
FLASHFFTCONV: Efficient Convolutions for
Long Sequences with Tensor Cores

Daniel Y. Fu∗,1, Hermann Kumbong∗,1, Eric Nguyen2, Christopher Ré1
∗Equal contribution. 1Department of Computer Science, Stanford University.

2Department of Biongineering, Stanford University.
{danfu,kumboh,etnguyen,chrismre}@stanford.edu

Abstract

Convolution models with long filters have demonstrated state-of-the-art reasoning
abilities in many long-sequence tasks but lag behind the most optimized Trans-
formers in wall-clock time. A major bottleneck is the Fast Fourier Transform
(FFT)—which allows long convolutions to run in O(N logN) time in sequence
lengthN but has poor hardware utilization. In this paper, we study how to optimize
the FFT convolution. We find two key bottlenecks: the FFT does not effectively use
specialized matrix multiply units, and it incurs expensive I/O between layers of the
memory hierarchy. In response, we propose FLASHFFTCONV. FLASHFFTCONV
uses a matrix decomposition that computes the FFT using matrix multiply units and
enables kernel fusion for long sequences, reducing I/O. FLASHFFTCONV speeds
up exact FFT convolutions by up to 6.54× over PyTorch and achieves up to 4.4×
speedup end-to-end. Given the same compute budget, FLASHFFTCONV allows
Hyena-GPT-s to achieve 2.3 points better perplexity and M2-BERT-base to achieve
3.3 points higher GLUE score—matching models with twice the parameter count.

1 Introduction
A key challenge in machine learning is to efficiently reason over long sequences. Recently,
convolutions have emerged as a key primitive for sequence modeling, underpinning state-of-the-art
performance in language modeling [42, 76, 94, 110], time-series analysis [36, 46, 103, 115], computer
vision [74, 81, 109], DNA modeling [82], and more [27, 55, 61, 71, 77, 80]. Despite these strong
quality results—and other benefits ranging from better scaling in sequence length [46] to greater
stability [9, 106]—convolutional sequence models still lag behind Transformers in wall-clock time.

A major reason is poor hardware support. Unlike classical convolutions used in vision applications,
which often have short filters (e.g., 3×3 or 7×7 [53, 63]), convolutions for sequence modeling often
use filters as long as the input sequence [71, 97]. Such long filters necessitate the use of the FFT
convolution algorithm, which computes the convolution between an input u and convolution kernel
k via a conversion to frequency space:

(u∗k)[i]=

i∑
j

u[i]k[j−i] ∼= u∗k=F−1(Fu�Fk), (1)

where F is the FFT, which can be computed in O(N logN) time in sequence length N , and � is
elementwise multiplication. Despite its asymptotic efficiency, the FFT convolution algorithm has
poor wall-clock time on modern accelerators. In contrast, systems advances have pushed Transformers
to the limits of modern accelerators—achieving more than 72% FLOP utilization end-to-end with
FlashAttention-v2 [22, 24].

In this paper, we study how to optimize the FFT convolution algorithm on modern accelerators, to
enable longer-context abilities. Just as systems advances such as FlashAttention yielded improvements
in modeling quality [1, 70] and the development of new attention algorithms [2, 66, 73, 92], we hope

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Reg

SRAM

HBM

Registers
64 KB
SRAM
20 MB
HBM
40 GB

GPU Memory
Hierarchy

FN1
T FN2

FN2
-1 FN1

kf

FFT

Pointwise

iFFT

Order-p Monarch Decomposition of
FFT Convolution on Tensor Cores Speedup Through Fusion

FlashFFTConvPyTorch

Ti
m

e 
(m

s)

Pad

FFT

Pointwise

iFFT

Unpad

Fused
Kernel

0

1

2

Ti
m

e
Fr

eq
ue

nc
y

Sparse Convolution
Filters

-1

1.5
TB/s

19 TB/s

Figure 1: Left: GPU memory hierarchy. Middle left: Order-pMonarch decomposition of FFT convo-
lution, with p=2. Middle right: Kernel fusion for end-to-end speedup. Right: FLASHFFTCONV
introduces analogues of sparsity for convolutions.

that understanding how to optimize the FFT convolution can also inspire algorithmic innovation, thus
improving the quality of convolutional sequence models.

For short sequences, the FFT convolution is relatively easy to optimize. Kernel filters are often shared
across many batches, which allows pre-computing the FFT of the filter kf =Fk and re-using it in a
batch: (u∗k) =F−1(Fu�kf ). Thus the FFT convolution is pleasantly parallel across batches and
filters, and intermediate outputs of the convolution can be cached in SRAM or registers via kernel fusion.

However, as sequence length increases, we find that two key bottlenecks emerge. First, FFT
convolutions do not effectively use the specialized matrix-matrix multiply units available on modern
accelerators—e.g., the H100 can use tensor cores to compute matrix-matrix multiply at 1.0 PetaFLOP/s
compared to 67 TeraFLOP/s for general arithmetic. Second, sequences become too large to fit in
SRAM, and kernel fusion fails, resulting in expensive I/O costs (Figure 1 middle right). These I/O
costs can be exacerbated by padding operations for causality, and conversions from real-valued
inputs/outputs to complex-valued FFT intermediates.

In response (Section 2), we propose FLASHFFTCONV, a new system that optimizes the FFT
convolution for long sequences using a Monarch decomposition of the FFT. An order-p Monarch
decomposition rewrites the FFT as a series of pmatrix-matrix multiply operations (Figure 1 middle left),
which can be efficiently mapped onto hardware [23]. The order p controls the number of matrix multiply
operations and introduces a tradeoff: higher values of p incur lower FLOP cost via smaller matrices, but
require more I/O to communicate intermediate results. Using a simple GPU cost model, we show how
to adjust p based on the sequence length to balance the FLOP cost and I/O cost. This decomposition
introduces a second benefit: a reduction in the amount of the sequence that needs to be kept in SRAM,
which makes kernel fusion viable at longer sequence lengths. As a result, FLASHFFTCONV scales
across four orders of magnitude in sequence length, from 256 to 4 million. FLASHFFTCONV also
exploits a real-valued FFT algorithm to cut the length of the FFT operation in half [102], and selectively
skips portions of the matrix-multiply operations when the input is zero-padded.

We evaluate FLASHFFTCONV in Section 3. We show that FLASHFFTCONV allows language models
to improve in quality compared to a PyTorch model with the same compute budget. These improvements
come from improvements in efficiency in the convolution, and we show that FLASHFFTCONV can
speed up convolutional sequence models end-to-end across multiple modalities and sequence length,
including language, vision, speech, and DNA. We even show that FLASHFFTCONV can outperform
FlashAttention-v2 at sequence length 2K, due to a reduction in FLOP costs compared to attention. Fi-
nally, the Appendix gives more details of the method, extensions to sparsity, and additional experiments.

2 FLASHFFTCONV

We provide a broad overview of FLASHFFTCONV. Algorithm 1 shows an overview. Appendix C
provides the cost model, additional extensions, and domain-specific optimizations.

ForN=N1N2, an order-2 Monarch FFT decomposition rewritesFN =P(IN2⊗FN1)DP−1(IN1⊗
FN2)P, where ⊗ denotes the Kronecker product, FN is the N×N discrete Fourier matrix, P is a
permutation matrix that reshapes the input toN1×N2, transposes it toN2×N1, and then reshapes it
back toN , andD∈CN×N is a diagonal matrix containing correctional values called Twiddle factors [6].
Higher-order Monarch decompositions recursively apply the order-2 decomposition toFN1

orFN2
,

which reduces FLOP costs but increases the number of permutation operations, increasing I/O cost.

2



Algorithm 1 FLASHFFTCONV core algorithm, with order-2 Monarch decomposition. We assume
N=N2

1 for simplicity here.
Input: Input u ∈ RB×H×N , convolution kernel kf ∈ CH×N , FFT matrices F ∈ CN1×N1 , F−1 ∈ CN1×N1 ,

Twiddle factors t∈CN , tinv∈CN ,B tile sizeBtile,H tile sizeHtile.
Output: Output y∈RB×H×N .

for SMs in parallel acrossB/Btile×H/Htile do
Load F, F−1, t, tinv from HBM.
for h←1 toHtile do

Load Kf←kf [h] from HBM, reshaped toN1×N1.
for b←1 toBtile do

Load X←u[b,h] from HBM, reshaped toN1×N1.
X←((F>X)∗t)F . FFT, decomposed into two steps
X←X∗Kf

> . Elementwise multiply with kf
Y←((XF−1)>∗tinv)F

−1 . Inverse FFT, decomposed into two steps
Write Y> to HBM.

Table 1: Improvement in quality given a fixed compute budget.

