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Abstract

Generative Large Language Models (LLMs) based on the Transformer architecture
have recently emerged as a dominant foundation model for a wide range of Natural
Language Processing tasks. Nevertheless, their application in real-time scenarios
has been highly restricted due to the significant inference latency associated with
these models. This is particularly pronounced due to the autoregressive nature
of generative LLM inference, where tokens are generated sequentially since each
token depends on all previous output tokens. It is therefore challenging to achieve
any token-level parallelism, making inference extremely memory-bound. In this
work, we propose SPEED, which improves inference efficiency by speculatively
executing multiple future tokens in parallel with the current token using predicted
values based on early-layer hidden states. For Transformer decoders which employ
parameter sharing, the memory operations for the tokens executing in parallel
can be amortized, which allows us to accelerate generative LLM inference. We
demonstrate the efficiency of our method in terms of latency reduction relative
to model accuracy and demonstrate how speculation allows for training deeper
decoders with parameter sharing with minimal runtime overhead.

1 Introduction

The Transformer neural network architecture has recently revolutionized NLP, providing massive
accuracy gains across a range of tasks [1} 2]]. In particular, there has been growing interest in applying
Transformers decoders for generative tasks [3,4]. Unlike Transformer encoders which can process an
entire input sequence in parallel, Transformer decoders must be applied autoregressively at inference
time as each input token depends on the output classification for the previous token. This means that
they exhibit low arithmetic intensity and are typically memory bandwidth-bound [5} 6]. For small
batch sizes (as is typical for edge deployment scenarios [7]), it is extremely difficult to achieve any
parallelism. In order to accelerate memory bandwidth-bound decoder inference, we must reduce the
number of memory operations required.

In this work, we aim to reduce the latency of memory bandwidth-bound decoder inference by
employing speculative execution in order to process tokens at different positions in the sequence in
parallel. When employing speculative execution, the forward passes for future tokens are started
using speculative output values from earlier tokens. By starting future tokens, we can process them in
parallel with finishing the forward passes for earlier tokens. If a prediction is later found to be wrong,
we must invalidate all future inferences that were started based on the speculative output value from
the incorrect prediction. By still following all iterations through to completion, we can ensure that
full model accuracy is maintained.
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Figure 1: Outline of our methodology for speculative pipelined execution with parameter sharing.
Diagram (a) shows how speculative values can be used to start later tokens, and how any incorrect
predictions can later be corrected. Diagram (b) shows how this type of speculative execution allows us
to pipeline inference, thereby achieving parallelism across the sequence length dimension. However,
in a standard decoder, this doesn’t help reduce memory operations since we would now need to load
different decoder layers for different tokens in the sequence. Diagram (c) shows how in networks
with parameter sharing, Speculative Pipelined Execution amortizes memory operations across the
sequence length dimension, thereby allowing for Efficient Decoding (SPEED).

On its own, speculative execution would not lead to performance benefits within a single network.
As shown in (b) in Figure|l] different tokens in the sequence would need to be processed by different
layers in the network at the same time, meaning that the number of memory operations required
for performing inference would not be reduced (even assuming perfect prediction). Additionally, to
support inference on low-resource edge devices, it is crucial to reduce the model’s memory footprint.
Parameter sharing is a common method for model compression in Transformer networks [8 9]].
However, although it reduces the size of the network, parameter sharing doesn’t typically provide
significant speedup as the standard computation must still be performed for all layers in the network.
Even if inference is memory-bound, parameter sharing only reduces the number of memory operations
required if the entire model fits in local cache memory, which is restrictive and hardware-dependent.

However, in a network which employs parameter sharing, speculative execution allows us to amortize
the memory operations required for the weight matrices across different tokens in the sequence. By
employing speculative execution in networks with parameter sharing, we can pipeline inference,
thereby reducing memory operations. Each pipeline stage corresponds to passing several tokens at
different positions through the same set of linear layers (since the parameters for these linear layers are
shared across decoder blocks). Our speculative execution approach therefore allows us to accelerate
decoder inference with networks that employ parameter sharing as a model compression method. We
believe that our speculative execution approach can make parameter sharing an advantageous model
compression strategy for both shrinking the static model size and for accelerating inference.

