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Abstract

Pretrained transformer models leverage the attention mechanism to capture long-
and short-range dependencies in the sequence. However, the (full) attention mecha-
nism incurs high computational cost – quadratic in the sequence length, which is
not affordable in tasks with long sequences, e.g., inputs with 8k tokens. Although
sparse attention can be used to improve computational efficiency, as suggested
in existing work, it has limited modeling capacity and often fails to capture com-
plicated dependencies in long sequences. To tackle this challenge, we propose
MASFormer, an easy-to-implement transformer variant with mixed attention spans.
Specifically, MASFormer is equipped with full attention to capture long-range
dependencies, but only at a small number of layers. For the remaining layers,
MASformer only employs sparse attention to capture short-range dependencies.
Our experiments on natural language modeling and generation tasks show that
a decoder-only MASFormer model of 1.3B parameters can achieve competitive
performance to vanilla transformers with full attention while significantly reducing
computational cost (up to 75%).

1 Introduction
Pre-trained transformer models have manifested superior performance in various natural language
processing tasks [Dai et al., 2019, Radford et al., 2019, Brown et al., 2020]. These models leverage
the attention mechanism [Vaswani et al., 2017] to compute the dependency score for each pair
of tokens in an input sequence. Some practical tasks require these transformer models to handle
long-sequence inputs like 8k tokens. For example, summarization for news, government reports,
and academic papers requests models to take inputs of long sequences to generate comprehensive
summaries Shaham et al. [2022]. Otherwise, models often miss important information. Note that
typical transformer models apply full attention to capture token dependencies pair-wise. It leads to a
quadratic time and space complexity w.r.t. input length. However, such a complexity is prohibitive for
long sequences. In particular, it incurs massive memory consumption during the back propagation.

To address this scalability issue, various approaches have been proposed to reduce the complexity.
One approach is sparse attention, which restricts each token to attend a subset of tokens based on
predefined sparsity patterns Beltagy et al. [2020], Zaheer et al. [2020], Ainslie et al. [2020]. For
instance, block sparse attention [Kitaev et al., 2020, Ma et al., 2023] divides the input sequence
into several blocks, and only intra-block attention is performed. Besides, sliding-window attention
[Beltagy et al., 2020, Zaheer et al., 2020, Ainslie et al., 2020] allows each token to attend to its
neighboring tokens within a sliding window. These methods, though reducing the complexity of
full attention, cannot sufficiently capture long-range dependencies. Other variants, such as kernel
approximation Peng et al. [2021] and low-rank approximation Wang et al. [2020], Chen et al.
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Figure 1: Illustration of attention patterns of (a) block sparse attention with block size b = 3; (b) sliding-window
attention with window size w = 1 (on each side); (c) MASFormer that integrates full and sparse attention.
[2021] methods, share the similar spirit and drawbacks. To compensate for the lack of long-range
dependencies, LongT5 Guo et al. [2021] introduces global tokens that are obtained by average pooling
on every block of tokens Ainslie et al. [2020]. However, the block pooling operations can weaken the
signal of crucial tokens and prevent the long-range dependencies from being detected.

Note that the aforementioned methods apply same attention mechanism for every layer. We challenge
this conventional wisdom and propose a transformer variant – MASFormer (Mixed Attention Span
transFormer). MASFormer utilizes full attention only at a subset of layers whereas employs sparse
attention at the remaining layers. Our design is motivated by the phenomenon – that most contexts
in NLP data display a great deal of locality of reference Zaheer et al. [2020], Beltagy et al. [2020].
That is, most of information about a token can be derived from its neighboring tokens. In contrast,
long-range dependencies among tokens are sparse and infrequent. Consider an academic paper as an
example. Within a paragraph, there exist numerous short-term dependencies. Neighboring tokens are
closely connected to convey meaningful semantics. Across paragraphs, there can be a small number
of long-range dependencies. E.g., tokens associated to the primary theme of the paper exhibit rare and
weak dependencies across a long span. Since long-range dependencies occur much less frequently, a
few layers of full attention are adequate to capture them. In stark contrast, short-term dependencies
are more frequent, necessitating local attention in the majority of layers to fully extract these signals.

