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Abstract

Today, the exponential rise of large models developed by academic and industrial
institutions with the help of massive computing resources raises the question of
whether someone without access to such resources can make a valuable scientific
contribution. To explore this, we tried to solve the challenging task of multilingual
image retrieval having a limited budget of $1,000. As a result, we present NLLB-
CLIP – CLIP model with a text encoder from the NLLB model. To train the
model, we used an automatically created dataset of 106,246 good-quality images
with captions in 201 languages derived from the LAION COCO dataset. We
trained multiple models using image and text encoders of various sizes and kept
different parts of the model frozen during the training. We thoroughly analyzed
the trained models using existing evaluation datasets and newly created XTD200
and Flickr30k-200 datasets. We show that NLLB-CLIP is comparable in quality
to state-of-the-art models and significantly outperforms them on low-resource
languages.

1 Introduction and model description

Contrastive Language-Image Pre-Training (CLIP) [20] is a powerful architecture that allows achieving
high-quality results on a variety of tasks, such as zero-shot classification, text-image, and image-text
extraction. It uses vision and text transformers [9, 25] to encode information from images and texts
into the common latent space. CLIP can be applied to new tasks without any fine-tuning [24, 13] or
be extended to solve more complex tasks as semantic segmentation [16].

CLIP has been adapted to languages other than English, like Italian [2] and Chinese [28]. Numerous
works also demonstrated that CLIP can be extended to multiple languages at once [3, 6]. But to date,
there have been no capable CLIP-like models for low-resource languages [19, 12].

Recently, the "No Language Left Behind" (NLLB) model [7] was introduced to enable translation
between more than 200 languages. The model shows great performance in both high- and low-
resource languages. Notably, the model has encoder-decoder architecture and was trained in different
sizes (600M, 1.3B, and 3.3B parameters) that allow a wider variety of deployments.

The core question we investigated is whether we can use a pre-trained text encoder from NLLB
models to extend CLIP capabilities to the languages of the Flores-200 dataset and stay within a
limited budget of $1,000. To answer this, we replaced the standard text encoder of the OpenAI CLIP
[20] with the text encoder from the NLLB model. We left the rest of the model and loss functions the
same as we wanted to understand the impact of this specific change.

For the experiments, we used various backbone models. For the image encoder, we used the original
CLIP ViT base (denoted as "b" in experiments) and large ("l") and CLIP ViT huge ("h") trained by
LAION. For the text encoder, we used respective parts of three NLLB variants – base ("b"), large
("l"), and huge ("h").
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2 Datasets

2.1 Training dataset

Since there are no image-text datasets available for all Flores-200 languages, we had to create a
new, sufficiently large dataset to train the model. We used a random subset of the LAION COCO
dataset1 that contains automatically generated captions in MS COCO [15] style. We used the LAION
aesthetic predictor model2 to filter the images during the processing and preserved only the pictures
with an aesthetic score higher than 4.5. The threshold score was obtained empirically by manually
analyzing 500 scored images from the dataset. We aimed to collect enough data but not too much
so that we would stay within our budget when training the models. As a result, we got 106,246
images. English captions were translated into 200 languages of the Flores-200 dataset using the
NLLB-3.3B model. We left 15% of the dataset (15,937 samples) for validation. The result is the
LAION-COCO-NLLB dataset [26], which we make publicly available. To the best of our knowledge,
this is the largest image-text dataset in terms of languages covered. The key property of this dataset
is that all 201 languages are presented equally, which greatly affects the model performance for
low-resource languages, as shown in Section 5.

2.2 Evaluation datasets

We used two existing evaluation datasets for the experiments. (1) XTD10 [1] – 1,000 image-text pairs
from COCO 2014 dataset translated into 10 languages. It extends previous works [21, 29] with 7 new
languages. (2) Crossmodal-3600 [23] – 3,600 images annotated with captions in 36 languages. The
main advantage of this dataset is that it covers many languages, including five low-resource ones –
Bengali, Cusco Quechua, Maori, Swahili, and Telugu.

To test the performance of the models using all Flores-200 languages, we created two new datasets.
(1) XTD200 – 1,000 English captions from XTD10 dataset translated to 200 languages using NLLB-
3.3B model. (2) Flickr30k-200 – 1,000 English captions from the test part of the Flickr30k dataset
translated to 200 languages using NLLB-3.3B model.

3 Training

Since we already have a high-quality pre-trained text encoder, unlike other works [3, 6], we performed
only fine-tuning on the collected dataset. This allowed us to minimize training costs per model and
run many experiments within a limited budget.

On each epoch of training, we used only one randomly selected caption per image. It makes the
training epochs shorter, and we don’t need to run validation multiple times within an epoch to see the
progress. Since the ratio between the training set size and the number of languages is 447/1, we are
confident that every language goes through the model in each epoch.