2 Method

2.1 Parameter Sharing

The parameter sharing scheme in this work corresponds to the “CYCLE" configurations from [[10]],
meaning that if a group of two decoder layers is shared three times, a forward pass consists of
alternating between going through layer 1 and layer 2 three times. Our cyclic parameter sharing
scheme is outlined graphically in part (a) of Figure[2] During fine-tuning, we incorporate a weighted
loss function inspired by the work of [7]. The purpose is to adapt the output classifier so that it can
make early predictions during inference using the output logits from earlier decoder layers (i.e., after
different repetitions of decoder layer groups). More formally, the shared loss function is given by

L, = Zil w; L;, where G is the number of decoder layer groups, and L; and w; correspond to
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Figure 2: Diagram demonstrating how our speculative pipelined execution approach is implemented.
Diagram (a) shows how parameters are shared cyclicly across groups of decoder layers (where Ny is
the number of unique decoder layers shared G times and N = G % Ny is the total number of layers),
and how the losses from the classifications at each layer are incorporated into a shared loss function
during training. Note that we have omitted the final layer normalization layer prior to the shared
classifier for simplicity. Diagram (b) shows a single pipeline stage in our inference process. Diagram
(c) shows the progression of several pipeline stages in sequence.

the loss and the applied weighting for group ¢, respectively. The default weighting scheme we use
was the linear weighting described in [[7], which is given as w; = /(3 , i). Note that this weighting
scheme intentionally weights the loss for later layers higher to ensure the final output accuracy is not
degraded. The training scheme using a shared classifier is also illustrated in part (a) of Figure 2]

2.2 Speculative Pipelined Execution

Diagrams (b) and (c) in Figure [2] outline how the forward pass is performed in our speculative
approach. Our decoding algorithm is outlined in detail in Algorithm [I] (Appendix [B). In essence,
SPEED speculatively predicts future tokens based on early predictions and then concatenates them
with the current token for their parallel processing. The crucial feature of SPEED is its invalidation
logic since speculative predictions can be sometimes incorrect. To achieve this, our framework keeps
track of previous classifications for each token at the previous stage (i.e., before passing through a
decoder layer group) and performs the invalidation logic whenever subsequent classifications change
after the current stage (i.e., after passing through a decoder layer group). In such a case, any future
iterations that have been speculatively initiated using the previous classifications must be flushed out
and restarted.

Another crucial implementation detail is that the internal logic in the attention module and the internal
Key/Value (KV) cache management logic both need to be modified to facilitate pipelining. The KV
cache corresponds to intermediate activations associated with earlier tokens in the sequence, which
are required for calculating later tokens. The KV cache management logic has to ensure that when
future tokens are invalidated, all previous KV cache updates corresponding to these tokens are also
invalidated. These modifications play a key role in ensuring that the final output classification for
each token remains unaffected by speculation.

3 Results

3.1 Implementation and Training Details

We implement SPEED within the T5X [L1] repository, which is built on top of the JAX [12]
framework. Our implementation for pipelined inference used a custom decoding function in the
T5X framework. Our initial profiling runs also indicated that the existing greedy decoding function
in JAX had greater runtime overhead than our custom decoding algorithm, likely due to additional
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Figure 3: Accuracy versus Efficiency for T5-Base with Speculative Execution on an NVIDIA
A5000 GPU. The stars correspond to the parameter sharing configurations with speculative pipelined
execution, and the circles correspond to the baseline configurations (with either the normal full-length
decoder or a shallower decoder). The dot colors indicate the models with the same number of
parameters (and the dot sizes are proportional to the number of parameters in the decoder). The
arrows indicate the accuracy improvements we can get from using parameter sharing without the full
latency penalty that we would normally incur. The reported runtime is the average latency across 500
examples in the test set.

optional arguments that were unused in our experiments. In order to benchmark the networks without
parameter sharing, we therefore implemented a stripped-down greedy decoding function to serve as a
fair baseline since it has minimal added control logic.