To demonstrate the effectiveness of MASFormer, We conduct experiments on natural language
modeling (ArXiv and PubMed Cohan et al. [2018]) and natural language generation (ArXiv, Cohan
et al. [2018] and SCROLLS, Shaham et al. [2022]) tasks. Specifically, we compare the performance
of MASFormer to other attention methods using a pre-trained GPT-2 model Radford et al. [2019] of
1.3 billion parameters. Our empirical results demonstrate that MASFormer consistently outperforms
baseline methods across different attention cost (i.e. the total number of computed attention scores).
In particular, MASFormer can achieve comparable performance to full attention while significantly
reducing the computational cost. For example, with 27% of its attention cost, MASFormer achieves a
close R2 score as full attention on QMSUM dataset.

2 Background
Attention Mechanism Suppose the input to the layer is X ∈ Rn×d, where n is the input sequence
length and d is embedding dimension, then self-attention mechanism outputs

Attn(X) = softmax
(
QK⊤/

√
d
)
V (1)

where Q = XWq,K = XWk, V = VWv and Wq,Wk,Wv are learnable projection weights. A
typical transformer model applies the full attention at every layer. Denote the number of layers as L.
Then its attention cost is Ln2. Sparse attention variants are introduced to mitigate the computational
cost. Figures 1a and 1b illustrates the attention patterns of block sparse attention and sliding-window
attention. For instance, block sparse attention divides tokens into blocks of size b and performs
intra-block attention only, resulting in an attention cost of bn. Sliding-window attention allows each
token to attend its left/right neighboring tokens within a local window of size w. In most of cases,
block sparse attention exhibits similar performance as sliding-window attention [Zuo et al., 2022].

3 Our Approach

3.1 MASFormer: Mixed Attention Span

MASFormer leverages full attention exclusively at a subset of transformer layers, specifically bottom
layers, whereas employs block sparse attention at the remaining layers. The structure of MASFormer
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is illustrated in Figure 1c. We choose full attention to encode long-range information due to the
following reasons: (i) full attention exhibits superior capability to capture long-range dependencies
compared to sparse attention; (ii) full attention does not require sophisticated implementation and
hence is computationally stable compared to SSMs Zuo et al. [2022], Gupta et al. [2022]; (iii) full
attention is compatible with existing pre-trained transformer models, enabling us to conduct continual
training which we elaborate in Section 3.2. To mitigate the computational cost, we restrict the number
of layers using full attention. MASFormer is motivated by empirical comparison between models
that apply the same attention span at every layer, which we elaborate in Appendix A.

Our empirical results demonstrate that, with the same attention cost, MASFormer significantly
outperforms sparse attention. Remarkably, MASFormer can achieve comparable performance to full
attention while substantially reducing computational cost. Therefore, by mixing different attention
spans, MASFormer strikes a better balance between computational cost and model performance.
Moreover, MASFormer offers additional implementation advantages. As using the same attention
function, MASFormer is easy to implement and compatible with existing pre-trained models. We can
build MASFormer upon pre-trained transformers by changing their attention patterns, which does
not involve modification on model architectures and pre-trained weights. Meanwhile, acceleration
packages, such as FlashAttention Dao et al. [2022] and xFormers Lefaudeux et al. [2022], are
applicable to further accelerate the computation of block attention and full attention in MASFormer.

3.2 Continual Training with Long Sequences

As mentioned, MASFormer can be implemented upon majority of pre-trained transformers by
modifying their attention patterns. However, most of publicly available models are pre-trained with
sequences shorter than 2048, and often exhibit subpar performance on longer sequences such as
8k/16k. To bridge this gap, we propose the continual training to adapt the revised model on long
sequences and new attention pattern. As such, we can preserve existing pre-trained knowledge and
circumvent the intensive overheads of pre-training from scratch. In particular, we first modify the
attention pattern of the target model as proposed by MASFormer. If the pre-trained model uses
absolute position embeddings, we duplicate them to accommodate long sequences. Subsequently, we
provide the revised model with long sequences (e.g., 8k) from pre-training corpus like PILE Gao et al.
[2020]. Then we conduct continual pre-training using casual language modeling (CLM) objective.
We discuss the effectiveness of continual training in Section B.

