequence length dimension during training on per protein tasks. ESM2 suggests connecting
the prediction head only to the very first token of the sequence (special token “<CLS>”) which
we therefore applied. Each individual training was run three times with different random seed
initialization. Training was also run until training and validation loss flattened out. Due to hardware
constaints we applied PEFT [17] to the T5 based models ProtT5 and Ankh. We used LoRA [18]
which is a well-established PEFT method. For the ESM2 models we finetuned all model weights.

Early during evaluation, we noticed large variance in test performance within the same experiment
setup but between different random seeds. We found that for some datasets validation and test
performance do not correlate well (SOM 3). If early stopping is applied based on the validation set
this introduces large variance in test performance. To avoid introducing a large random variance into
our comparison we decided to directly measure test performance during the entire training period
and take an average of the best 10 single measures. This can be seen as a measure of the model’s
theoretical upper bound test performance. These performance values should therefore not be taken
as benchmark value or basis for comparing to other work but are only valid for our intra-model
comparison.

For both, embedding and finetuning experiments we did a limited hyperparameter optimization at the
beginning of our study. The selected hyperparameters were left unchanged for most of the comparison.
Parameters selected for each individual experiment can be found in Table 3 and 4. We used the
transformers Adam optimizer for all experiments with it’s standard parameters. To realize the batch
size for model finetuning we applied gradient accumulation as needed with the given hardware. All
training runs were performed on single NVIDIA A10G GPUs with 24GB.

Table S3: Training Parameters - pretrained embeddings

Dataset Epochs Validation learning batch
per epoch rate size

GFP 240 1 1e-04 8 sequences
AAV 120 1 1e-04 8 sequences
GB1 240 1 1e-04 8 sequences

Stability 120 1 1e-04 8 sequences
Meltome 120 1 1e-04 8 sequences
Sub. Loc. 120 1 1e-04 8 sequences
Disorder 50 1 1e-04 8 residues
Sec. Str. 10 1 1e-04 8 residues

Disorder prediction. We trained two finetuned model variants to compare them with previous
results [13]. SETH LoRA is based on ProtT5 embeddings and utilizes the same two-layer CNN from
the original SETH model. During previous experiments ESM2 150M performed best on the disorder
dataset among the ESM2 models (Table S8). Therefore we also investigated it in this experiment. We
reused the ESM2 setup from the intra-model evaluation here (last hidden states of “<CLS>” token
with single dense layer prediction head).

For both variants, we each trained five models, initialized with different random seeds, for ten epochs.
We calculated validation loss twice per epoch during training and selected the model with the lowest
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Table S4: Training Parameters - finetuning

Model Dataset Epochs Validation learning batch
per epoch rate size

ESM2

GFP 20 5 2e-05 8 sequences
AAV 10 5 2e-05 8 sequences
GB1 20 5 2e-05 8 sequences

Stability 10 10 2e-05 8 sequences
Meltome 10 10 2e-05 8 sequences
Sub. Loc. 10 10 2e-05 8 sequences
Disorder* 20 10 2e-5 / 2e-4 1 / 8 residues
Sec. Str. 5 20 2e-05 1 residue

Ankh

GFP 50 1 3e-04 8 sequences
AAV 20 1 3e-04 8 sequences
GB1 50 1 3e-04 8 sequences

Stability 50 1 3e-04 8 sequences
Meltome 10 2 3e-04 8 sequences
Sub. Loc. 10 10 3e-04 8 sequences
Disorder 20 10 3e-04 1 residue
Sec. Str. 5 20 3e-04 1 residue

ProtT5

GFP 50 1 3e-04 8 sequences
AAV 20 1 3e-04 8 sequences
GB1 50 1 3e-04 8 sequences

Stability 50 1 3e-04 8 sequences
Meltome 20 1 3e-04 8 sequences
Sub. Loc. 5 10 3e-04 8 sequences
Disorder 20 10 3e-04 1 residue
Sec. Str. 5 20 3e-04 1 residue

* for the disorder dataset, ESM2 150M and 650M did not show stable conversion with the standard
parameters and we had to increase learning rate and batch size to 2e-4 and 8 residues

validation loss out of the 100 available checkpoints (5 random seeds, 10 epochs, 2 validations per
epoch). For the selected models we estimated test performance and confidence intervals using
bootstrapping.