We use the baseline T5-Base decoder-only model architecture [4]], which has 12 decoder layers, a
hidden dimension of 768, 12 attention heads each with dimension 64, and an FFN dimension of
2048 (the default configuration in T5X [[L1]). We keep all model architecture parameters constant
across all experiments aside from the number of decoder layers. We use the 12-layer network as
a baseline for comparison since it has the same number of total layers as the configurations with
parameter sharing. We pretrain each network from scratch on C4 [4]], and we finetune networks on
translation and summarization tasks [[13} 14} 15 [16]. For configurations using parameter sharing,
parameter sharing is incorporated throughout pretraining and finetuning. Additional training details
are provided in Appendix [C]

3.2 Main Results

Figure [3| shows the accuracy versus efficiency tradeoff comparisons. When employing parameter
sharing with SPEED, we observe significant speedups relative to the baseline 12-layer decoder net-
work, achieving close to the same runtime as the shorter decoder network without parameter sharing
across all benchmarks other than WMT-ENDE. Additionally, our parameter-sharing configurations
attain significantly higher accuracy than the shallow decoder baselines. This demonstrates how the
SPEED approach allows for improving accuracy for a fixed model size without a significant runtime
penalty. We further experiment with deepening the decoder with parameter sharing by sharing
parameters more times such that the total number of layers is increased. We find that deepening the
decoder generally improves accuracy with minimal runtime penalty; as such, we believe that this is a
promising approach to further boost accuracy for a fixed model size without much latency overhead.
Appendix [D.T| provides analysis for the accuracy of predictions made at early layers with SPEED.
A detailed analysis of performance implications of the SPEED approach (and analysis of the lesser
speedups we observe for WMT-ENDE) is provided in Appendix

4 Conclusion

We present a novel decoding strategy that allows for pipelined execution in Transformer decoders
with parameter sharing. We describe the modifications required to the model architecture to leverage
pipelined execution to reduce memory traffic (namely, cyclic parameter sharing in the decoder
module). We observe consistent accuracy gains across all tasks for an equivalent model size, with
only a small latency penalty. These results demonstrate the accuracy and performance benefits of our
pipelined inference approach, showing how SPEED allows for deeper decoder configurations with
parameter sharing to improve accuracy for a fixed parameter budget and minimal latency penalty.
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A Related Work

Prior works have explored parameter sharing in encoder-only [8]], encoder-decoder [[17], and decoder-
only [9] Transformers as a method for reducing the size of the network by sharing parameters across
all layers in the encoder and/or all layers in the decoder. [10] explored only sharing parameters
amongst a subset of layers and found that cyclic parameter sharing schemes outperformed sharing
across all layers. There have also been several works on speculative decoding which aim to produce
a set of “draft” tokens autoregressively using a smaller network and then correct them (in parallel)
using a larger network [18, 19} 20]. Our work instead aims to support speculative execution within a
single network in order to accelerate inference with parameter sharing networks.

There are also prior works that aim to accelerate decoder inference through early exiting, where
inference is terminated early when the model is confident that it can already predict the next token
[7,21]. Our work also leverages similar intuition, namely that while certain predictions truly benefit
from the models’ full capacity, other continuations are more trivial and can be solved with reduced
compute [7]. However, our proposed approach for accelerating decoder inference has advantages
over typical early exiting approaches. Although early exit can be applied to an existing network and
doesn’t require pretraining, our method is guaranteed to always achieve the same accuracy as the
baseline network with parameter sharing since it fixes any mistakes. Our method also reduces the
model size through parameter sharing (in addition to the speedup from pipelined execution).