4 Experiments
We evaluate the effectiveness and efficiency of MASFormer on natural language modeling (ArXiv and
PubMed, Cohan et al. [2018]) and natural language generation (ArXiv Cohan et al. [2018], QMSUM
and GovReport Shaham et al. [2022]). We choose a pre-trained GPT-2 Radford et al. [2019] as the
base model to evaluate different methods, which contains 1.3 billion parameters and L = 24 layers.

Implementation Details. Our base model uses absolute positional embeddings with maximum
length 1024. To accommodate longer inputs, we duplicate its position embeddings to have the
maximum length as 8192 such that the model can handle sequences containing up to 8192 tokens.
Then, we implement different attention methods by modifying the attention pattern of the base model.
We implement all the models with PyTorch Paszke et al. [2019]. All the experiments are conducted
on NVIDIA A100 GPUs.

Continual Training Details. After changing the attention pattern, we conduct the continual training
for MASFormer and baseline methods on PILE corpus [Gao et al., 2020]. As such, we can adapt the
revised models to new attention patterns and long-sequence inputs. We leverage the casual language
modeling (CLM) objective to train the model for 50,000 steps. We set the input length as 8192 and
use the batch size as 128 such that the models are optimized with 1M tokens per step. We use the
constant learning rate 0.0001 for all methods.

Baseline. We compare MASFormer with the baseline methods that apply the same attention
mechanism every layer including: (i) all full attention; (ii) all block sparse attention; (iii) all
sliding-window attention. We compare them across different attention cost C and length n.

4.1 Natural Language Modeling

Datasets. We evaluate the perplexity of the updated GPT-2 for each attention method after continual
training. The evaluation is conducted on test sets of ArXiv and PubMed Cohan et al. [2018]. Table 8
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Figure 2: Perplexity evaluation on ArXiv (left) and PubMed (right)
with examples of different length.

Table 1: Perplexity evaluation.

Methods C ArXiv Pub.
Full attention 1.6B 8.63 7.63

Block (b=1024) 201M 13.19 12.19
Block (b=2048) 402M 10.75 10.13

MASFormer (l=2) 318M 10.25 8.75
MASFormer (l=4) 436M 9.31 8.25
MASFormer (l=8) 671M 9.63 8.25

presents the statistics of these two datasets. We conduct the perplexity evaluation under two settings.
(i) We calculate the perplexity (ppl.) with all documents from test sets (Table 1). (ii) We divide all
documents into several subsets according to their length and evaluate ppl. on each of them. Each
subset consists of examples, whose length is within ((k − 1)× 1024, k × 1024] (k = 1, 2, 3, . . . ).

Results. Figure 2 illustrates the perplexity variation of each method given examples of different
length. We can tell that MASFormer and full attention show better performance on longer documents,
suggesting increasing context length can improve their prediction performance. Full attention, thought
incurring the highest attention cost, always achieves the best performance due to its outstanding
capability to handle sophisticated dependencies. Notably, with 27% of its attention cost, MASFormer
exhibits a curve of ppl. v.s. length that closely resembles to that of full attention. This demonstrates
the effectiveness and efficiency of MASFormer to capture long-range dependencies. In contrast, block
sparse attention benefits much less from long contexts and underperforms both of them because of its
incapability to encode long-range signals. For example, when b = 1024, block attention achieves
similar perplexity on PubMed examples of different length.

4.2 Natural Language Generation
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Figure 3: Given n=9182, we compare the performance
between MASFormer and block/full attention on ArXiv
(left) and QMSUM (right) when increasing attention cost.