Sub-cellular Localization prediction. For the 10 class multi-class classification task, we reused the
single layer dense network from our intra-model evaluation. We trained five models using different
random seeds for five epochs. Validation loss was calculated twice per epoch during training. From
each individual run we selected the model with the lowest validation loss. We then calculated Q10
accuracy and standard deviation for all five selected models on the "set_hard" [11] and report the
average values.

Secondary Structure. Again five models were finetuned for both, the T5 based ProtT5 [16] and
ProstT5 [19] models, initializing training with different random seeds. For ProstT5 we added the
prefix token "<fold2aa>" to each sequence, to make the model aware of the input type it is receiving.
Training was performed for 5 epochs and validation loss was calculated at the end. For both models
a two-layer CNN prediction head was used, to keep results comparable with the raw embedding
predictions. We selected the model with the lowest validation loss from these five runs and measured
model performance on the previously established CAPS12 [20] and NEW364 [16] datasets. The
mean accuracy values and confidence intervals were estimated using bootstrapping.

2 Detailed results - Intra-model comparison

Here we provide the results of all individual training runs for useing (frozen) pretrained embeddings
(Table 5) and finetuning Table 6. These results are also available in their aggregated form with 95%
confidence intervals in tables 7-10.
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2.1 Individual predictor results

Table S5: Individual training runs - pretrained embeddings

Model Rand. Stab. GFP AAV GB1 Melt. Sub. Dis. Sec.
Seed Loc. Str.

ESM2 8M

99 74,2% 64,0% 69,2% 83,2% 57,7% 52,6% 70,2% 75,3%
98 76,0% 63,9% 68,3% 83,0% 57,8% 53,3% 70,1% 75,2%
97 76,7% 64,0% 68,5% 82,8% 57,8% 53,2% 69,6% 75,3%
96 77,6% 64,4% 68,2% 83,0% 57,3% 52,6% 70,0% 75,3%
95 78,6% 64,3% 68,6% 82,4% 57,5% 52,2% 70,1% 75,2%

ESM2 35M

99 74,5% 65,1% 64,5% 82,6% 58,7% 55,4% 68,8% 78,2%
98 73,2% 65,2% 64,6% 83,4% 59,2% 55,4% 69,1% 78,2%
97 73,4% 64,7% 60,3% 83,0% 58,9% 58,0% 69,2% 78,2%
96 76,1% 64,9% 61,3% 82,8% 59,2% 55,8% 69,0% 78,2%
95 73,0% 65,2% 63,6% 83,5% 58,8% 56,1% 69,1% 78,2%

ESM2 150M

99 81,1% 64,0% 67,8% 85,0% 61,8% 60,0% 71,5% 82,1%
98 78,0% 64,0% 67,2% 84,6% 62,7% 59,9% 71,2% 82,1%
97 78,5% 64,0% 64,3% 84,7% 62,9% 61,6% 71,4% 82,1%
96 78,3% 64,3% 67,2% 83,7% 62,5% 59,9% 71,2% 82,1%
95 82,1% 63,9% 68,4% 84,3% 63,0% 60,3% 71,5% 82,1%

ESM2 650M

99 73,2% 64,9% 64,5% 86,6% 66,2% 63,4% 72,3% 84,7%
98 69,1% 64,8% 61,2% 86,6% 67,0% 64,5% 72,1% 84,6%
97 69,3% 64,6% 60,3% 86,7% 67,1% 63,7% 72,3% 84,7%
96 68,1% 64,8% 59,8% 85,7% 66,6% 63,6% 72,3% 84,6%
95 73,7% 64,9% 67,5% 86,0% 66,1% 64,4% 72,3% 84,6%