Model (Metric) PyTorch FLASHFFTCONV

M2-BERT-base-110M (GLUE Score ↑) 77.6 80.9
Hyena-s-155M (PPL ↓) 13.4 11.1

F F F F

Broadcast over B, H
Broadcast over

Sequence

F

F

Transpose in SRAM
Replaces Permutations

F, T
SRAM

Figure 2: Top: FLASHFFTCONV adapts
the Monarch FFT decomposition to
broadcast matrix multiply operations
over the sequence instead of over the
batch and hidden dimensions. Bottom:
This converts HBM permutations simple
matrix transpose operations in SRAM.

Traditionally, the decomposition broadcasts the matrix op-
eration against the batch dimension and the hidden dimen-
sion, as shown in Figure 2 top left, which allows eachFN1

operation in the IN2
⊗FN1

matrix to run independently.
However, it also makes kernel fusion difficult; fusing across
the matrix multiply and permutation operations requires
loading at least 16 sequences at once into SRAM to fill out
the matrix multiply unit.

Instead, we broadcast the matrix operation across the entire
sequence, as shown in Figure 2 top right, and run the algo-
rithm in parallel across the batch and hidden dimensions.
This reduces the SRAM requirements for kernel fusion. It
also allows us to use kernel fusion for longer kernels by
fusing the innermost matrix operations and elementwise
multiplications, and taking an I/O each for the outermost
matrix operations. Broadcasting along the sequence has
an added benefit: the permutations simply become matrix
transposes (Figure 2 bottom), which can be done quickly
using well-established routines on-chip [84]. Finally, we also tile the computation across theB andH
dimensions to reduce the cost of loading kf ,F , and the twiddle factors from HBM.

3 Experiments
We evaluate FLASHFFTCONV in terms of quality and efficiency. We show that FLASHFFTCONV
enables models to achieve better quality for the same compute budget, speeds up convolutions compared
to other implementations, speeds up models end-to-end, and even outperforms FlashAttention-v2.

Improvement in Quality with Fixed Compute Budget We train M2-BERT-base [42] and Hyena-
s [94] from scratch. We compare the quality of models trained with the same compute budget but
different implementations of the convolution—either FLASHFFTCONV or a PyTorch implementation
of the FFT convolution. FLASHFFTCONV achieves higher pretraining throughput, which allows the
models to see more data during pretraining—with improvements in quality similar in magnitude to the
effect of doubling the number of parameters in the model (see Appendix D for reference results).

FLASHFFTCONV Speeds up Convolutions Table 2 benchmarks the speed of the convolution
compared against an FFT convolution implemented in PyTorch. The baseline of kernel fusion without

3



Table 2: Top: Time (↓) to compute the forward pass of a convolution with FLASHFFTCONV in
milliseconds on one H100-SXM. Bottom: Ablations removing specific optimizations. Batch size 64,
hidden dimension 768. p indicates the order of the Monarch decomposition.

p=2 p=3 p=4

Sequence Length 256 1K 4K 8K 16K 32K 1M 2M 4M

PyTorch 0.43 1.57 6.65 13.7 28.6 62.1 2,346.3 4,892.1 10,127.6
FLASHFFTCONV 0.09 0.24 1.37 3.19 9.27 21.8 1,492.8 2,695.1 5,939.0

Fusion-Only/cuFFTdx 0.21 0.67 3.51 7.71 21.4 45.5 – – –

Speedup over PyTorch 4.78× 6.54× 4.85× 4.29× 3.09× 2.85× 1.57× 1.82× 1.71×

Table 3: End-to-end throughput (↑) of convolutional sequence models against PyTorch on A100.

Model (size, seqlen, unit) PyTorch FlashFFTConv Speedup

M2-BERT-base (110M, 128, seqs/s) 594 2610 4.4×
Hyena-s-4K (155M, 4K, seqs/s) 47.5 162 3.4×

Long convs, Path-X (102M, 16K, images/s) 126 308 2.4×
SaShiMi (5.4M, 64K, audio clips/s) 38.7 50.3 1.3×

HyenaDNA (1M, seqs/s) 3.26 10.1 3.1×

Table 4: End-to-end throughput (↑) in thousands of tokens per second, FLOP utilization, and speedup
of Hyena against GPT running FlashAttention-v2 [22] across sequence lengths for A100.

Model 2K 8K 16K

GPT-2.7B, FA-v2 [22] 33.8 27.8 21.6
Hyena-2.7B, FLASHFFTCONV 35.2 35.2 32.3

FA-v2 FLOP Utilization 65.7 72.1 78.5
FLASHFFTCONV FLOP Utilization 62.3 61.9 56.5

FLASHFFTCONV Speedup 1.1× 1.3× 1.5×

tensor cores recovers the strong baseline of using Nvidia’s cuFFTdx kernel fusion library [87]. Speedups
are greatest for short sequences (up to 6.54×), where PyTorch is dominated by I/O costs, but more
modest for longer sequences, which incur additional I/O costs from higher-order Monarchs.

FLASHFFTCONV Speeds Up Convolutional Sequence Models Table 3 benchmarks end-to-end
throughput of convolutional sequence models across various modalities and sequence lengths spanning
four orders of magnitude. Speedup varies by the size of the models and the relative amount of time spent
computing the convolution compared to other parts of the models. For example, FLASHFFTCONV
only speeds up the SaShiMi model by 1.3×, since other operations such as SSM-based filter generation,
pooling layers, and MLPs take up more time.

FLASHFFTCONV is Faster than FlashAttention-v2 Table 4 shows throughput, end-to-end FLOP
utilization, and speedup of a 2.7B-parameter Hyena model using FLASHFFTCONV against a 2.7B-
parameter GPT model using FlashAttention-v2 [22] at three sequence lengths. FLASHFFTCONV
achieves lower end-to-end FLOP utilization than FlashAttention-v2 but achieves higher throughput,
since convolutions incur fewer overall FLOPs.

4 Conclusion
We present FLASHFFTCONV, a new system for optimizing FFT convolutions for long sequences.
FLASHFFTCONV uses a Monarch decomposition of the FFT to map the FFT convolution efficiently
onto tensor cores and enable kernel fusion across four orders of magnitude in sequence length. We
show that FLASHFFTCONV improves quality under a fixed compute budget improves the efficiency of
long convolutions, speeds up convolutional sequence models end-to-end, and enables higher-quality
models given a fixed compute budget. We hope that our work will help support further adoption of
convolutional sequence models, and that our insights can help inform the design of future architectures.

4



Acknowledgments
We gratefully acknowledge the support of DARPA under Nos. FA86501827865 (SDH) and
FA86501827882 (ASED); NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No.
N000141712266 (Unifying Weak Supervision); the Moore Foundation, NXP, Xilinx, LETI-CEA,
Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, American Family Insurance, Google Cloud, Microsoft Azure,
Swiss Re, Brown Institute for Media Innovation, Department of Defense (DoD) through the National
Defense Science and Engineering Graduate Fellowship (NDSEG) Program, Fannie and John Hertz
Foundation, National Science Foundation Graduate Research Fellowship Program, Texas Instruments
Stanford Graduate Fellowship in Science and Engineering, and members of the Stanford DAWN
project: Teradata, Facebook, Google, Ant Financial, NEC, VMWare, and Infosys. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views, policies, or endorsements,
either expressed or implied, of DARPA, NIH, ONR, or the U.S. Government.

References
[1] Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Qinghui Xia, William Gerecke, Timothy J

O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, Bo Zhang, et al. Openfold: Retrain-
ing alphafold2 yields new insights into its learning mechanisms and capacity for generalization.
bioRxiv, pages 2022–11, 2022.

[2] Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian
Ding, Qing Sun, Jun Wang, Liangfu Chen, Jiacheng Guo, Parminder Bhatia, et al. On io-efficient
attention mechanisms: Context-aware bifurcated attention and the generalized multi-group
attention. In Workshop on Efficient Systems for Foundation Models@ ICML2023, 2023.

[3] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-
Barwinska, Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley.
Effective gene expression prediction from sequence by integrating long-range interactions.
Nature methods, 18(10):1196–1203, 2021.

[4] Manohar Ayinala, Michael Brown, and Keshab K Parhi. Pipelined parallel fft architectures via
folding transformation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
20(6):1068–1081, 2011.

[5] Jun Ho Bahn, Jung Sook Yang, Wen-Hsiang Hu, and Nader Bagherzadeh. Parallel fft algorithms
on network-on-chips. Journal of Circuits, Systems, and Computers, 18(02):255–269, 2009.

[6] David H Bailey. Ffts in external of hierarchical memory. In Proceedings of the 1989 ACM/IEEE
conference on Supercomputing, pages 234–242, 1989.

[7] AJAA Bekele. Cooley-tukey fft algorithms. Advanced algorithms, 2016.

[8] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[9] Alberto Bietti and Julien Mairal. Invariance and stability of deep convolutional representations.
Advances in neural information processing systems, 30, 2017.

[10] Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman
Casagrande, Luis C Cobo, and Karen Simonyan. High fidelity speech synthesis with adversarial
networks. In International Conference on Learning Representations, 2019.

