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Abstract

Recently, there has been an increasing interest in automated prompt optimization
based on reinforcement learning (RL). This approach offers important advantages,
such as generating interpretable prompts and being compatible with black-box
foundation models. However, the substantial prompt space size poses challenges
for RL-based methods, often leading to suboptimal policy convergence. This paper
introduces MultiPrompter, a new framework that views prompt optimization as
a cooperative game between prompters which take turns composing a prompt
together. Our cooperative prompt optimization effectively reduces the problem
size and helps prompters learn optimal prompts. We test our method on the text-to-
image task and show its ability to generate higher-quality images than baselines.

1 Introduction

Foundation models are now an integral part of our daily lives, finding applications across various
tasks and domains [1–3]. The driving force behind their widespread adoption is prompting. Unlike
fine-tuning, which involves a resource-intensive process of updating numerous model parameters for
a specific task, prompting effectively guides the model’s behavior by refining initial prompts [4–6].
With the growing availability of black-box models, prompting has emerged as an essential tool for
interacting with foundation models.

An important goal in prompting is automated prompt optimization, removing the need for laborious
manual trial-and-error efforts. Reinforcement learning (RL) [7] presents a promising solution for
achieving this goal by discovering prompts that outperform manually created ones through sequential
optimization in the prompt space [8–13]. Notably, RL-based methods generate interpretable prompts
and are compatible with black-box foundation models. These attributes provide distinct advantages
over alternative approaches like soft prompts [14–17], which produce less interpretable prompts and
require white-box access to the models. However, despite these exciting outcomes, we note that
existing work suffers from the extensive size of the prompt space. This problem size is critical as it
hinders effective exploration and generally leads to suboptimal policy convergence [18].

We propose a novel prompt optimization framework to address the challenge posed by the extensive
prompt space. Our key idea is to view prompt optimization as a cooperative game between multiple
prompters which take turns composing a prompt together (see Figure 1). In this new setting, prompters
cooperatively decompose the prompt space into smaller subspaces and sequentially optimize their
respective parts. As a result, our approach significantly reduces problem complexity compared
to prior work that rely on a single prompter to optimize the entire prompt. To effectively learn
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Figure 1: In MultiPrompter, a team of prompters learns to take turns optimizing a prompt together,
generating higher-quality images compared to those produced by a single-agent RL method for a
text-to-image task. The images are generated using Stable Diffusion [2].

cooperative policies within our framework, we develop a practical multi-agent RL algorithm, named
MultiPrompter. Specifically, we enable each prompter to consider the behaviors of subsequent
prompters through a centralized critic [19–22] designed for cooperative prompt optimization. We
show that MultiPrompter generates more optimal prompts than those produced by baselines.

Our contribution. In summary, this paper makes the following main contributions:

• Formulation of cooperative prompt optimization (Section 2). We introduce a new cooperative
game in which multiple prompters work as a team to enhance a prompt by sequentially optimizing it.
This cooperative approach effectively reduces problem complexity in contrast to a single-agent RL
approach and facilitates the process of finding optimal prompts.
• Algorithm for learning cooperative prompt optimization (Section 3). Learning multiple
prompters in our setting requires each prompter to take into account the behaviors of others. Other-
wise, undesirable outcomes can arise as prompters may greedily optimize a prompt. To address this,
MultiPrompter develops an actor-critic framework with a centralized critic that considers the next
prompter’s actions to predict the value accurately.
• Comprehensive evaluation of MultiPrompter (Section 4). Our results highlight that Multi-
Prompter outperforms a single-agent RL baseline in the text-to-image generation task, obtaining
higher rewards and the ability to optimize longer prompts. Additionally, we consider a variant of
MultiPrompter, which applies a competitive game between prompters, and show that this competitive
prompt optimization is less effective than our cooperative formulation.

2 Problem Statement: Cooperative Prompt Optimization Game

Overview. We introduce the new concept of cooperative prompt optimization: given an initial
prompt x, a team of n prompters generates an optimized prompt that consists of multiple subprompts
y=(ỹ1, ..., ỹn) (see Figure 1). Specifically, the first prompter optimizes the initial parts of a prompt
and passes the baton to the next prompter as needed. Then, the second prompter continues the
optimization from where the previous prompter left off. This process repeats until the last prompter
finishes its turn or the length of an optimized prompt exceeds a token limit. The team’s objective is to
generate an optimized prompt such that it achieves a high score according to a performance metric.