B Algorithm

Algorithm|[I] provides the detailed outer-loop decoding algorithm for pipelining decoder inference.
The “iteration_indices" variable is responsible for both tracking which pipeline stages have a valid
token and also what iteration in the sequence these valid tokens are at. For example, if the model has
6 groups of shared decoder layers and three valid tokens (corresponding to iterations 3, 2, and 1 in
the sequence) which are entering layers 1, 3, and 5 in the network, “iteration_indices" will be equal
to (3,-1,2,-1, 1, -1).



Algorithm 1 Pseudocode for the Pipelined Decoding Algorithm. Note that the encoder outputs are
also used by the pipelined forward pass (and the KV cache is updated within this function), but these
inputs are omitted for brevity.

—_

16:
17:

18:

19:
20:
21:
22:

23:
24:

: Constant Values:

. max_decode_length is the maximum number of generated tokens
: G is the number of groups of shared decoder layers

. “bos" is the beginning of sentence token

“eos" is the end of sentence token
“pad_id" is the padding token

: Decoding State:

sequence contains the output sequence (size: max_decode_length)

: previous_tokens is an array for keeping track of tokens from the last iteration (size: G - 1)
. iteration_indices is an array for tracking which pipeline stages have valid tokens and what

iteration they are at in the sequence (size: G)

. current_index contains the next index to commit a token to in the sequence

. current_token contains the current token to pass in to the model

. graduated_token contains the most recently committed token

: Temporary Variables:

: new_logits is the output from the forward pass through a pipeline stage (size: G * number of

classes). Note that the number of classes is determined by the tokenizer used (in this work it is
fixed at 32K).

tokens is the output classifications from the current forward pass (size: G)

compare_tokens is a vector that stores comparisons between the current and previous tokens
(size: G)

last_invalid is the index of the oldest token in the pipeline whose classification changed since the
last iteration

start_idx is the index in the sequence of the next token entering the first pipeline stage
Functions:

pipeline_forward_pass computes the forward inference pass for a single stage

get_index_of _last_nonzero gets the index of the last nonzero in the input array, and otherwise
returns 0

range(N) generates the array [0,1,...,N-1]

argmax(A) returns an array containing the index of the maximum value for each column in A




25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

Initialize:
sequence = [“pad_id" for i in range(max_decode_length)]
previous_tokens = [-1 for i in range(G-1)]
iteration_indices = [-1 for i in range(G)]
current_index =0
current_token = “bos"
graduated_token = -1
while ((graduated_token != “eos") and current_index < max_decode_length) do
new_logits = pipeline_forward_pass(current_token, iteration_indices)
tokens = argmax(new_logits)
tokens[iteration_indices == -1] = -1
compare_tokens = [0, tokens[1:] != previous_tokens]
last_invalid = get_index_of_last_nonzero(compare_tokens)
iteration_indices[i < last_invalid] = -1
tokens[iteration_indices == -1] = -1
previous_tokens = tokens[:-1]
current_token = tokens[last_invalid]
start_idx = iteration_indices[last_invalid] + 1
if (iteration_indices[-1] !=-1) then
sequence[current_index] = tokens[-1]
graduated_token = tokens[-1]
current_index += 1
end if
if (start_idx < max_decode_length) then
iteration_indices = [start_idx, iteration_indices[:-1]]
else
iteration_indices = [-1, iteration_indices[:-1]]
end if
end while
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Figure 4: Proportion of predictions that were flipped at each layer when using speculative pipelined
execution with 2x6 and 4x3 configurations.

