
IceFormer: Accelerated Inference with Long-Sequence
Transformers on CPUs

Yuzhen Mao Martin Ester Ke Li
School of Computing Science

Simon Fraser University
{yuzhenm,ester,keli}@sfu.ca

Abstract

One limitation of existing transformer-based models is that they cannot handle very
long sequences as input since their self-attention operations exhibit quadratic time
and space complexity. This problem becomes especially acute when transformers
are deployed on hardware platforms equipped only with CPUs. To address this
issue, we propose a novel method for accelerating self-attention at inference time
that works with pretrained transformer models out-of-the-box without requiring
retraining. We experiment using our method to accelerate various long-sequence
transformers on various benchmarks and demonstrate a greater speedup compared
to the baselines.

1 Introduction

Transformers [25] have powered incredible advances in NLP, as exemplified by large language models
(LLMs) such as GPT-4 and LLaMa 2. Increasingly LLMs are applied to exceptionally long input
sequences, which enables many exciting applications such as long-form content creation, extended
conversations, and large document search and analysis [19, 3]. While LLMs can be feasibly trained
with expensive hardware accelerators (e.g. GPUs), they need to be deployed on a variety of devices,
some of which are only equipped with CPUs.

However, it is currently challenging to deploy LLMs on CPUs due to their high computation cost [9].
A significant computational bottleneck arises from the self-attention mechanism that is integral to
Transformers – both time and space complexity are quadratic in the sequence length. This problem is
exacerbated in the context of LLMs, which are often used on very long sequences.

To handle long input sequences, there has been substantial research into reducing the quadratic
time complexity of self-attention – these methods are collectively known as efficient Transformers.
However, many do not meet the needs of LLMs and are therefore difficult to apply to LLMs.

An ideal acceleration method for LLMs should meet four criteria: (1) No retraining – the method
should not require the model retraining since LLMs are very expensive and time-consuming to
train; (2) Generality – the method can be applied to a broad range of LLMs rather those trained
with particular constraints built-in; (3) High accuracy – the method should not introduce large
approximation errors, since LLMs have many attention layers and so errors from earlier layers can
compound; (4) Fast inference – the method should enable fast inference with LLMs.

Meeting all these criteria simultaneously is difficult, and to our knowledge no existing methods can
do so. For example, Transformers with fixed attention patterns (e.g., Longformer [4]) also require
retraining the model before they can be used. Reformer [18] requires keys to be normalized, which
is not the case in most pretrained models. Nyströmformer [27] and LARA [30] do not support
causal masks, which are common in LLMs. Low-rank methods such as Performer [6] have poor
approximation accuracy without finetuning.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



In this paper, we propose an acceleration method named IceFormer that simultaneously meets the
above four criteria. In particular, (1) IceFormer does not require retraining; (2) it can be applied
to most LLMs; (3) it can approximate vanilla attention accurately; (4) it achieves faster inference
compared with other methods. We illustrate our method in Figure 1. We devise a method to
approximate the attention mechanism with unnormalized keys with k-nearest neighbor search (k-
NNS), and leverage a ranking-based method, Prioritized DCI, to identify important keys accurately
and quickly.

Figure 1: Overview of the vanilla attention [25] (top row) and the proposed method, IceFormer
(bottom row). We illustrate with one query and k = 2 in k-NNS. In the two attention matrices
presented, the top-2 largest attention weights in each row are represented by a dark color. The
remaining attention weights are shown in a pale color in the vanilla attention matrix, and are set to
zero (depicted in white) in the reduced attention matrix.

We conduct experiments on CPUs on the ZeroSCROLLS benchmark [22] as well as the LongEval
benchmark [7]. In both of these benchmarks, our method demonstrates compelling performance
during inference when provided with well-trained weights compared with other baseline models.
Notably, our approach not only achieves accuracy close to that obtained using the vanilla Transformer,
but also surpasses the efficiency of all baseline methods.

2 Notation and Preliminaries

Mathematically, the attention operation takes three matrices as input, K ∈ Rm×d,Q ∈ Rn×d,V ∈
Rm×d′

, which denote keys, queries and values respectively, and outputs a matrix O ∈ Rn×d′
. The

ith rows of K, Q, V and O, denoted as ki, qi, vi and oi, represent the ith key, query, value and
output respectively.

First the attention operation computes the attention weight matrix A ∈ Rn×m. Its entry in the ith row
and jth column, denoted as ai,j , is computed with the following formula: ai,j = softmax

(
q⊤
i kj√
d

)
.

Then the attention operation combines the values with the attention weights in the following way:
oi =

∑m
j=1 ai,jvj .