Definition. We formally define a cooperative prompt optimization game between n prompters as
a tuple Gn = ⟨I,S,V, T ,R⟩; I =(1, ..., n) is the set of n prompters; S is the prompt space; V is
the vocabulary; T :S×V 7→S is the deterministic prompt transition function; and R is the reward
function. We also define an index i∈I that points to the active prompter which is currently taking its
turn. At the beginning of the game, prompters are given an initial prompt x=(x1, ..., xK) and the
index i is reset to one. At each timestep t, the i-th prompter decides a discrete token yt∈V according
to its stochastic policy yt ∼ πi(·|x,y1:t91; θ

i) parameterized by θi, where y1:t91 = (y1, ..., yt91).
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An action yt then yields the prompt transition from (x,y1:t91) to (x,y1:t). If yt corresponds to an
end-of-sequence token, then i-th prompter finishes generating its subprompt ỹi. The index i is also
updated to pass the turn to the next prompter (i.e., i← i+1). The game ends when all prompters finish
their turns or the size of an optimized prompt y is over the token limit T . The team shares a reward
according toR(x,y), which measures the quality of an optimized prompt y at the end of the game.

Benefit of problem size reduction. The natural outcome of our cooperative game is the generation
of a decomposed optimized prompt, which consists of subprompts: y = (ỹ1, ..., ỹn). Thanks to
this cooperative prompt decomposition, each prompter i in MultiPrompter simply has to search for
the desired tokens within its subprompt ỹi, which contains fewer tokens than the full prompt y.
As a result, we note that our formulation substantially reduces problem complexity compared to
optimizing a prompt using single-agent RL methods [8, 23]:∑

i∈I
|V||ỹi|︸ ︷︷ ︸

Multi prompter
problem size

≪ |V||y|︸ ︷︷ ︸
Single prompter

problem size

(1)

where |·| denotes the size of a set. In the following section, we leverage this inherent benefit of our
cooperative prompt optimization game and develop an algorithm for learning cooperative policies.

3 MultiPrompter: Learning Cooperative Prompt Optimization Policies

This section introduces our multi-agent learning algorithm, named MultiPrompter, designed to learn
cooperative policies that decompose and optimize a prompt together. We first outline each prompter’s
objective in our cooperative prompt optimization game. We then detail our centralized critic that
enables each prompter to consider the actions and learning of others, thus facilitating successful
cooperation. We provide additional details, including pseudocode, in Appendix A.

MultiPrompter objective. The objective of each prompter’s policy πi is to find policy parameters θi
that maximize the expected return:

max
θi

Ex,y∼p(·|θ)
[
R(x,y)

]
, where p(x,y|θ) = p(x)

∏n

i=1

∏tieos

t=tibos

πi(yt|x,y1:t91; θ
i), (2)

where tibos and tieos denote the beginning and end timesteps of ỹi, respectively. Leveraging REIN-
FORCE [24], we derive a policy gradient with respect to the objective in Equation (2):

∇θiEx,y∼p(·|θ)
[∑tieos

t=tibos
log πi(yt|x,y1:t91; θ

i)Ai
t(x,y)

]
, (3)

whereAi
t(x,y) denotes the advantage function, which we will detail our choice in the next paragraph.

space… in

𝑖 + 1th subprompt

digital 8K…

Value function
𝒗𝒊

Value

Figure 2: Our value function additionally con-
siders a subprompt of the next prompter ỹi+1.