Table 2: Results on summarization tasks.

Methods C QMSUM ArXiv GovReport

Full attention 1610M 8.00 19.32 28.83

Window(w=1024) 402M 4.32 13.51 17.03
Block(b=2048) 402M 5.03 9.61 12.31

MASFormer(l=4) 436M 6.59 14.91 18.82
Window(w=2048) 805M 5.05 15.21 22.79

Block(b=4096) 805M 5.15 14.50 23.64
MASFormer(l=6) 553M 7.15 15.72 21.20
MASFormer(l=8) 671M 7.46 17.00 24.42
MASFormer(l=12) 906M 8.70 18.58 26.26

Datasets. We evaluate the downstream performance of models on several abstractive summarization
tasks to compare their capability of handling long sequences in practice. Specifically, we fine-tune
models on ArXiv Cohan et al. [2018], QMSUM and GovReport (from SCROLLS benchmark, Shaham
et al. [2022]). Their statiscis are summarized in Table 8. We mainly use ROUGE-2 (R2) score Lin
[2004] as the evaluation metric, which is more important and sensitive than R1 and RL. The training
details are provided in Appendix C.

Results. In Figure 3 and Table 2, we present the fine-tuning results on QMSUM, ArXiv and
GovReport across different attention cost. The results demonstrate that, with the similar attention
cost, MASFormer significantly outperforms sparse attention variants. Furthermore, when enhancing
attention cost, MASFormer achieves greater performance gains than sparse attention methods. This is
evident from the steeper slope of its R2 curve versus attention cost, in contrast to the baseline method.
For example, when increasing C form 553M to 671M, the R2 score of MASFormer on QMSUM
exhibits a substantial improvement, reaching 8.70 from 7.46. Remarkably, this score surpasses even
that of full attention. Therefore, MASFormer addresses the trade-off between computational cost and
performance gains in a more efficient and effective way.

5 Conclusion

We propose a efficient long-range transformer – MASFormer that utilizes full attention at a few of
bottom layers and employs sparse attention at the remaining layers. Our empirical results on natural
language modeling and generation tasks demonstrate that MASFormer can address the trade-off
between computational cost and performance gains in a more efficient and effective way.
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A The Motivation of MASFormer
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Figure 4: (a,b): We evaluate the perplexity of a pre-trained GPT-2 model with block attention of
differnet block size after continual training. (c,d): We fine-tune a GPT-2 model with block attention
and compare the summarization performance on ArXiv and GovReport under different block size.
Here the input length n is 8192.

MASFormer is motivated by empirical investigations on performance comparison between models
that apply the same attention span at every layer. Figure 4 presents the performance of block sparse
attention and full attention on language modeling and summarization tasks. We find that, given long-
sequence inputs, sparse attention is often insufficient to capture long-range dependencies beyond its
attention span. As a result, it shows unsatisfactory performance. To remedy it, one can either increase
attention span or switch to full attention to improve model capability of capturing sophisticated
dependencies. Though improving model performance, it incurs high computational cost.

Confronting such a trade-off between computational cost and model performance, we challenge the
common practice – that applies the same attention span at every layer. MASFormer provides an
alternative solution. Instead of increasing attention span evenly, MASFormer allocates a large portion
of attention computations to a subset of l layers by equipping them with full attention. Specifically,
equipping bottom layers with full attention can yield the best performance as suggested by our
empirical analysis in Section B2. At the remaining layers, MASFormer utilizes block attention of
small size m, resulting in a controlled attention cost of (L− l)mn+ ln2. As mentioned in Section 1,
such a design is inspired by the phenomenon that most of contexts in NLP data exhibit a great deal of
locality of reference. Long-range dependencies, in contrast, are less frequent. Therefore, it is not
necessary to enhance attention span at every layer. Instead, a few layers of full attention are sufficient
to to capture infrequent long-range signals. The majority of layers can maintain small attention spans
to adequately extract local dependencies and control the attention cost.