[11] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[12] E Oran Brigham. The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988.

5



[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[14] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Ré.
Pixelated butterfly: Simple and efficient sparse training for neural network models. 2021.

[15] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[16] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[17] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[18] Eleanor Chu and Alan George. Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. CRC press, 1999.

[19] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[20] Fiona Cunningham, James E Allen, Jamie Allen, Jorge Alvarez-Jarreta, M Ridwan Amode,
Irina M Armean, Olanrewaju Austine-Orimoloye, Andrey G Azov, If Barnes, Ruth Bennett,
et al. Ensembl 2022. Nucleic acids research, 50(D1):D988–D995, 2022.

[21] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-transformer: Filtering out
sequential redundancy for efficient language processing. Advances in neural information
processing systems, 33:4271–4282, 2020.

[22] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[23] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander
Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices
for efficient and accurate training. In International Conference on Machine Learning. PMLR,
2022.

[24] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

[25] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations. arXiv preprint arXiv:1903.05895, 2020.

[26] Tri Dao, Nimit S. Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps. arXiv preprint arXiv:2012.14966, 2021.

[27] Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision s4: Efficient
sequence-based rl via state spaces layers. In The Eleventh International Conference on Learning
Representations, 2022.

[28] Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-
pronged progress in structured dense matrix vector multiplication. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1060–1079. SIAM,
2018.

[29] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

6



[30] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

[31] Sander Dieleman, Aaron van den Oord, and Karen Simonyan. The challenge of realistic music
generation: modelling raw audio at scale. Advances in neural information processing systems,
31, 2018.

[32] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

[33] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pages
5547–5569. PMLR, 2022.

[34] Yuli Eidelman and Israel Gohberg. On a new class of structured matrices. Integral Equations
and Operator Theory, 34(3):293–324, 1999.

[35] Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E Papka, Rick Stevens, Laura
Florescu, Sumti Jairath, William Liu, Tejas Nama, and Arvind Sujeeth. Accelerating scientific
applications with sambanova reconfigurable dataflow architecture. Computing in Science &
Engineering, 23(2):114–119, 2021.

[36] Yassir Fathullah, Chunyang Wu, Yuan Shangguan, Junteng Jia, Wenhan Xiong, Jay Mahadeokar,
Chunxi Liu, Yangyang Shi, Ozlem Kalinli, Mike Seltzer, et al. Multi-head state space model for
speech recognition. arXiv preprint arXiv:2305.12498, 2023.

[37] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. The Journal of Machine Learning Research,
23(1):5232–5270, 2022.

[38] Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and
lighter transformers. ACM Computing Surveys, 2021.

[39] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[40] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[41] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing
the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

[42] Daniel Y. Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W. Thomas,
Benjamin F. Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch Mixer: A simple
sub-quadratic GEMM-based architecture. In Advances in Neural Information Processing
Systems, 2023.

[43] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré.
Hungry Hungry Hippos: Towards language modeling with state space models. In International
Conference on Learning Representations, 2023.

[44] Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri
Rudra, and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling.
International Conference on Machine Learning, 2023.

[45] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. arXiv preprint arXiv:2202.09729, 2022.

[46] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

7



[47] Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. In Advances in Neural Information Processing
Systems, 2022.

[48] Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train
your hippo: State space models with generalized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022.

[49] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Advances in Neural Information Processing Systems, 2022.

[50] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[51] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

[52] Ramin Hasani, Mathias Lechner, Tsun-Huang Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[54] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[55] Md Mohaiminul Islam, Mahmudul Hasan, Kishan Shamsundar Athrey, Tony Braskich, and
Gedas Bertasius. Efficient movie scene detection using state-space transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18749–18758,
2023.

[56] Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. DNABERT: pre-trained bidi-
rectional encoder representations from transformers model for DNA-language in genome.
Bioinformatics, 37(15):2112–2120, 2021.

[57] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil,
Suvinay Subramanian, Andy Swing, Brian Towles, et al. Tpu v4: An optically reconfigurable
supercomputer for machine learning with hardware support for embeddings. In Proceedings of
the 50th Annual International Symposium on Computer Architecture, pages 1–14, 2023.

[58] Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

[59] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward
Lockhart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient
neural audio synthesis. In International Conference on Machine Learning, pages 2410–2419.
PMLR, 2018.

[60] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, pages 5156–5165. PMLR, 2020.

[61] Sanghyeon Kim and Eunbyung Park. Smpconv: Self-moving point representations for continu-
ous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10289–10299, 2023.

[62] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

[63] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

8



[64] Kundan Kumar, Rithesh Kumar, Thibault De Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose
Sotelo, Alexandre De Brebisson, Yoshua Bengio, and Aaron C Courville. Melgan: Generative
adversarial networks for conditional waveform synthesis. Advances in neural information
processing systems, 32, 2019.

[65] Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, and Masanori Koyama. A
graph theoretic framework of recomputation algorithms for memory-efficient backpropagation.
Advances in Neural Information Processing Systems, 32, 2019.

[66] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[67] Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte,
Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Abdelrahman Mohamed, et al. On generative
spoken language modeling from raw audio. Transactions of the Association for Computational
Linguistics, 9:1336–1354, 2021.

[68] Adam Lavely. Powering extreme-scale hpc with cerebras wafer-scale accelerators. Cerebras
White Paper, 2022.

[69] Binrui Li, Shenggan Cheng, and James Lin. tcfft: Accelerating half-precision fft through tensor
cores. arXiv preprint arXiv:2104.11471, 2021.

[70] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[71] Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolu-
tional models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

[72] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. Advances in neural
information processing systems, 30, 2017.

[73] Hao Liu and Pieter Abbeel. Blockwise parallel transformer for long context large models. arXiv
preprint arXiv:2305.19370, 2023.

[74] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[75] Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke
Zettlemoyer. Luna: Linear unified nested attention. Advances in Neural Information Processing
Systems, 34:2441–2453, 2021.

[76] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

[77] Temesgen Mehari and Nils Strodthoff. Towards quantitative precision for ecg analysis: Lever-
aging state space models, self-supervision and patient metadata. IEEE Journal of Biomedical
and Health Informatics, 2023.

[78] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

[79] Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv
preprint arXiv:1805.02867, 2018.

[80] Koichi Miyazaki, Masato Murata, and Tomoki Koriyama. Structured state space decoder for
speech recognition and synthesis. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

9



[81] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
and Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state
spaces. In Advances in neural information processing systems, 2022.

[82] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Callum Birch-Sykes, Michael
Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, et al. Hyenadna:
Long-range genomic sequence modeling at single nucleotide resolution. In Advances in Neural
Information Processing Systems, 2023.

[83] NVIDIA. Nvidia Tesla V100 GPU architecture, 2017.

[84] NVIDIA. Nvidia A100 tensor core GPU architecture, 2020.

[85] NVIDIA. Nvidia H100 tensor core GPU architecture, 2022.

[86] NVIDIA. Cuda c++ programming guide, 2023. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

[87] NVIDIA. cufftdx v1.1.0 documentation, 2023. https://docs.nvidia.com/cuda/cufftdx/index.html.

[88] NVIDIA. Cutlass 3.2, 2023. https://github.com/NVIDIA/cutlass.

[89] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[90] Alan V Oppenheim. Applications of digital signal processing. Englewood Cliffs, 1978.

[91] Alan V Oppenheim, John R Buck, and Ronald W Schafer. Discrete-time signal processing. Vol.
2. Upper Saddle River, NJ: Prentice Hall, 2001.

[92] Daniele Paliotta, Matteo Pagliardini, Martin Jaggi, and François Fleuret. Fast causal attention
with dynamic sparsity. In Workshop on Efficient Systems for Foundation Models@ ICML2023,
2023.

[93] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[94] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. Proceedings of the 40th International Conference on Machine Learning
(ICML 2023), 2023.

[95] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network
for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3617–3621. IEEE, 2019.

[96] David W Romero, Robert-Jan Bruintjes, Jakub M Tomczak, Erik J Bekkers, Mark Hoogendoorn,
and Jan C van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel
sizes. arXiv preprint arXiv:2110.08059, 2021.

[97] David W Romero, Anna Kuzina, Erik J Bekkers, Jakub Mikolaj Tomczak, and Mark Hoogen-
doorn. Ckconv: Continuous kernel convolution for sequential data. In International Conference
on Learning Representations, 2021.

[98] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

[99] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions. In 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pages 4779–4783. IEEE, 2018.

10



[100] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint
deep learning. Advances in Neural Information Processing Systems, 28, 2015.

[101] Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations,
2023.

[102] H V Sorensen, D Jones, Michael Heideman, and C Burrus. Real-valued fast fourier transform
algorithms. IEEE Transactions on acoustics, speech, and signal processing, 35(6):849–863,
1987.