ESM2 3B

99 79,2% 64,8% 77,0% 85,4% 67,1% 63,4% 71,1% 85,4%
98 76,9% 64,8% 76,9% 86,5% 67,3% 63,0% 70,7% 85,5%
97 76,8% 64,9% 76,6% 86,8% 67,1% 64,6% 71,0% 85,4%
96 76,8% 65,1% 76,7% 86,6% 67,5% 63,6% 70,4% 85,5%
95 78,1% 64,9% 77,3% 86,3% 67,0% 64,0% 70,4% 85,5%

ProtT5

99 79,4% 61,6% 72,0% 86,3% 69,9% 62,2% 71,5% 84,2%
98 79,3% 61,5% 73,2% 86,2% 70,1% 63,9% 71,2% 84,2%
97 79,5% 61,1% 72,3% 86,4% 70,9% 60,3% 71,4% 84,2%
96 81,2% 62,1% 71,5% 85,6% 70,3% 60,8% 71,0% 84,2%
95 79,3% 61,6% 73,0% 85,6% 70,4% 62,4% 71,1% 84,2%

Ankh base

99 79,8% 66,0% 65,7% 85,4% 58,1% 60,9% 71,0% 84,3%
98 80,1% 66,0% 64,4% 85,1% 58,6% 61,8% 71,0% 84,3%
97 78,5% 65,9% 64,2% 85,3% 58,5% 61,9% 70,8% 84,3%
96 81,3% 66,0% 66,8% 85,4% 58,8% 60,4% 71,4% 84,3%
95 80,5% 66,3% 69,6% 84,4% 57,9% 60,4% 70,8% 84,3%

Ankh large

99 74,4% 67,2% 74,8% 86,3% 62,2% 61,7% 70,0% 86,0%
98 74,8% 67,1% 74,2% 86,7% 62,7% 60,2% 70,2% 85,9%
97 73,3% 66,8% 73,6% 86,7% 63,3% 60,8% 70,1% 86,0%
96 76,8% 67,2% 74,0% 86,2% 61,6% 62,2% 70,0% 86,0%
95 79,7% 67,1% 75,2% 86,6% 63,0% 61,8% 70,1% 86,0%

For finetuning (Table 6) we generally did three reruns for each experiment. The only exception was a
clear outlier for ESM2 150M, AAV, random seed 98 which we therefore reran (with random seed
96). The 69,2% result was excluded for all further calculations. For ProtT5 unrelated experiments
not published here resulted in additional values for three of the datasets (Subcellular Localization,
Disorder and Secondary Structure prediction), which we included as well.
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Table S6: Individual training runs - finetuning

Model Rand. GFP AAV GB1 Stab. Melt. Sub. Dis. Sec.
Seed Loc. Str.

ESM2 8M
99 68,5% 83,6% 89,1% 79,6% 58,8% 58,2% 72,4% 76,1%
98 69,0% 83,6% 88,2% 78,9% 59,1% 58,4% 72,2% 76,1%
97 69,1% 82,1% 87,8% 80,9% 60,3% 57,9% 72,6% 76,1%

ESM2 35M
99 69,2% 79,2% 87,7% 81,1% 60,2% 59,6% 74,0% 79,0%
98 69,0% 83,0% 88,4% 80,6% 60,6% 60,7% 74,7% 79,1%
97 69,2% 83,7% 88,3% 81,2% 62,3% 59,9% 73,7% 79,1%

ESM2 150M

99 69,6% 85,5% 88,6% 83,1% 65,0% 63,2% 74,2% 82,8%
98 69,1% 69,2% 88,1% 81,9% 63,7% 62,8% 74,0% 82,8%
97 69,1% 84,8% 88,7% 82,4% 63,5% 62,7% 75,0% 82,7%
96 - 84,4% - - - - - -

ESM2 650M
99 68,9% 78,3% 87,7% 83,0% 68,5% 65,9% 73,9% 85,5%
98 69,2% 82,6% 89,0% 82,6% 69,6% 64,8% 73,4% 85,5%
97 68,8% 77,9% 88,7% 82,4% 67,5% 64,5% 73,7% 85,6%