Centralized critic. The generalized advantage esti-
mation [25] shows that the advantage function can be
effectively estimated with low variance using a value
function. A single-agent RL approach uses a value
function v(x,y1:t91;ϕ) parameterized by ϕ [9], but
this form neglects the presence of other prompters,
even though the reward is jointly affected by all of
them. To consider policies and learning of subse-
quent prompters, MultiPrompter uses a value function
vi(x,y1:t91, ỹ

i+1;ϕi) that enables a prompter i to
consider a prompter i+ 1’s policy (see Figure 2). We
have a design choice regarding the number of next
prompters to consider in the value function, and we
empirically find that including the next prompter’s information results in effective training. Note that
the centralized value function is only utilized during training, which takes additional information
to accurately predict the value. Each prompter’s policy remains decentralized, so MultiPrompter
follows the centralized training with decentralized execution structure [19–22]. Lastly, we provide
value function optimization and other related details in Appendix A.
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Algorithm Multi-agent? Collaborative? Test reward

Manual prompt ✗ ✗ 90.68±0.06
Promptist ✗ ✗ 0.28±0.11
Competition ✓ ✗ 0.36±0.12

MultiPrompter ✓ ✓ 0.76±0.10

Table 1: Test performance across various methods. Multi-
Prompter achieves a statistically significant performance
improvement through cooperative prompt optimization.
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Figure 3: MultiPrompter’s performance
w.r.t. n shows a trade-off between problem
size reduction and cooperation complexity.

4 Evaluation

Experiment setup. Following the experimental settings by [9], we use a reward functionR(x,y)
that consists of the relevance score (i.e., measures the degree of relevance between an initial prompt x
and an image generated y) and the aesthetic score (i.e., measures aesthetical preference of an image
generated by y over another image generated by x). We implement both policies and value functions
using GPT-2 [26] and initialize them from the weights fine-tuned with manually engineered prompts
[9]. We compare methods using the COCO dataset [27]. We refer to Appendix B for more details.
Baseline. We compare MultiPrompter with the following baselines:

• Manual prompt [9]. A fine-tuned method with human-engineered prompts from Lexica [28].
• Promptist [9]. A single-agent RL method that trains a GPT-2 prompter based on PPO [29].
• Competition. Our variant of MultiPrompter that applies competition between prompters [30].

We omit soft prompt methods [14–17] in our evaluation, because our work focuses on generating
interpretable prompts without access to foundation models.

Question 1. How effective is MultiPrompter compared to a single-agent RL baseline?

Table 1 provides a summary of the test time performance. For the training performance across multiple
seeds, we refer to Figure 5 in the Appendix. Our main observation is that MultiPrompter outperforms
both the single-agent RL and manual prompt baselines. To understand how MultiPrompter generates
more optimal prompts compared to Promptist, we examine the number of optimized tokens by
each method. While Promptist converges to optimizing an average of 57.01 tokens, MultiPrompter
optimizes an average of 69.46 tokens (refer to Figure 6 in the Appendix for an example). This
result indicates that the single-agent RL approach generally suffers from the extensive prompt space,
converging to a suboptimal policy that adds only a limited number of modifiers to the original
prompt. In contrast, MultiPrompter successfully overcomes this challenge through cooperative
prompt optimization and finds a greater number of effective modifiers compared to Promptist.

Question 2. What about posing prompt optimization as a competitive game?

When considering prompt optimization from a multi-agent perspective, cooperative optimization
is not the only approach, but there is also the alternative of competitive prompt optimization. We
consider a competitive setting in which each prompter optimizes a full prompt individually and then
compares its optimized prompt to the output of another competing prompter (refer to Appendix B.1
for details). As Table 1 shows, we find that competitive prompt optimization produces a slight
improvement over the single-agent RL method but it is not as effective as cooperative prompt
optimization, primarily due to its lack of the ability to decompose the prompt space.

Question 3. How does MultiPrompter’s performance change with respect to the number of prompters?

Figure 3 shows an analysis of MultiPrompter in relation to the number of prompters n. There are two
notable observations. First, we observe a trend in which test performance increases with n, but then
decreases after n=3. This result suggests a general trade-off in cooperative prompt optimization:
while the prompt space size reduces as n increases (as discussed in Section 2), the complexity of
learning cooperation between prompters increases. Our future work includes incorporating recent
advances in multi-agent RL [31–34] to effectively address the learning complexity with increasing n.
Second, we note that MultiPrompter with any n>1 performs better than a single-agent RL approach
(i.e., n=1).
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Question 4. How important is it to learn the prompt decomposition and have the centralized critic?