[103] Siyi Tang, Jared A Dunnmon, Liangqiong Qu, Khaled K Saab, Christopher Lee-Messer, and
Daniel L Rubin. Spatiotemporal modeling of multivariate signals with graph neural networks
and structured state space models. arXiv preprint arXiv:2211.11176, 2022.

[104] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2020.

[105] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys, 55(6):1–28, 2022.

[106] Yi Tay, Mostafa Dehghani, Jai Prakash Gupta, Vamsi Aribandi, Dara Bahri, Zhen Qin, and
Donald Metzler. Are pretrained convolutions better than pretrained transformers? In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4349–4359, 2021.

[107] Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin,
Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers
via gradient-based subword tokenization. arXiv preprint arXiv:2106.12672, 2021.

[108] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[109] Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay Hamid.
Selective structured state-spaces for long-form video understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6387–6397, 2023.

[110] Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without
attention. arXiv preprint arXiv:2212.10544, 2022.

[111] Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang Huang,
Yunxin Liu, and Xuanzhe Liu. Melon: Breaking the memory wall for resource-efficient on-
device machine learning. In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, pages 450–463, 2022.

[112] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[113] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-
ago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. Advances in neural information processing systems, 33:17283–17297,
2020.

[114] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and
Azalia Mirhoseini. A full-stack search technique for domain optimized deep learning accelera-
tors. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 27–42, 2022.

[115] Michael Zhang, Khaled Kamal Saab, Michael Poli, Tri Dao, Karan Goel, and Christopher Re.
Effectively modeling time series with simple discrete state spaces. In International Conference
on Learning Representations, 2022.

11



[116] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in Neural Information Processing Systems, 34:17723–17736, 2021.

12



Appendix
We present extended related work (Appendix A), additional algorithmic details (Appendix C), additional
experimental results (Appendix D), and experimental details (Appendix E).

A Related Work
Long Convolutions in Sequence Modeling Long convolutional models have emerged as a promising
alternative to Transformers for sequence modeling [42–44, 46–48, 52, 76, 82, 94, 96, 97, 101]. These
methods differ in how they generate the convolutional kernels; for example, the S4 line of work uses
learned state space models [46, 49, 76, 78], while other works [94, 96, 97] parameterize the convolution
using an MLP from positional encodings. However, all the models operate by taking a convolution
over the input sequence with a kernel as long as the input: y=u∗k, where u∈RB×H×N ,k∈RH×N ,
and the kernel k is broadcast along theB dimension. When used for language modeling, these models
often incorporate elementwise multiplicative gating as well: y=f(u)�((g(u)�h(u))∗k), where f ,
g, and h are linear maps along theH dimension [42, 43, 78, 94, 110].

Long-Context Applications Long convolutional models have especially been helpful for long-
context applications, such as DNA modeling and speech synthesis. In DNA modeling, most longer-
context genomic models have relied on either tokenization [56, 107, 113] or downsampling [3, 38].
However, recent work has suggested that modeling DNA directly from base pairs can yield downstream
improvements in quality, which requires long sequence lengths [82].

Like DNA modeling, speech synthesis has also benefited from long-context modeling. While traditional
speech synthesis pipelines use intermediate representations such as spectrograms [64, 95, 99], linguistic
features [10, 59, 89], or discrete audio codes [30, 31, 67, 108], recent work has shown that modeling
the speech directly from the raw waveform can yield downstream improvements in quality [45].
Again, such models require long sequences to model audio at the rate at which it is naturally sampled,
necessitating long-sequence modeling.

FFT Algorithms There is a long history of efficient FFT algorithms, ranging from the Cooley-Tukey
FFT algorithm published in 1965 [19] to parallel FFT algorithms [4] and more [5, 6, 18]. These
algorithms have enabled fundamental progress in a range of disciplines, from control theory [7, 12] to
signal processing [90, 91]. As FFTs prove more useful for modern deep learning applications, such as
long convolutions, new techniques are required to run them efficiently on modern accelerators. Our
work continues a line of work exploring how to use tensor cores for the FFT convolution [43, 44, 69],
and extends the algorithmic capabilities to much longer sequences.

Sparsity in Deep Learning As deep learning models have grown larger and deeper [11, 13, 17],
there is increasing interest in reducing the cost of training and running models. Sparsity in particular
has received a great deal of attention, and has a long history in machine learning, including work in
pruning neural networks [32, 50, 51, 72, 98] and finding lottery tickets [39–41]. Our work in partial
convolutions and frequency-sparse convolutions relates to this line of work, as an analogue of sparsity
in convolutional filters. The Monarch decomposition is also closely related to structured matrices.
Structured matrices have subquadratic (o(n2) for dimension n×n) parameters and runtime, such
as sparse and low-rank matrices, and fast transforms (Fourier, Chebyshev, sine/cosine, orthogonal
polynomials) [23]. Structured matrices can often be computed with simple divide-and-conquer
schemes, and can be used to represent many fast transforms [28, 34, 58, 100].

Optimization of deep learning primitives There is a rich history of optimizing deep learning
primitives. Many techniques, such as kernel fusion, aim to reduce data movement. Recently, li-
braries such as PyTorch 2.0 [93] have added kernel fusion automatically. Other techniques include
checkpointing, wherein one stores fewer intermediate results and recomputes the others on-the-fly
where they are needed, trading additional compute for memory [65, 111]. Many algorithms also have
hand-optimizations that can remove unnecessary computation or memory accesses [79].

Another line of optimization techniques aims to reduce FLOPs. MLPs and attention are particularly
popular targets of FLOP reduction, via sparse factorizations of weights [14, 19, 23, 25, 26, 29, 39, 116],
or sparse/low-rank approximations of attention [8, 16, 21, 33, 37, 60, 62, 75, 112, 116] and their
combinations [15, 105].

13



B Background
We provide some background on the FFT convolution and the Monarch FFT decomposition, and
discuss the performance characteristics of GPUs.

B.1 FFT Convolution

Recall the definition of a convolution operation: (u ∗k)[i] =
∑i
jujki−j . Computing this formula

directly incursO(NNk) FLOPs in sequence lengthN and kernel lengthNk. For long convolutions,
whereNk=N , a popular strategy is to use the Fourier transform to convert the signal u and kernel k
to the frequency domain, and compute the convolution using pointwise multiplication in frequency
domain, using Equation 1. Critically, a Fourier transform FN over an input of length N can be
computed inO(N logN) time using the FFT—bringing the overall cost of the long convolution from
O(N2) toO(N logN). We note that the FFT convolution technically computes a circular convolution∑N
j ujki−j , where i−j<0 loops back to the end of k. For this reason, u and k are often padded with

zeros to compute a causal convolution.

Monarch FFT Decomposition For N =N1N2, an order-2 Monarch FFT decomposition rewrites
FN =P(IN2

⊗FN1
)DP−1(IN1

⊗FN2
)P, where⊗ denotes the Kronecker product,FN is theN×N

discrete Fourier matrix, P is a permutation matrix that reshapes the input toN1×N2, transposes it to
N2×N1, and then reshapes it back toN , and D∈CN×N is a diagonal matrix containing correctional
values called Twiddle factors [6]. Higher-order Monarch decompositions recursively apply the order-2
decomposition toFN1

orFN2
, which reduces FLOP costs but increases the number of permutation

operations, increasing I/O cost.

B.2 GPU Performance Characteristics

We provide some background on the GPU memory hierarchy and available compute units, as well as
compute-bound vs. memory-bound operations. We focus on GPU programming in this paper, but the
general principles extend to most modern hardware accelerators [35, 57, 68, 114].

GPU Compute Model and Memory Hierarchy GPUs have a memory hierarchy consisting of global
memory (HBM), shared memory (SRAM), and registers, as shown in Figure 1 Left. Lower/larger
levels of the memory hierarchy have more space but are much slower, whereas higher/smaller levels of
the memory hierarchy have less space but are much faster [83–85]. The memory hierarchy is closely
tied to the GPU compute model. A GPU is composed of many independent streaming multiprocessors
(SMs), each of which is composed of independent threads. HBM is shared among all SMs, but each
SM has an independent SRAM. The SRAM is shared among all the threads in the SM. Each thread has
access to its own registers, but cannot access the registers of other threads. Thus, performing global
operations between SMs requires moving data to and from HBM, whereas independent work in each
SM can remain local to SRAM.

GPU Compute Units Modern GPUs (since the V100 [83]) have specialized matrix multiply units
called tensor cores, which can compute matrix-matrix multiply operations with much higher TFLOPs
than the general-purpose compute units. For example, the H100 tensor core can compute matrix
multiplication between 16×16 matrices at 1.0 PFLOPs, whereas the general-purpose compute units
can only compute at 67 TFLOPs [85].