C Training Details

We used the default SentencePiece tokenizer with a vocabulary size of 32K, and we used tied input
and output embeddings [22]]. We pretrained on C4 (Colossal Clean Crawled Corpus) for 524,288
steps using a batch size of 128 [4]. C4 is a large dataset of filtered English text scraped from the
web [4]]. We used a base learning rate of 1 with a square root decaying learning rate scheduler and
with 10K warmup steps. We focused on two particular sequence-to-sequence tasks during finetuning:
translation and summarization. For translation, we used the WMT English to German dataset as well
as the English to German Paracrawl-Paragraph translation dataset [T6]]. The Paracrawl-Paragraph
dataset was used to also evaluate on a translation dataset with longer source and target context lengths
(since it consists of full paragraph translations). For summarization, we used the CNN/DailyMail
dataset, which consists of news articles written by journalists at CNN and the Daily Mail [[14], as
well as the English to English split of the Wikilingua multilingual summarization dataset [13]]. We
finetuned for 262,144 steps using a batch size of 128 and dropout of 0.1, using input/target sequence
lengths of 512/512 across all tasks. When finetuning, we used a constant learning rate of 0.001 with
1K warmup steps. We evaluated checkpoints every 5,000 steps during finetuning on the validation set,
and then reported results on the test set using the checkpoint with the best accuracy on the validation
set. Both training and inference arithmetic were performed in BF16 precision. We used TPU v2-8

machines on Google Cloud Platform for training experiments, and we launched these experiments
using Skypilot [23]].

D Performance Analysis

D.1 Prediction Consistency

In order to assess the accuracy of the predictions made from our network at earlier layers, we
profiled the proportion of predictions that were flipped between pairs of layers during inference.
Figure 4] shows the prediction consistencies for 4x3 and 2x6 network configurations across all tasks.
Upon examining these numbers and plots, we found that the model is able to make the majority of
predictions accurately at early layers. Across all three configurations, the proportion of predictions
that would need to be corrected after the first layer was between 13-17% for the 2x6 configuration
and between 6-14% for the 4x3 configuration, showing that the majority of predictions were correct
at early layers. Additionally, we found that a very small percentage of predictions flipped at later
layers. This shows that the model tends to converge to the final answer and does not experience much
oscillation between different predictions.

D.2 WMT-ENDE Performance

The primary reason that we observed greater latency penalties with our approach for WMT-ENDE
compared with the other translation and summarization tasks was due to its shorter output generation
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lengths. The benefits from our pipelined decoding approach come from being able to process
multiple tokens in parallel, and in the first few and last few iterations with our method, there will
be fewer tokens in the pipeline. This means that the first iterations and final iterations in pipelined
decoding aren’t completely overlapped. This is only a limiting factor for tasks with shorter generated
sequence lengths (where the average number of tokens generated is close to the number of shared
groups of layers in the network). The generation lengths for WMT-ENDE are typically shorter than
summarization tasks and paragraph-level translation, which leads to increased latency penalties.

D.3 CNN/DM Performance

With CNN/DM, we actually observed reduced latency when inferring the 4x3/4x4 configurations
relative to the 4-layer network without parameter sharing. This is unexpected, since even assuming
perfect prediction for the networks with parameter sharing, the latency would not be less than the
baseline 4-layer network (assuming the same output generation length). However, it is possible for the
parameter sharing configurations to exhibit lower latency due to differences in the average generation
lengths for the networks with parameter sharing relative to the network without parameter sharing (as
if the average generation length is shorter for the networks with parameter sharing, they could have
lower average latency).

D.4 General Discussion
There are several factors which impact the runtime when employing SPEED.

* One factor is the generation length, as the first iterations and final iterations in pipelined
decoding aren’t completely overlapped (as discussed in Appendix [D.2). This limits the
runtime gains from SPEED for tasks with short output generation lengths.

* Because the embedding matrix is large, it can actually end up consuming a large portion of
the memory bandwidth (and hence the runtime) for smaller models. This is a crucial reason
why the latency gains aren’t linear as you go from a 12-layer network down to a 2-layer
network even without considering parameter sharing or speculative execution.

* One additional performance implication is that if the pipeline is too deep (i.e. layers
are shared too many times), this can lead to greater misprediction penalties. Improving
prediction consistency is therefore crucial for improving runtime with deeper decoder
configurations.
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