Learned decomposition? Centralized critic? Test reward

✗ ✗ 0.40±0.12
✓ ✗ 0.39±0.12
✗ ✓ 0.59±0.16

✓ ✓ 0.76±0.10

Table 2: Ablation study of MultiPrompter. By learning
to collaboratively decompose the prompt space and em-
ploying the centralized critic to take into account the
behaviors of the next prompter, MultiPrompter achieves
the best performance.

MultiPrompter achieves cooperative
prompt optimization by learning the
dynamic decomposition of the prompt
space. This process involves each prompter
learning the appropriate moment to finish
its turn and pass the baton to the next
prompter, while taking into account the
actions of the following prompter through
the centralized critic. Table 2 presents
an ablation analysis of MultiPrompter,
examining its performance in learning a
flexible prompt space decomposition versus
manual decomposition (i.e., fixing each prompter’s token limit as T/n). We also study the impact of
using the centralized critic in learning policies. Two notable observations emerge. First, without
the centralized critic, each prompter cannot consider the behaviors of other prompters, resulting in
ineffective collaboration. Second, while utilizing the centralized critic improves performance, the
combination of this approach with the dynamic prompt space decomposition as in MultiPrompter
leads to the best performance.

5 Conclusion

In this paper, we have introduced MultiPrompter to address the extensive prompt space size in
RL-based prompt optimization. The key idea is to learn multiple cooperative prompters that optimize
a prompt together. We tested our method on various settings and showed that MultiPrompter
consistently outperforms baseline approaches in the text-to-image domain.
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A Additional MultiPrompter Details

A.1 Optimization

The advantage function Ai
t(x,y) in Equation (3) can be effectively estimated using the generalized

advantage estimation [25] using a value function:

Ai
t(x,y) =

∑|ỹi|−1
l=0 λlδit+l (4)

δit+l =

{R(x,y)−vi(x,y1:t+l−1, ỹ
i+1;ϕi) if t+ l= tieos,

vi(x,y1:t+l, ỹ
i+1;ϕi)−vi(x,y1:t+l−1, ỹ

i+1;ϕi) else,
(5)

where we assume the discount factor γ=1 and sparse reward function R(x,y). We update value
function parameters by minimizing the standard squared-error loss with the target value vtarget,t:

Lv(ϕ
i) = Ex,y∼p(·|θ)

[∑tieos
t=tibos

(v(x,y1:t−1,y
i+1;ϕi)− vtarget,t)

2
]
. (6)

In this work, we apply PPO [29] to update policies and value functions with respect to Equation (3)
and Equation (6), respectively.

A.2 Reward Engineering

Since MultiPrompter is a multi-agent learning approach, our work is also affected by the credit
assignment issue in multi-agent RL [20, 35, 36], where certain agents do not actively participate in
cooperation. In particular, we observe that a prompter may optimize most or the entire prompt by
itself, thereby not providing opportunities to subsequent teammates. To effectively address this issue,
we add the following cooperation reward, which computes the entropy with respect to the lengths of
the subprompts, to the original reward:

Rcooperation(y) = H(y) = −
∑
i∈I

(
(|ỹi|/|y|) log(|ỹi|/|y|)

)
/ log n. (7)

Intuitively, this reward function encourages prompters to evenly decompose the prompt space such
that they collectively optimize a prompt.

A.3 Pseudocode

Algorithm 1 MultiPrompter

Require: policy parameters θ = (θ1, ..., θn), value parameters ϕ = (ϕ1, ..., ϕn), token limit T
1: while not converged do
2: # perform episode reset
3: get an initial prompt x ∼ p(x)
4: reset index i = 1 and timestep t = 1
5: # start prompt optimization
6: while i ≤ n do
7: # select current token yt
8: if t ≤ T then
9: sample current token from an active prompter yt ∼ πi(·|x,y1:t−1; θ

i)
10: else
11: set current token as an EOS token yt = yeos
12: end if
13: # update timestep t and index i
14: update timestep t← t+ 1
15: if yt corresponds to an EOS token yeos then
16: update index i← i+ 1
17: end if
18: end while
19: compute a team rewardR(x,y)
20: # train prompters
21: for i = 1, ..., n do
22: train policy parameters θi according to Equation (3)
23: train value function parameters ϕi according to Equation (6)
24: end for
25: end while
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Initial Prompt 𝒙