Memory-Bound vs. Compute-Bound Operations GPU operations can be memory-bound or compute-
bound. Memory-bound operations are bottlenecked by the amount of I/O between HBM and registers
they need to perform, and are limited by the bandwidth of the memory hierarchy. Examples include
simple pointwise operations such as addition or multiplication, as well as most traditional FFT
implementations. Compute-bound operations are bottlenecked by the amount of FLOPs they need to
execute, and are limited by the speed of the compute units. Examples include large matrix multiply
operations.

Kernel Fusion A popular method for reducing I/O costs is kernel fusion—loading data for multiple
operations into SRAM, computing them independently in each SM, and then writing the final results
back to HBM. Kernel fusion is common (and can be automated) for pointwise operations [93], but is
more challenging for complex operations that require referencing multiple pieces of data. For example,
fusing the operations in attention was not common until the development of FlashAttention [24].

14



C Algorithm Details
C.1 Domain-Specific Optimizations

We use a few domain-specific optimizations to adapt the convolution specifically for the sequence
learning workload. First, since the convolutions used in sequence learning are real-to-real convolutions
(with real kernel weights), we can use a classic algorithm called one-stage decimation in time to
compute the FFT of a sequence of lengthN using a complex FFT of lengthN/2 (see Appendix C)—
cutting the FFT cost in half. Second, inputs and outputs are often padded with zeros in the convolution
to compute a causal convolution [42, 46, 94]. We special-case this padding, and use it to eliminate half
of the outermost matrix multiply operations in the FFT and iFFT. We also fuse in additional operations
around the convolution, such as elementwise-gating, to further reduce I/O.

We review the details of how to compute a real-to-real FFT of sizeN using a complex FFT of sizeN/2,
following a tutorial by [102].

For this section, we adopt notation common in describing FFT algorithms. Let x(n) be an input
sequence of lengthN , and letX(k) be the result of its discrete Fourier transform. Recall that:

X(k)=

N−1∑
n=0

x(n)Wnk
N , (2)

for k=0,1,...,N−1, whereWN =e−2πi/N is theN th root of unity.

First, if x(n) is real, then symmetries emerge in X(k). In particular, we have X(k) =X∗(−k) =
X∗(N−k), where ∗ denotes complex conjugation. These symmetries allow us to have an algorithm
for computingX(k) using a single complex DFT of sizeN/2.

In particular:

X(k)=

N−1∑
n=0

x(n)Wnk
N

=

N/2−1∑
n=0

x(2n)Wnk
N/2+W k

N

N/2−1∑
n=0

x(2n+1)Wnk
N/2,

for k = 0,1,...,N −1. The DFT is now decomposed into two parts: a DFT over the even-indexed
elements of x(n), and over the odd-indexed elements of x(n).

We can now create a third complex sequence, of lengthN/2, and put the even-indexed elements of
x(n) in the real part, and the odd-indexed elements of x(n) in the imaginary part. Let:

z(n)=x(2n)+ix(2n+1),
for n=0,1,...,N/2−1. Then, we compute theN/2-sized DFTZ(k), and we can recover the DFT over
the even and odd parts of x(n) (Xe[k] andXo[k], respectively):

Xe[k]=
Z[k]+Z∗[N/2−k]

2

Xo[k]=−iZ[k]−Z∗[N/2−k]

2i
.

We can now recoverX[k],k=0...,N−1 using:
X[k]=Xe[k modN/2]+Xo[k modN/2]W k

N .

The inverse FFT proceeds similarly. The goal is to recover x(n) given an inputX[k], using a simple
complex inverse DFT of lengthN/2.

First, we recoverXe[k] andXo[k]:

Xe[k]=
X[k]+X∗[N/2−k]

2

Xo[k]=
X[k]−X∗[N/2−k]

2
W k
N ,

for k=0,...,N/2−1. Then, we constructZ[k]:
Z[k]=Xe[k]+iXo[k],k=0...,N/2−1.

15



Cost Model for Order-p Monarch Decompositions

Sequence Length N

Co
st

 P
er

 T
ok

en
 C

/N

256 1K 4K 16K 64K 256K 1M 4M

p = 4p = 3p = 2

10

100
Matrices Too Small for Tensor Cores

SRAM Limit

Figure 3: Compute costs of different order-pMonarch decompositions as sequence length increases on
A100. Tradeoff points correspond to when the matrices in the Monarch decomposition reach the size
of tensor cores on A100 and when the sequence becomes too long for SRAM.

We use the inverse DFT to recover z(n), and then recover x(n) from the real and imaginary parts of
z(n):

x(2n)=Re(zn)

x(2n+1)= Im(zn),

for n=0,...,N/2−1.

To implement these in our kernels, we perform the bookkeeping after reading the inputs or before
writing the output, and then use the FFT/iFFT implementations as detailed in Algorithm 1 and others.

C.2 Cost Model of order-pMonarch Decomposition

We present a formal cost model for an order-pMonarch decomposition of the convolution based on
sequence length. The cost model accounts for both the cost of compute and I/O, similar to a roofline
analysis [54]. LetB andH be the batch size and model hidden dimension, respectively, and assume
that we compute the convolution in half precision. LetN be the sequence length, and letN=Πp

i=1Ni
be the product of p factors. For simplicity, we will assume thatN is a power of 2. Let µ be the size of
the matrix-matrix multiply unit on the GPU (e.g., 16 for A100 [84] and H100 [85]). Let τG and τM
be the empirically-achievable FLOPs on the GPU for general-purpose arithmetic, and matrix-matrix
multiply arithmetic, respectively. For convenience, define γ(Ni) as a helper function that returns τG if
Ni<µ, and τM ifNi≥µ. Finally, let σH and σS be empirically-achievable bandwidth for HBM and
SRAM, respectively. Sample values for these constants are given in Appendix E.

Now, we can present the cost of an FFT convolution with an order-p Monarch decomposition. Let
ω(i) be a helper function that returns the bandwidth of the memory where the intermediate results
of decomposition step i is stored. The overall cost of the convolution using an order-p Monarch
decomposition is given by the following:

C=BH

p∑
i=1

16NNi
γ(Ni)

+
4N

ω(i)
(3)

Figure 3 graphs Equation 3 for different order-p decompositions on different sequence lengths for
A100, for p∈{2,3,4}. For cases whereN1 = ···=Np, the total FLOP cost of an order-p decomposition
grows withO(N (p+1)/p). However, for shorter sequences, higher-order decompositions are actually
more expensive, since they decompose to matrices that are smaller than the matrix-matrix multiply unit
(corresponding to the early bumps). Note also the bump in cost for p=3 between 32K and 64K, which
is a result of running out of SRAM but which is mediated by an extra decomposition for p=4.

C.3 Architectural Extensions: Sparsity in Convolutions

We present 2 architectural extensions to FLASHFFTCONV: partial convolutions and frequency-sparse
convolutions. These can be thought of as convolutional analogues to sparse attention and present
opportunities for further optimization.

16



Partial Convolutions In partial convolutions, we zero out later portions of the convolution kernel,
analogous to local attention. This has two benefits. First, it reduces the memory footprint, since it
requires fewer elements to be held in GPU memory at once. Second, it allows for natural extensions of
a pretrained convolutional model to longer sequences (i.e., via a sliding window approach).

Frequency-Sparse Convolutions In frequency-sparse convolutions, we zero out portions of the
convolution kernel in frequency space, i.e. zeroing out portions of kf . This can be thought of as
a variant of partial convolutions in frequency space. Here, the specific sparsity pattern can yield
computational benefits. Zeroing out the right portions of the kernel can obviate the need to compute
portions of the matrix-matrix multiplies in the Monarch decomposition.

We present some examples of sparsity patterns for the full 4-way decomposition case, since the
algorithms generalize to lower-order decompositions.

LetN=N4
1 , and consider a kernel kf ∈CN . Consider the matrix multiply and looping operations that

occur when computing the FFT portions of FLASHFFTCONV (u, kf ) (the iFFT portions are the same,
in the opposite order):

1. In Algorithm 4, there is one FFT operation over the columns of u, reshaped toN1×N/N1,
and a Twiddle correction..

2. Then, Algorithm 3 iterates over the rows of u for α :=N1 steps.

3. Let u′ be the row in a specific iteration. In Algorithm 3, there is an FFT over the columns of
u′, reshaped toN1×N2

1 , and a Twiddle correction.

4. Then, the inner loop iterates over the rows of u′ for β :=N1 steps.

5. In each loop, u′ has one FFT operation with a twiddle factor correction. Let the matrix of this
FFT operation be denoted A.

6. Then there is a second FFT operation. Let the matrix of this FFT operation be denoted B.

Now, reshape kf to N1×N1×N1×N1. Let us consider how sparsity along the each of the four
dimensions of kf lets us skip operations in the above steps.

• Sparsity in the first dimension allows us to skip computation in B, exactly in proportion to
how much of the first dimension we eliminate. This can result in cost savings, as long asB can
still be expressed using the tensor cores on-chip after skipping the computation. For example,
if B is 32×32, thenN1 = 32, and it does not make sense to eliminate more than half of the
first dimension.