ProtT5

99 68,7% 76,5% 88,0% 81,7% 72,4% 66,6% 71,5% 85,0%
98 69,1% 77,3% 87,7% 83,4% 72,7% 65,9% 72,4% 84,9%
97 69,1% 74,6% 88,4% 84,7% 72,0% 66,3% 72,8% 84,9%
96 - - - - - 65,9% 72,6% 84,9%
95 - - - - - 65,2% 71,5% 84,9%

Ankh base
99 69,6% 83,3% 86,7% 80,1% 61,1% 62,4% 69,5% 84,0%
98 69,6% 81,2% 87,7% 83,2% 60,5% 61,8% 68,8% 84,0%
97 69,7% 79,2% 86,3% 80,5% 60,2% 61,4% 70,2% 84,0%

Ankh large
99 69,8% 84,3% 88,0% 80,7% 57,1% 59,8% 70,8% 85,8%
98 69,7% 84,5% 89,3% 81,5% 57,4% 62,6% 68,4% 85,7%
97 69,9% 85,4% 89,2% 83,0% 63,4% 62,1% 70,0% 85,7%

2.2 Aggregated results

Table S7: ESM2 - pretrained embeddings

ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM2 3B
GFP 64,1% ± 0,19 65,0% ± 0,17 64,0% ± 0,13 64,8% ± 0,10 64,9% ± 0,11
AAV 68,6% ± 0,35 62,8% ± 1,69 67,0% ± 1,40 62,7% ± 2,87 76,9% ± 0,25
GB1 82,9% ± 0,27 83,1% ± 0,34 84,5% ± 0,42 86,3% ± 0,39 86,3% ± 0,49
Stability 76,6% ± 1,45 74,0% ± 1,15 79,6% ± 1,62 70,7% ± 2,27 77,6% ± 0,93
Meltome 57,6% ± 0,18 59,0% ± 0,19 62,6% ± 0,43 66,6% ± 0,39 67,2% ± 0,17
Sub. Loc. 52,8% ± 0,39 56,1% ± 0,97 60,3% ± 0,64 63,9% ± 0,45 63,7% ± 0,53
Disorder 70,0% ± 0,18 69,1% ± 0,15 71,4% ± 0,12 72,3% ± 0,09 70,7% ± 0,30
Sec. Str. 75,2% ± 0,03 78,2% ± 0,01 82,1% ± 0,02 84,6% ± 0,04 85,5% ± 0,02

Table S8: ESM2 - finetuning

ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM2 3B
GFP 68,9% ± 0,36 69,1% ± 0,14 69,2% ± 0,31 69,0% ± 0,26 -
AAV 83,1% ± 1,00 82,0% ± 2,76 84,9% ± 0,62 79,6% ± 2,94 -
GB1 88,4% ± 0,78 88,2% ± 0,45 88,5% ± 0,38 88,5% ± 0,77 -
Stability 79,8% ± 1,10 81,0% ± 0,37 82,5% ± 0,70 82,7% ± 0,36 -
Meltome 59,4% ± 0,88 61,1% ± 1,30 64,1% ± 0,91 68,5% ± 1,14 -
Sub. Loc. 58,2% ± 0,29 60,1% ± 0,62 62,9% ± 0,33 65,1% ± 0,82 -
Disorder 72,4% ± 0,21 74,2% ± 0,59 74,4% ± 0,55 73,7% ± 0,27 -
Sec. Str. 76,1% ± 0,04 79,1% ± 0,06 82,8% ± 0,05 85,5% ± 0,03 -
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We were not able to finetune the ESM2 3B model (Table 8) on available hardware due to GPU
memory constraints. Therefore it is not included in the intra-model comparison heatmap.