Notably, from previous literature [18, 10], it is known that the attention matrix A is sparse, i.e., in
each row of A, only a few attention weights have significant (large) values, while the majority of the
remaining values are close to zero.

3 IceFormer: Accelerated Self-Attention for General Keys without
Retraining

In order to build a general-purpose acceleration method that does not require retraining, our approach
must not require modifications to the attention mechanism to change attention patterns or the
introduction of new model parameters to capture regularities in the attention patterns. This precludes

2



popular strategies such as attention mechanisms with predefined sparse attention patterns (e.g., Child
et al. [5], Beltagy et al. [4], Ainslie et al. [1]) and learned dimensionality reduction of keys and queries
(e.g., Wang et al. [26], Choromanski et al. [6]). Consequently, it is difficult to design an acceleration
method that exploits known regularities in the attention patterns without imposing the retraining
requirement. We therefore aim to design an acceleration method that does not make assumptions on
the existence of regularity in the attention patterns. In order to improve on the O(mn) complexity of
vanilla attention, we need to adaptively identify the most important keys (i.e., those that receive the
highest attention weights) without computing all attention weights. This seems like a chicken-and-egg
problem: how can we know which attention weights are highest without comparing them to all the
other attention weights?

Remarkably, in the special case of normalized keys, as proposed in Nikita et al. [18], this can be done
by leveraging k-nearest neighbour search (k-NNS) to identify the k most important keys for each
query. This relies on the following mathematical fact, whose derivation is in included in Sect. B.1 of
the appendix: if ∥kj∥2 = 1 for all j, argmaxj ai,j = argminj ∥qi − kj∥22. However, this fact only
holds when all the keys have the same norm – it is not true when different keys differ in their norms.
Intuitively, this is because the norms of keys can modulate the attention weights they receive, all else
being equal. So if key A has a larger norm than key B, key A can receive a higher attention weight
than key B even if key A is farther from the query than key B. As a result, naïvely applying k-NNS in
the general case would fail to identify the most important keys.

In this paper, we develop an acceleration method that does not require retraining or impose any
constraints on keys. It is both accurate and computationally efficient, and can also work with attention
masks that are common in Transformers, such as causal masks. We will describe the details in the
following subsections.

3.1 General Retraining-Free Accelerated Attention

Instead of applying k-NNS to the original keys directly, we will first embed the keys and queries into
a higher dimensional space. Inspired by Neyshabur and Srebro [17], we choose the following key
and query embedding functions, which we denote as TK : Rd → Rd+1 and TQ : Rd → Rd+1:

TK(kj) =
[
kj/c

√
1− ∥kj∥22/c2

]⊤
(1)

TQ(qi) = [qi/∥qi∥2 0]
⊤ (2)

where c ≥ maxj′ ∥kj′∥2 is at least the maximum norm across all keys.

It turns out that the k most important keys can be identified by performing k-NNS on the key
embeddings using the query embedding. We show the derivation in the appendix Sect. B.2.

3.2 Accurate k-NNS for Accelerated Attention

The problem of k-NNS is one of the most well studied problems in theoretical computer science.
Many algorithms have been developed, and often significant speedups can be obtained by allowing
for mistakes with some probability. Such algorithms are known as randomized algorithms. In the
context of LLMs, the number of attention layers is typically high and so errors from earlier layers can
compound. Therefore, it is essential for the k-NNS algorithm to achieve high accuracy. Choosing an
appropriate k-NNS algorithm is therefore crucial.

Most k-NNS algorithms are bucketing-based, which places keys into discrete buckets and searches
over buckets that contain the query. On the other hand, ranking-based algorithms compares the
rankings of different keys relative to the query and searches over highly ranked keys. A bucketing-
based algorithm effectively uses a fixed threshold on similarity, and so a variable number (including
zero) of keys can meet the threshold; on the other hand, a ranking-based algorithm returns a fixed
number of keys, which effectively amounts to choosing a variable threshold on similarity based on the
distribution of keys, as shown in Figure 3 in the appendix Sect. C. An example of a bucketing-based
algorithm is locality-sensitive hashing (LSH) [11], and an example of a ranking-based algorithm is
Prioritized DCI [13]. As shown in Figure 3, LSH hashes each key into a bucket associated with the
hash value, whereas Prioritized DCI ranks keys along random directions.

For accelerating attention, we posit that ranking-based algorithms are better suited than bucketing-
based algorithms, because attention weights depend on how different keys compare to one another,

3



rather than an absolute evaluation of each key against a fixed threshold. Therefore, ranking-based
algorithms is better aligned with how attention weights are calculated and so can yield better recall of
truly important keys.