• Sparsity in the second dimension works exactly the same way, except it allows us to skip
computation in A.

• Sparsity in the third dimension lets us reduce β. Each row of the third dimension that we
remove lets us skip one iteration of the inner loop in step 4 above.

• Sparsity in the fourth dimension lets us reduce α. Each row of the fourth dimension that we
remove lets us skip one iteration of the outer loop in step 2 above.

As an example, we reveal the sparsity dimensions that we applied in the experiment detailed in
Table 10 in the main paper. Conceptually, we use the full 2-million length kernel kf , and reshape it to
32×32×32×64. Let a, b, c, and d be variables describing how much of each dimension we set to zero.
Specifically, we set kf [a :,:,:,:] = 0, kf [:,b :,:,:] = 0, kf [:,:,c :,:] = 0, and kf [:,:,:,d :] = 0 sequentially.
The formula the sparsity fraction S given a,b,c,d in this case is given by:

S=1−(32−a)(32−b)(32−c)(64−d),

or more generally, 1 minus the product of the fraction of each dimension that is removed. Table 6 lists
the configurations of the sparsity patterns and the sparsity fractions used for the experiment in Table 10.

C.4 Low-level CUDA details

To ensure high performance, we implement CUDA kernels for each specific sequence length, allowing
us to cater to specific performance nuances that arise from the decomposition at that sequence length.
In this section, we dive into some of the low-level implementation details for FLASHFFTCONV.

17



Table 5: Sparsity patterns for kf and sparsity fraction for the frequency-sparse convolution experiment
in Table 10.

Sparsity Pattern S
a=0,b=0,c=0,d=0 0

a=16,b=0,c=0,d=0 50
a=16,b=16,c=0,d=0 75
a=16,b=16,c=4,d=4 79
a=16,b=16,c=8,d=8 84

a=16,b=16,c=16,d=16 91

Matrix Multiplication Using CUDA Tensor cores CUDA Tensor cores can perform the multi-
plication of two m×k and k×n matrices for bfloat16 or float16 elements, using around the same
number of cycles as is required for the multiplication of two scalars. m×k×nmust be of one of the
following: 16×16×16, 32×8×16, 8×32×16. This informs our choice of radix for decomposition
when performing the FFT and iFFT. In particular our implementation breaks down matrix-matrix
multiplications into blocked matrix-matrix multiplications wherem×k×n=16×16×16. We note
the following about matrix-matrix multiplication on tensor cores [86]:

• Tensor cores are utilized at the level of the warp and programmatic access of the tensor cores
is via the Warp Level Matrix Multiply Accumulate (WMMA) API.

• Tensor core operands are held in register fragments (wmma :: matrix a, and wmma ::
matrix b) and results are written to a register fragment (wmma ::accumulator).

• The operand fragments can hold data in row-major or column-major format and data in the
wmma ::accumulator fragment can be written to memory in row-major or column-major
format.

• The specific mapping of items in a fragment to threads in warp is unspecified, however, the
mapping of items to threads in thewmma ::accumulator fragment exactly matches that for
thewmma ::matrix a fragment read row-major, allowing us to directly copy the results of a
matrix-matrix multiplication and use as the operand for another matrix-matrix multiply.

To perform a matrix-matrix multiplication C = A × B using the tensor cores, a warp loads the
contents ofA andB into registers (WMMA fragments in CUDA parlance), performs the matrix-matrix
multiplication, and writes the results which are stored in an accumulator fragment back to memory.

Register Reuse A key part of ensuring high performance is minimizing I/O across different levels of
the memory hierarchy: from HBM to SRAM and from SRAM to registers. To ensure this, we move the
output from the accumulator fragment directly intomatrix a fragment for use in subsequent matrix
multiplications, avoiding an extra trip to SRAM. However, this is only possible if the output from the
previous matrix-matrix multiply does not need to be transposed before using it as an operand for the
next one. When this is not the case, we need to make a trip to SRAM and back. In Algorithm 2 we
detail I/O from SRAM to registers.

Locality and Tiling The algorithm is trivially parallelizable acrossB andH , allowing us to tile in
both dimensions at the threadblock level. In Algorithm 3 , all loops from i←1 toN1 are warp-tiled.

Miscellaneous optimizations In addition to the above optimizations, we also perform some other
optimizations that provide marginal speedup. These include: utilizing vector intrinsics/types for
performing memory reads/writes and arithmetic for 16-bit floating point (fp16) and brain float point
(bf16), allowing non-tensor core operations on these types to be performed at around twice the normal
speed. Furthermore, we double buffer I/O movements across all levels of the memory hierarchy,
reducing warp stalls. We also aggressively tune our kernel hyperparameters such as block and tile
dimensions, and loop unrolling factors for the best performance on the specific underlying hardware.

C.5 Generalization to 3-way and 4-way Monarch Decompositions

We provide algorithm listings for 3-way and 4-way Monarch Decompositions.

18



Algorithm 2 Detailed Annotation of FLASHFFTCONV core algorithm showing I/O from SRAM to
register fragments, with two-way Monarch decomposition. We assumeN=N2

1 for simplicity here.

Input: Input u ∈ RB×H×N , convolution kernel kf ∈ CH×N , FFT matrices F ∈ CN1×N1 , F−1 ∈
CN1×N1 , Twiddle factors t∈CN , tinv∈CN ,B tile sizeBtile,H tile sizeHtile.

Output: Output y∈RB×H×N .
for SMs in parallel acrossB/Btile×H/Htile do

Load F, F−1, t, tinv from HBM.
for h←1 toHtile do

Load Kf←kf [h] from HBM, reshaped toN1×N1.
for b←1 toBtile do

Load X←u[b,h] from HBM, reshaped toN1×N1.
X←F>X .F> (matrix a), X (matrix b) output to accumulator
Load X from accumulator to matrix a
X←X∗t . Elementwise multiply directly inmatrix a
X←XF .X (matrix a), F (matrix b) output to accumulator
Load X from accumulator to matrix a
X←X∗Kf

> . Elementwise multiply with kf directly inmatrix a
X←XF−1 .X (matrix a), F−1 (matrix b) output to accumulator
Write X from accumulator fragment to SRAM
Load X> from SRAM tomatrix a fragment
X←X>∗tinv . Elementwise multiply with tinv directly inmatrix a
Y←XF−1 .X (matrix a), F−1 (matrix b) output to accumulator
Write Y> to HBM.

3-Way Decomposition Algorithm 3 shows the algorithm for a 3-way Monarch decomposition. It
involves one extra matrix multiply operation on either side of the FFT and iFFT, and proceeds over the
algorithm in Algorithm 1 in an inner loop.

4-way Decomposition For the 4-way decomposition, we assume that we need to write intermediate
outputs to HBM. Here, we treat the 3-way decomposition as a sub-routine, and assume it has a fused
kernel (i.e., Algorithm 3). We compute one matrix multiply for the FFT and one for the iFFT, and
then call the kernel for the 3-way decomposition over the rows of the output. The algorithm is listed in
Algorithm 4.

C.6 Frequency-Sparse Patterns

We describe frequency-sparse patterns and the matmul savings in more detail here. We use the full
4-way decomposition case, since the algorithms generalize to lower-order decompositions.

LetN=N4
1 , and consider a kernel kf ∈CN . Consider the matrix multiply and looping operations that

occur when computing the FFT portions of FLASHFFTCONV (u, kf ) (the iFFT portions are the same,
in the opposite order):

1. In Algorithm 4, there is one FFT operation over the columns of u, reshaped toN1×N/N1,
and a Twiddle correction..

2. Then, Algorithm 3 iterates over the rows of u for α :=N1 steps.
3. Let u′ be the row in a specific iteration. In Algorithm 3, there is an FFT over the columns of
u′, reshaped toN1×N2

1 , and a Twiddle correction.
4. Then, the inner loop iterates over the rows of u′ for β :=N1 steps.
5. In each loop, u′ has one FFT operation with a twiddle factor correction. Let the matrix of this

FFT operation be denoted A.
6. Then there is a second FFT operation. Let the matrix of this FFT operation be denoted B.

Now, reshape kf to N1×N1×N1×N1. Let us consider how sparsity along the each of the four
dimensions of kf lets us skip operations in the above steps.

• Sparsity in the first dimension allows us to skip computation in B, exactly in proportion to
how much of the first dimension we eliminate. This can result in cost savings, as long asB can

19



Algorithm 3 FLASHFFTCONV algorithm for 3-way decomposition. We assumeN=N3
1 for simplicity

here.
Input: Input u ∈ RB×H×N , convolution kernel kf ∈ CH×N , FFT matrices F ∈ CN1×N1 , F−1 ∈

CN1×N1 , Twiddle factors t1∈CN
2
1 , t1,inv ∈C1

N2
1 , t2∈CN , t2,inv ∈CN ,B tile sizeBtile,H tile

sizeHtile.
Output: Output y∈RB×H×N .

for SMs in parallel acrossB/Btile×H/Htile do
Load F, F−1, t, tinv from HBM.
for h←1 toHtile do

Load Kf←kf [h] from HBM, reshaped toN2
1×N1.