B Analysis and Ablation

B.1 Benefits of Increasing Sequence Length
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Figure 5: Fine-tuning performance of full attention under different input length.

In this section, we investigate the benefits of increasing input length for downstream performance.
Specifically, we select the input length from {2048, 4096, 6144, 8192} and present the fine-tuning
performance of full attention in Figure 5. The results consistently demonstrate that as the input
length increases, the model’s performance improves. That is, downstream performance benefits
significantly from long-sequence inputs. In contrast to NLM, increasing example length beyond 6k
results in marginal improvements in perplexity (See Figure 2), highlighting again the importance of
downstream evaluation.

2Please see Section B for detailed explanations
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In addition, when comparing the behaviors of block attention in Figure 4c and 4d, we find that sparse
attention often insufficiently capitalize on the benefits offered by longer inputs. For instance, given
block size as 4096, its performance on ArXiv remains nearly unchanged when increasing input length
from 4096 (R2 = 15.52 in Figure 5a) to 8192 (R2 = 14.49 in Figure 4c). This finding suggests that
enhancing input length can only improve model performance if the model possesses the sufficient
capability to handle long-range dependencies.

B.2 Effectiveness of Continual Training

We analyze the effectiveness of continual training by comparing fine-tuning performance of MAS-
Former (l = 8) under the following settings: (i) MASFormer without continual training (w.o. C.T.);
(ii) MASFormer continually trained with short inputs (C.T. (n=2048)); (iii) MASFormer continually
trained with long inputs (C.T. (n=8192)). Table 3 presents fine-tuning performance of these models.
We can tell that continual training with long inputs indeed facilitates the revised models to adapt to
new structures and long-sequence inputs.

Table 3: We report R1/R2/RL for the above results.

l = 8 QMSUM GovReport

w.o. C.T. 29.33/6.43/25.71 53.28/23.61/51.74
C.T. (n=2048) 29.87/7.16/26.15 52.28/23.01/49.83
C.T. (n=8192) 30.91/7.45/27.02 54.37/24.42/51.87

B.3 Where to use full attention

To answer where to apply full attention, we compare fine-tuning performance of MASFormers
that apply full attention at (i) bottom layers; (ii) middle layers; (iii) top layers; (iv) every L/l
layers. The results in Table 4 demonstrate that equipping bottom layers with full attention yields the
best performance. This is because that long-range dependencies can be continually captured and
reinforced by bottom layers before propagated to upper layers. As such, these long-range signals can
be effectively incorporated into the upper layers with local attention, facilitating their encoding of
local information. In contrast, when equipping local attention at bottom layers, long-range tokens
are first aggregated with neighboring tokens by local attention, thereby weakening their long-range
signals. Moreover, if alternating full and local attention every L/l layers, the long-range signals
cannot be continually reinforced nor efficiently captured.

Table 4: Performance comparison of MASFormers that apply full attention at different layers (#
layers L=24).

Position QMSUM GovReport

Every 3 28.26/6.94/25.03 26.16/12.37/24.82
Top 8 20.89/4.52/18.37 -/-/-

Middle 8 27.27/5.99/24.06 20.80/9.01/19.52
Bottom 8 30.91/7.45/27.02 54.37/24.42/51.87
Every 2 31.27/8.19/27.41 35.34/16.04/33.68

Bottom 12 32.53/8.70/28.75 56.98/26.26/54.46

C Natural Language Generation

C.1 The Extended Results of Summarization Tasks

In this section, we provide the more detailed results of summarization tasks presented in Section 4.2.

Notice that, in order to achieve comparable summarization performance to full attention, MASFormer
needs at leaset l = 8 layers of full attention, and providing more can lead to more gains. This

9
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Figure 6: Given input length as 8192, we compare summarization performance between MASFormer
and block/full attention when increasing the attention cost.

Table 5: Finetuning performance of different attention methods.