Competition

Prompter 𝑖

A cat in space, detailed, gaston bussiere, …, 4K wallpaper

Optimized Prompt 𝒚𝒊

A cat in space, digital, WLOP, …, 4K resolution

Prompter 𝑗

Optimized Prompt 𝒚𝒋

𝑹 𝒙, 𝒚𝒊 − 𝑹(𝒙, 𝒚𝒋)
Competitive Reward

A cat in space

Figure 4: We present a competitive prompt optimization approach, where a prompter i competes
against another prompter j by comparing their respective optimized prompts.

B Additional Evaluation Details

B.1 Competition Baseline Details

In this work, we contrast our cooperative prompt optimization approach with an alternative setting of
competitive prompt optimization. Specifically, we design a competitive setting, where a prompter
i generates its own full prompt yi and then compares its response against another prompter j’s
optimized prompt yj . A prompter i receives a competitive reward, defined asR(x,yi)−R(x,yj), as
a result of the comparison (see Figure 4). We apply the self-play technique [30, 37] to train a prompter
that competes against its former copies and comparable skill levels. We also use the centralized critic
with a form vi(x,y1:t91,y

j ;ϕi) to enable a prompter i to consider another competition prompter j’s
policy.

B.2 Reward and Hyperparameter Details

Reward details. We follow [9] and use a reward function that measures the quality of an optimized
prompt y. Specifically, the reward functionR(x,y) first computes the relevance score:

Rrelevance(x,y) = Eimgy∼M(y)

[
min(20fCLIP(x, imgy)− 5.6, 0)

]
, (8)

where imgy refers to an image generated according to y,M refers to a text-to-image model (e.g.,
Stable Diffusion [2]), and fCLIP refers to the CLIP similarity function [38]. The relevance score
measures the degree of relevance between imgy and the initial prompt x. The reward function also
computes the aesthetic score that measures the aesthetical preference of imgy over imgx:

Raesthetic(x,y) = Eimgx∼M(x),imgy∼M(y)

[
faesthetic(imgy)− faesthetic(imgx)

]
, (9)

where faesthetic refers to the aesthetic predictor [39]. Finally, the reward function sums the two
scores: R(x,y)=Rrelevance(x,y)+Raesthetic(x,y). For the case of cooperative prompt optimization,
we also add the cooperation reward in Appendix A.2 during training: R(x,y)=Rrelevance(x,y)+
Raesthetic(x,y)+αRcooperation(y), where α denotes a weight.

Hyperparameter details. We report important hyperparameter values in our experiments:

Hyperparameter Value
Number of prompters n 1,2,3,4,5
Batch size 256
Minibatch size 128
Stable Diffusion inference step 20
Token limit T 80
Learning rate 0.00001
Entropy weight 0.001
Discount factor γ 1.0
GAE λ 0.95
Cooperation reward weight α 0.25

Table 3: Hyperparameter values used in our experiments.
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B.3 Additional Result

Train performance.
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Competition
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Manual Prompt

Figure 5: Training performance for each method. Thanks to our cooperative prompt optimization,
MultiPrompter converges to a more optimal policy. The mean and standard deviation computed for 3
seeds are shown in the figure.

Test example.

Single-Agent RL MultiPrompter

Optimized Prompt:
a beige teddy bear is sitting on a chair.
intricate, elegant, highly detailed, digital
painting, artstation, concept art, sharp
focus, illustration, by justin gerard and
artgerm, 8 k

Optimized Prompt:
a beige teddy bear is sitting on a chair.
digital painting, concept art, donato
giancola, Joseph Christian Leyendecker,
WLOP, Breathtaking, 8k resolution,
extremely detailed, beautiful, establishing
shot, artistic, hyperrealistic, beautiful face

Original prompt:
A beige teddy bear is sitting on a chair

1st Prompter 2nd Prompter 3rd Prompter

Figure 6: An example of an optimized prompt generated by a single-agent RL baseline and Multi-
Prompter. This example highlights that MultiPrompter adds a greater number of effective modifiers
compared to the baseline. These images are generated using Stable Diffusion [2].
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