Kf←KT
f . . Transpose last two dimensions.

Reshape Kf toN1×N2
1 .

for b←1 toBtile do
Load X←u[b,h] from HBM, reshaped toN1×N1×N1.
for i←1 toN1 do

X′←FX[:,i∗N1 : (i+1)∗N1]
X[:,i∗N1 : (i+1)∗N1]←X′ . Transpose, matmul, transpose.

X←X∗t2
for i←1 toN1 do . Loop over rows

X′←FX[i]
Reshape X′ toN1×N1

X′←((F>X′)∗t)F . FFT, decomposed into two steps
X′←X′∗Kf [i]

> . Elementwise multiply with kf
Y′←((X′F−1)>∗tinv)F−1 . Inverse FFT, decomposed into two steps
Y′←Y′

>

Y[i]←Y′ . Finish inner loop
Y←Y∗t2,inv
for i←1 toN1 do

Y′←FY[:,i∗N1 : (i+1)∗N1]
Y[:,i∗N1 : (i+1)∗N1]←Y′ . Transpose, matmul, transpose.

Write Y to HBM.

still be expressed using the tensor cores on-chip after skipping the computation. For example,
if B is 32×32, thenN1 = 32, and it does not make sense to eliminate more than half of the
first dimension.

• Sparsity in the second dimension works exactly the same way, except it allows us to skip
computation in A.

• Sparsity in the third dimension lets us reduce β. Each row of the third dimension that we
remove lets us skip one iteration of the inner loop in step 4 above.

• Sparsity in the fourth dimension lets us reduce α. Each row of the fourth dimension that we
remove lets us skip one iteration of the outer loop in step 2 above.

As an example, we reveal the sparsity dimensions that we applied in the experiment detailed in
Table 10 in the main paper. Conceptually, we use the full 2-million length kernel kf , and reshape it to
32×32×32×64. Let a, b, c, and d be variables describing how much of each dimension we set to zero.
Specifically, we set kf [a :,:,:,:] = 0, kf [:,b :,:,:] = 0, kf [:,:,c :,:] = 0, and kf [:,:,:,d :] = 0 sequentially.
The formula the sparsity fraction S given a,b,c,d in this case is given by:

S=1−(32−a)(32−b)(32−c)(64−d),

or more generally, 1 minus the product of the fraction of each dimension that is removed. Table 6 lists
the configurations of the sparsity patterns and the sparsity fractions used for the experiment in Table 10.

C.7 Hardware Support

FLASHFFTCONV was developed on A100 GPUs, and tested on A100 and H100 GPUs. Older
generations of GPU such as V100 are not supported, since the sizes of the tensor cores are different.

20



Algorithm 4 FLASHFFTCONV algorithm for 4-way decomposition. We assumeN=N4
1 for simplicity

here.
Input: Input u ∈ RB×H×N , convolution kernel kf ∈ CH×N , FFT matrices F ∈ CN1×N1 , F−1 ∈

CN1×N1 , Twiddle factors t∈CN , tinv∈C1
N , t2∈CN , t2,inv∈CN .

Output: Output y∈RB×H×N .
Reshape u toB×H×N1×(N/N1).
Reshape kf toH×N1×(N/N1).
kf←k>f . . Transpose last two dimensions.
Reshape kf toHN1×N/N1.
u←Fu . Computes the FFT over the columns of u.
Reshape u toB×(HN1)×(N/N1). .MoveN1 intoH dimension.
Reshape kf to (HN1)×(N/N1).
Call FLASHFFTCONV (u, kf ). .Call 3-way FLASHFFTCONV.
Reshape u toB×H×N1×(N/N1).
y←F−1u .Computes the iFFT over the columns of u.
Return y.

Table 6: Sparsity patterns for kf and sparsity fraction for the frequency-sparse convolution experiment
in Table 10.

Sparsity Pattern S
a=0,b=0,c=0,d=0 0

a=16,b=0,c=0,d=0 50
a=16,b=16,c=0,d=0 75
a=16,b=16,c=4,d=4 79
a=16,b=16,c=8,d=8 84

a=16,b=16,c=16,d=16 91

Table 7: Classification accuracy (↑) on Path-X and Path-512 from the long range arena benchmark [104].
FLASHFFTCONV allows for higher-resolution classification. 7 indicates out of memory.

Task (seq. len.) PyTorch FLASHFFTCONV

Path-X (16K) 96.9 96.9
Path-512 (256K) 7 96.1

We look forward to integrating more general libraries such as Cutlass [88] to support a wider range of
GPUs, and developing support for non-GPU accelerators.

D Additional Results
D.1 Additional Quality Results

Longer Sequence Models We show how increased efficiency can lead to higher quality via longer
sequence lengths. We evaluate long convolution models on Path-X and Path-512, high-resolution
imaging tasks from the long range arena (LRA) benchmark [104].1 These tasks take an image (128×128
for Path-X and 512×512 for Path-512), flatten it out, and require a sequence model to classify whether
two dots in the image are connected by a path.

Existing PyTorch implementations of convolutional sequence models (or even prior optimized imple-
mentations [43]) fail to achieve better-than-random (50%) accuracy on Path-512 due to out of memory
errors and a lack of support for such long sequences. However, Table 7 shows that FLASHFFTCONV
allows a convolutional sequence model to solve Path-512 for the first time simply by increasing the
available sequence length and reducing the memory footprint of the model through fusion.

1We refer to Path-512 as a scaled-up version of Path-256.

21



Table 8: Quality and memory footprint of partial convolutions during training across sequence lengths.

Hyena-s-8K 8K 4K 2K 1K 512 256
PPL (↓) 13.8 13.8 13.8 13.9 14.0 14.2

Memory Footprint (↓) 32.5G 15.3G 11.8G 8.4G 6.1G 5.8G

Table 9: PPL (↓) from using partial convolutions to extend the sequence length of HyenaDNA to longer
sequences. At 4M sequence length, the models are able to embed the longest human genes.

Base Filter Length 1M 2M 4M
HyenaDNA-450K 2.91 2.91 2.91

HyenaDNA-1M 2.91 2.91 2.90

Table 10: Applying frequency-sparsity to the filters of a pretrained HyenaDNA-1M model.

Sparsity Fraction 0% 50% 75% 79% 84% 91%
PPL (↓) 2.91 2.91 2.90 2.91 2.93 2.98

Convolution Speedup (↑) 1.0× 1.2× 1.3× 1.4× 1.5× 1.8×

D.2 Partial and Frequency-Sparse Convolutions

We evaluate the impact of partial convolutions on downstream quality and memory footprint and on
how well they can extend the sequence length of existing models. We evaluate the impact of frequency-
sparse convolutions on downstream quality, and we show that frequency-sparse convolutions can yield
up to 1.4× additional speedup in the convolution without impacting quality.

Partial Convolutions Reduce Memory Footprint and Increase Sequence Length Partial convolu-
tions reduce the memory footprint of models, in both language modeling and DNA modeling. A large
proportion of the convolution filters can be pruned without impacting downstream quality. Table 8
shows that a Hyena-s-8K model can be pretrained with a much shorter convolution kernel—as short as
2K—without negatively impacting quality.

Partial convolutions yield another benefit: we can naturally extend the sequence length of existing pre-
trained models. We extend a pretrained HyenaDNA-1M model to 4M sequence length with promising
PPL results (Table 9)—yielding the first model that can embed the longest human genes at single-
nucleotide resolution (2.3M base pairs) (See Appendix D for a visualization of gene embeddings).

Frequency-Sparse Convolutions Increase Throughput Frequency-sparse convolutions can increase
the speed of convolutions—and may also have positive effects on quality. Table 10 shows that we can set
up to 79% of the entries of the kernel kf to zero without losing quality. Sparsification in frequency space
may even improve the quality of pretrained models slightly; the PPL of a pretrained HyenaDNA-1M
model improves by 0.01 points after its kernels are 75% sparsified in frequency space—potentially
as a result of removing high-frequency noise. Sparsification also yields up to 1.4× speedup in the
convolution via skipping entire blocks of the matrix-matrix multiplies in the Monarch decomposition.

We use our 4M-sequence length HyenaDNA model to generate embeddings for various DNA segments
following the procedure from [82]. The DNA classes include human genes corresponding to different
biological function annotations from the Ensembl genome dataset known as biotypes [20]. The longest
human gene, the dystrophin gene, is annotated.

D.3 Backward Pass Benchmark

Table 11 gives the time to compute the backward pass of a convolution with FLASHFFTCONV
compared to PyTorch in milliseconds. We use batch size 64, and hidden dimension 768. When the
input is too large to fit in memory, or the PyTorch implementation runs out of memory from storing
intermediates for the backward pass, we split the call up into multiple calls and aggregate the time.