Methods C QMSUM ArXiv GovReport

Full attention 1610M 31.50 / 8.00 / 27.81 46.13 / 19.32 / 41.89 60.53 / 28.83 / 57.88

Window (w=1024) 402M 23.31 / 4.32 / 20.62 35.90 / 13.51 / 32.19 49.82 / 17.03 / 47.42
Window (w=2048) 805M 26.73 / 5.05 / 23.40 38.74 / 15.21 / 34.87 56.14 / 22.79 / 53.50

Block (b=2048) 402M 26.24 / 5.03 / 23.13 21.85 / 9.61 / 19.86 26.37 / 12.31 / 25.18
Block (b=4096) 805M 26.96 / 5.15 / 23.85 35.95 / 14.50 / 32.37 49.83 / 23.64 / 47.50

MASFormer (l=4) 436M 29.86 / 6.59 / 25.87 38.85 / 14.91 / 34.98 46.67 / 18.82 / 44.39
MASFormer (l=6) 553M 30.83 / 7.15 / 27.12 36.29 / 15.72 / 32.96 49.26 / 21.20 / 46.89
MASFormer (l=8) 671M 30.91 / 8.00 / 27.81 43.31 / 17.00 / 39.12 54.37 / 24.42 / 51.87
MASFormer (l=12) 906M 32.53 / 8.70 / 28.75 45.19 / 18.58 / 40.72 56.98 / 26.26 / 54.46

observation is different from the findings in NLM (Figure 2) that increasing l beyond 4 provides
limited improvement in perplexity. Their different capacity requirements arise from the fact that
predicting next tokens in NLM primarily relies on local dependencies. Capturing infrequent long-
range tokens does not significantly improve perplexity. Thus, this discrepancy emphasizes the
necessity to evaluate long-range models on downstream tasks.

C.2 Training Details

We conduct continual training for all attention methods with training date form PILE and input length
as 8192. After continual training, we obtain the continually trained models for each method and
fine-tune them on QMSUM, ArXiv and GovReport to compare their summarization performance.
During the fine-tuning, we set the input length as 8192 for all datasets and all models. We apply the
greedy decoding for generation and set the maximum output length as 256 for QMSUM, 1024 for
GovReport, and 512 for ArXiv. Table 7 lists the details of these hyperparameters. Besides, we apply
the linear learning rate schedule to fine-tune the models and the base learning rates are summarized
in Table 6.

Table 6: The fine-tuning learning rate of each method on each dataset.

Methods QMSUM ArXiv GovReport

Full attention 1× 10−5 1× 10−4 1× 10−4

Window attention (w=1024) 5× 10−4 5× 10−5 5× 10−4

Window attention (w=2048) 5× 10−5 5× 10−5 1× 10−4

Block attention (w=2048) 1× 10−4 1× 10−5 1× 10−5

Block attention (w=4096) 5× 10−5 5× 10−4 1× 10−5

MASFormer (l=4) 5× 10−5 1× 10−3 5× 10−4

MASFormer (l=6) 5× 10−5 5× 10−5 5× 10−4

MASFormer (l=8) 5× 10−5 5× 10−4 5× 10−4

MASFormer (l=12) 1× 10−5 1× 10−4 1× 10−4
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Table 7: The other fine-tuning parameters for each dataset, which remain the same for every method.

Hyperparameter QMSUM ArXiv GovReport

Training steps 3000 12000 8000
Batch size 32 32 64

Input length 8192 8192 8192
Maximum generation length 256 512 1024

Weight decay 0.001 0.001 0.001

D Dataset Statistics

In the following table, we provide the detailed statistics of datasets in our experiments, including
example splits and length statistics.

Table 8: Statistics of datasets. Input length measured in tokens using a SentencePiece Model.

Dataset Example Count Input Length
Train Valid Test Average Median 90th percentile

ArXiv 203,037 6,436 6,440 10,720 8,519 20,170
PubMed 119,924 6,633 6,658 4,748 3,883 8,883

QMSUM 1,257 272 281 9,497 14,197 27,761
GovReport 17,457 972 973 7,886 8,841 18,835
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