All experiments were performed on a single Nvidia H100 GPU with 80GB VRAM. Large memory
capacity enabled using large batch sizes, which is crucial for contrastive loss [20]. We used Lion opti-
mizer [5] as we found that it makes the model converge significantly faster and to better performance
than weighted Adam [18]. To save the GPU memory on the optimizer state, we used an 8-bit version
of Lion [8]. This allowed us to have a 25% larger batch size.

4 Experiments

4.1 Freezing different parts of NLLB-CLIP

In this series of experiments, we explored the effect of freezing different parts of the model on its
performance. We tried three training regimes: (1) freeze nothing (denoted as "full"); (2) freeze only
image encoder and train text encoder and projection layers ("text encoder"); (3) freeze both image
and text encoders and train only projection layers ("projection"). We tested all combinations of image
and text encoder sizes and found that freezing only the image encoder produces significantly better

1https://laion.ai/blog/laion-coco/
2https://laion.ai/blog/laion-aesthetics/
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Figure 1: Performance on evaluation datasets for the same NLLB-CLIP model with different training
regimes

Figure 2: Performance on evaluation datasets for different combinations of image and text encoders

results in all cases. Interestingly, training only projection layers gives better performance than full
training. Exemplar results for the model with CLIP ViT huge and NLLB huge (h-h) are presented in
Figure 1. The smallest model variants (e.g., b-b and l-b) could not converge to get R@10 higher than
20% when we performed training of the full model.

Our results are consistent with the results from the LiT paper [31], where the authors found that
freezing the image encoder is the best regime for fine-tuning the model for the new tasks. Also,
freezing the image encoder makes even more sense for our task, where for the same image, there
are 201 different captions in the training dataset. The best training scenario in this case is to use
high-quality image representations from the pre-trained image encoder to adjust the text encoder and
align the text representations in the same latent space. To make this process faster, we train both
visual and text projection layers along with the text encoder backbone.

4.2 Encoder backbones size effect

In the next part of the experiments, we investigated the effect of backbone sizes on the model
performance. For all models, we kept the image encoder frozen and trained only the text encoder
with visual and text projection layers. We examined six models – l-b, l-l, l-h, h-b, h-l, and h-h (refer
to Section 1 for abbreviation sources and respective backbone sizes). From the experiments (Figure
2), we can see that for all datasets, the models with larger text encoders perform worse than the ones
with smaller text encoders. For the large image encoder, the base text encoder performs better than
the large one.

The results demonstrate that a larger (and higher quality) image encoder enables better results for any
text encoder. Regarding the worse performance of larger text encoders, we attribute this phenomenon
to a lack of data to fully align the largest text encoder with the image encoder in the latent space. The
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Figure 3: Evaluation results on multilingual datasets

need for a sufficient amount of data for model training has been discussed in the literature [22, 17, 11].
We plan to collect more data and train the models to validate this hypothesis.

5 Evaluation

For comparison with existing works, we used two variants of NLLB-CLIP: (1) CLIP ViT base with
NLLB base – NLLB-CLIP base (501M parameters) and (2) CLIP ViT huge with NLLB large –
NLLB-CLIP large (1.4B parameters). Both models were trained with an image encoder frozen. We
chose NLLB-CLIP large because it is the best-performing variant across all experiments. NLLB-CLIP
base was chosen to evaluate the capabilities of the smallest model.

5.1 XTD10

For the XTD10 dataset, we used Recall@10 as a comparison metric, as it is used in other works.
We compared NLLB-CLIP with state-of-the-art models – Multilingual CLIP [3], MURAL [10], and
AltCLIP [6]. Figure 3 (left) shows the results of the experiments. Although NLLB-CLIP did not
outperform state-of-the-art models, the large model is not very far behind - 90.1% vs. 93.7% on
average. It is worth mentioning that other models were trained on significantly larger datasets (up to
1,000x).

5.2 Crossmodal-3600

For the Crossmodal-3600 dataset, we used Recall@1 as a comparison metric, as it is used in other
works. We compared NLLB-CLIP with state-of-the-art models – mSigLIP [32] and PaLI [4]. Figure
3 (right) shows the evaluation results. NLLB-CLIP large sets state-of-the-art results with 42.96%
R@1 on average across 36 languages. mSigLIP outperforms NLLB-CLIP in high-resource languages
like English, Italian, or Spanish. The contrary is true for lower- and low-resource languages – the
advantage of NLLB-CLIP is higher the lower the resourcefulness of the target language. These
results demonstrate the advantage of using the LAION-COCO-NLLB dataset, where all languages
are represented equally, no matter their real-world resourcefulness.

6 Conclusion

In this paper, we demonstrate that by replacing the text encoder and fine-tuning on a small auto-
matically created dataset, we can create a CLIP model capable of high-quality image retrieval in
201 languages of the Flores-200 dataset. NLLB-CLIP performs better than existing models on
low-resource languages, primarily because the training dataset has the same number of captions for
both low- and high-resource languages. NLLB-CLIP large sets new state-of-the-art results on the
Crossmodal-3600 dataset that includes low- and high-resource languages.
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