Table S9: T5 models - pretrained embeddings

ProtT5 Ankh base Ankh large
GFP 61,6% ± 0,29 66,1% ± 0,14 67,1% ± 0,15
AAV 72,4% ± 0,61 66,1% ± 1,92 74,4% ± 0,57
GB1 86,0% ± 0,34 85,1% ± 0,36 86,5% ± 0,23
Stability 79,8% ± 0,74 80,0% ± 0,89 75,8% ± 2,20
Meltome 70,3% ± 0,34 58,4% ± 0,30 62,6% ± 0,58
Sub. Loc. 61,9% ± 1,25 61,1% ± 0,64 61,4% ± 0,73
Disorder 71,3% ± 0,16 71,0% ± 0,20 70,1% ± 0,09
Sec. Str. 84,2% ± 0,01 84,3% ± 0,02 86,0% ± 0,02

Table S10: T5 models - finetuning

ProtT5 Ankh base Ankh large
GFP 69,0% ± 0,30 69,6% ± 0,08 69,8% ± 0,13
AAV 76,1% ± 1,54 81,2% ± 2,32 84,7% ± 0,70
GB1 88,0% ± 0,40 86,9% ± 0,78 88,8% ± 0,79
Stability 83,3% ± 1,70 81,3% ± 1,94 81,7% ± 1,34
Meltome 72,4% ± 0,42 60,6% ± 0,49 59,3% ± 4,00
Sub. Loc. 66,0% ± 0,45 61,9% ± 0,58 61,5% ± 1,71
Disorder 72,2% ± 0,52 69,5% ± 0,82 69,8% ± 1,41
Sec. Str. 84,9% ± 0,03 84,0% ± 0,05 85,7% ± 0,05
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3 Figures - Finetuning

Figure S1: Disorder prediction improved. Intrinsically disordered residues can be described by
so-called CheZOD scores [12]. The x-axis shows the Spearman correlation between experimental and
predicted CheZOD scores, for five different methods. Values marked by asterisks (*) taken from the
literature [13]. Our results shown in green, previous results from [13] in orange (pLM-based without
MSA) and blue (MSA-based) and the MSA-based SOTA in gray [14, 12]. For each fine-tuned model
we trained five models with different random seeds. We select the model checkpoint corresponding
to the lowest validation loss. Error bars mark the 95% confidence intervals (CI), estimated via
bootstrapping.

Figure S2: Secondary structure prediction hardly affected. Values for the pre-trained models
(ProtT5 [16] and ProstT5 [19]) taken from literature [19] and marked by (*). We included two
previously used test data sets (CASP12 [20] and NEW364 [16]). For each fine-tuned model (ProtT5-
LoRA and PostT5-LoRA) we trained five models with different random seeds and selected the model
with the lowest validation error after the 5th epoch. Error bars mark the 95% confidence intervals,
estimated via bootstrapping (values not available for pre-trained CASP12 results).
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4 Validation set issues

As mentioned earlier, instead of selecting the best performing models using the validation set, we
measured performance directly on the test set for the intra-model comparison. Figure S3 shows the
same experimental results when early stopping on the validation set is applied instead.

We saw three different kind of behaviours during training:

First we encountered noisy test performance, i.e. the test loss and performance metric are not
converging cleanly but stay fluctuating even though training and validation loss flatten out smoothly.
This occurred for the Stability and AAV datasets.

Second, for some tasks we see over-fitting. This occurs for Meltome, Subcellular Localization and
Disorder prediction and is normal behaviour. But for two of those three (Disorder and to a lesser
extend Meltome) the validation loss does not reflect this. Which leads to an inability to early stop at
the correct moment.

The third very forgiving behaviour is clean convergence without overfitting. This happens for the
GFP, GB1 and secondary structure tasks. Here training can be continued beyond initial convergence
without any effect on test performance.

This is reflected in the heatmap (Figure S3). Values for AAV and Stability change significantly
due to a basically random selection from their noisy convergence range. Because both, embedding
based predictions and finetuning, are affected similarly this leads to random increases/decreases. For
Meltome and Disorder the difference values gets smaller, because finetuned models simply have a
higher potential to overfit (because more parameters are updated).

Everything mentioned above was found for these datasets using the data splits mentioned. We also
only performed a limited general hyperparameter search and did not optimize those for each individual
task. It is possible, that more optimal hyperparameters can mitigate some unwanted behaviour.

Figure S3: Comparison of models and tasks - with early stopping
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