D.4 Reference Larger Models

Table 12 gives performance numbers for larger models trained for the same number of tokens and steps
as the reference PyTorch models in Table 1 in the main paper.

22



Unprocessed Pseudogene
miRNA
IncRNA
Protein Coding
Processed Pseudogene
snRNA
Miscellaneous RNA
TEC
snoRNA
Dystrophin Gene

Longest Human Gene
Dystrophin, 2.3M Base Pairs

Figure 4: t-SNE visualization of various genes and DNA segments using our new HyenaDNA-4M. The
longest human gene, Dystrophin, is annotated.

Table 11: Top: Time (↓) to compute the backward pass of a convolution with FLASHFFTCONV in
milliseconds on A100. Bottom: Ablations removing specific optimizations. Batch size 64, hidden
dimension 768. p indicates the order of the Monarch decomposition.

p=2 p=3 p=4

Sequence Length 256 1K 4K 8K 16K 32K 1M 2M 4M

PyTorch 1.19 2.92 17.4 34.8 71.2 161.3 5,999.4 12,065.3 25,113.6
FLASHFFTCONV 0.18 0.67 4.1 8.9 32.0 86.8 3,429.8 7,181.7 14,499.8

Table 12: Reference quality numbers for models when trained for the same number of steps and training
data.

Model (Metric)
M2-BERT-base-110M (GLUE Score ↑) 77.6
M2-BERT-large-260M (GLUE Score ↑) 81.0

Hyena-s-155M (PPL ↓) 13.4
Hyena-m-355M (PPL ↓) 11.1

The GPT-style PyTorch models are trained for 5B tokens, with batch size 512K tokens. The BERT-
style PyTorch models are trained for 16000 steps, with batch size 64K tokens. In contrast, the
FLASHFFTCONV models, with higher training throughput, are trained for 15B tokens and 70000 steps
in the same compute budget, respectively.

E Experiment Details
E.1 Compute

All experiments were conducted on a box with 8xA100-40GB GPUs, except for long sequence
HyenaDNA-1M to 4M experiments, which were conducted on a box with 8xA100-80GB GPUs.

E.2 Fixed Compute Budget Experiment

For the experiment in Table 1, we train an M2-BERT-base model from scratch, and a Hyena-s-155M
model from scratch.

23



We train the M2-BERT-base model using masked language modeling of 30% on the C4 dataset, and
fine-tune it on GLUE using the protocol from [42]. The FLASHFFTCONV model has higher training
throughput, so it trains for more tokens; we train the FLASHFFTCONV model for 70,000 steps with a
batch size of 64K tokens. The PyTorch model, with lower training throughput, only trains for 16,000
steps, with the same batch size. The M2-BERT-base model we use is parameter-matched with a
Transformer BERT-base. It has 12 hidden layers, with a model dimension of 960, and an expansion
factor of four. It also uses a block-diagonal MLP with four blocks. The M2 Hyena filter has embedding
dimension 5, filter order 128, and initial sine activation factor of 10. We train with learning rate 8e-4,
weight decay 1e-5, and 6% warmup with a cosine decay.

We train the Hyena-s-155M model using a causal language modeling objective on the Pile. We train the
FLASHFFTCONV model for 15M tokens, and the PyTorch model for 5M tokens. The Hyena-s-155M
model matches the configuration from [94] and has 18 layers, with a hidden dimension of 864, and an
expansion factor of 4. The Hyena filter has embedding dimension 33, filter order 64, and initial sine
activation factor of 14. We train with learning rate 6e-4, with 1% warmup time and a cosine decay.

E.3 Path-X and Path-512 Experiments

For the experiment in Table 7, we use simple convolutional language models, as in [44].

For Path-X, we use the same model and hyperparameters as the convolutional model from [44]. We
use a convolutional model with 6 layers, prenorm batch norm, and hidden dimension of 256. For the
convolution filter parameters, we use kernel dropout 0.3, kernel learning rate 0.0005, λ factor 0.001,
and two channels on the filter. We use an overall learning rate of 0.0005 and weight decay 0.05. We
train for 500000 steps, with 10000 steps of warmup with a cosine decay, and global batch size 16.

For Path-512, we scale up the resolution of Path-256. We train for 200000 steps, with 10000 steps
warmup, learning rate 0.0005, and weight decay 0.05. For the model, we train with 4 layers, and
hidden dimension 256. We use kernel dropout 0.1, kernel learning rate 0.0005, λ factor 0.001, and two
channels on the filter. We keep the filter length to be 65536.

E.4 Convolution Benchmarks

For the experiments in Table 2, we time the forward pass of a convolution with batch size 64, hidden
dimension 768, and varying sequence length. If we run out of memory for a sequence length, we split
the batch and hidden dimension and call the forward pass multiple times. We time each call 30 times
and take the average of the runs. We use the same protocol for the backward pass in Table 11.

E.5 End-to-End Modeling Details

For the experiments in Table 3, we run forward pass of each model, and use it to compute throughput.
Batch sizes vary by model, and we check throughput calculations with a few batch sizes to make sure the
result is consistent. For the M2-BERT-base model, we use the pretrained 110M checkpoint from [44].
For the Hyena-s-4K model, we use an identical model to the one in Table 1, but with a filter length of
4K. For the long convs Path-X model, we use the same model as in Table 7. For the SaShiMi model,
we use the standalone SaShiMi model from the official implementation [45], and we use 8 layers with
hidden dimension 64, and 4 up pool and down pool layers. For the HyenaDNA model, we use the
official 1M-sequence length checkpoint from [82]. For M2-BERT-base, Hyena-s-4K, and HyenaDNA,
we additionally fuse element-wise gating into our kernel, and short depthwise convolutions. For
M2-BERT-base, we also fuse in a long convolution that runs in parallel to the gated convolution.

E.6 Comparison to Transformers

For the comparison against Transformers in Table 4, we use the official implementations with the
FlashAttention-v2 release [22]. We use a Hyena model, and match the number of layers, hidden
dimension, and expansion factor to the 2.7B Transformer model. To compute the FLOP usage, we take
the formula:

2∗num tokens∗num parameters

for the parametric FLOPs. For the non-parameter FLOPs, we add the raw FLOP count from our cost
model in Equation 3 (without the adjustment for speed of tensor core FLOPs).

24



Table 13: Measured Constants for Cost Model for A100-40GB.

Constant A100-40GB

σH 1.35 TB/s
σS 9.5 TB/s
τM 234 TFLOPs
τG 17.6 TFLOPs

E.7 Partial Convolutions for Hyena

For the measurement of memory footprint reduction in Table 8, we use the same Hyena-s model as in
Tables 1 and 3, except we cut the filter short. This lets us offload parts of the input, which reduces the
memory footprint.

E.8 Extending HyenaDNA-1M

In Table 9, we use a sliding window approach to extend the HyenaDNA-1M and HyenaDNA-450K
models to longer sequences. This mimics training a 4M-sequence HyenaDNA with a short filter.

E.9 Frequency-Sparse Convolutions

To evaluate frequency-sparse convolutions, we take the pretrained HyenaDNA-1M model, and sparsify
kf using the strategy described in Appendix C.6. We then run standard validation using the validation
set from [82].

E.10 Empirical GPU Profiling

Table 13 gives empirically-measured GPU stats for an A100-40GB, which we used to generate Figure 3.
The statistics are specialized to the Monarch decomposition workload. To measure the achievable
tensor core FLOPs, we measured the utilization of real fp16 matrix multiply. To measure achievable
general arithmetic FLOPs, we measured the utilization of continuously applying Twiddle factors. To
measure the achievable HBM bandwidth, we measured the speed of torch.clone of a tensor. To
measure the achievable SRAM bandwidth, we measured the slow down from writing intermediate
results to SRAM between matrix multiply instructions.

25


	Introduction
	FlashFFTConv
	Experiments
	Conclusion
	Related Work
	Background
	FFT Convolution
	GPU Performance Characteristics

	Algorithm Details
	Domain-Specific Optimizations
	Cost Model of order-p Monarch Decomposition
	Architectural Extensions: Sparsity in Convolutions
	Low-level CUDA details
	Generalization to 3-way and 4-way Monarch Decompositions
	Frequency-Sparse Patterns
	Hardware Support

	Additional Results
	Additional Quality Results
	Partial and Frequency-Sparse Convolutions
	Backward Pass Benchmark
	Reference Larger Models

	Experiment Details
	Compute
	Fixed Compute Budget Experiment
	Path-X and Path-512 Experiments
	Convolution Benchmarks
	End-to-End Modeling Details
	Comparison to Transformers
	Partial Convolutions for Hyena
	Extending HyenaDNA-1M
	Frequency-Sparse Convolutions
	Empirical GPU Profiling