In a Transformer, the keys in an attention layer depend on the output from the preceding attention
layer, which means a database needs to be constructed for each attention layer. Therefore, it is
important to choose a k-NN algorithm that attains both fast construction and querying. Moreover,
in the context of LLMs, many popular models use decoder-only architectures. The attention layers
in such architectures use causal masks to prevent the currently generated token to depend on future
yet-to-be-generated tokens. Such masked attention is equivalent to excluding the masked out keys
from the set of keys the k-NNS algorithm operates over. So each time a token is generated, one key
becomes unmasked. Instead of constructing a new database each time a token is generated, it is more
efficient to add keys incrementally to the database for k-NNS.

Fortunately, Prioritized DCI is efficient at both the construction and querying stages. If the number of
random projection directions p is nearly as large as the intrinsic dimensionality of the data d′ ≥ 1
and the number of nearest neighbours k to look for is small, Prioritized DCI can return the exact
k-nearest neighbours for a query with high probability within approximately Õ(dkp/d̃m1−p/d̃) time,
where Õ(·) suppresses log factors. Its preprocessing is lightweight, and so only needs O(dpm) time.
If we compare this to the computational complexity of vanilla attention of O(dmn), observe that
there is no longer a term that depends on mn, and so there is no longer the quadratic dependence
on sequence length. Later in the appendix section C, we also empirically validate the efficiency of
Prioritized DCI and found it to be faster than nine other leading k-NNS algorithms.

To support causal masking, we extended the implementation of Prioritized DCI to support incremental
updates to the database. This can be done efficiently, since the data structure consists of sorted lists,
so insertions and deletions can be performed in O(logm) time if they are implemented as binary
search trees.

4 Experiments
In this section, we analyze the performance of IceFormer in the LLM setting with long prompts as
input using the ZeroSCROLLS benchmark [22] and LongEval benchmark [7]. Due to the space limit,
we only show LLM experiments, but we also conduct experiments on LRA benchmark [23], and put
the results in the appendix Sect. D.

We utilize IceFormer to accelerate the prompt processing process in LLMs. We pick Vicuna-7b-v1.5-
16k [29], which is fine-tuned from LLaMa 2 [24] and is one of the top-performing open-source LLMs
with a context length up to 16K tokens, for the following experiment. For details on the configuration,
please check Sect. E.1 in the appendix.

ZeroSCROLLS Results. We compare IceFormer with vanilla Transformer and H-Transformer-1D
on the ZeroSCROLLS benchmark [22] which is specifically designed for LLMs and contains ten
diverse natural language tasks that require understanding long input contexts. Each task has a different
sequence length varying between 3k and 10k. We measure ZeroSCROLLS scores and latency of the
attention module. Table 1 shows that IceFormer achieves up to 2.7× speed-up compared to standard
self-attention while attaining at least 99.0% of the vanilla unaccelerated model performance.

LongEval Results & Scalability Analysis. To provide a more comprehensive analysis of Ice-
Former’s scalability in the LLM setting, we conducted additional experiments on the LongEval
benchmark [7], which is designed to measure long-context performance and consists of two tasks:
topic retrieval task with prompt length varying from 3k to 16k, and line retrieval task with prompt
length varying from 5k to 16k. In Figure 2, we present the averaged latency of the attention module
corresponding to different input prompt length as well as the inference accuracy using the vanilla
Transformer and IceFormer.

From Figure 2, IceFormer can achieve nearly identical inference accuracy compared with the vanilla
Vicuna-7b-v1.5-16k model. As the prompt length increases, there is a corresponding increase in
the inference latency for both methods and for both tasks. However, even with very long prompt
lengths, IceFormer maintains its scalability and consistently outperforms the vanilla Transformer.
Furthermore, as the length of the prompt increases, the difference in the latency (wall clock time)
between IceFormer and the vanilla Transformer becomes larger, demonstrating the superior scalability
and efficiency of IceFormer in the context of LLMs.

4



Table 1: The performance of vanilla Transformer, H-Transformer-1D, and IceFormer on the Ze-
roSCROLLS benchmarks. Numbers in parentheses indicate the relative comparison to the vanilla
unaccelerated model, denoted as Transformer. We employ the same abbreviations for metric and task
names as specified in the original paper [22]. We refer interested readers to the original paper for the
details.

Task (#tokens) Metric Transformer H-Transformer-1D IceFormer

GvRp (8k) Rgeo ↑ 11.0 (100%) 6.8 (61.8%) 11.0 (100%)
Time (s) 5.39 (1.0×) 4.52 (1.2×) 2.24 (2.4×)

SSFD (8k) Rgeo ↑ 13.5 (100%) 6.3 (46.7%) 13.5 (100%)
Time (s) 5.75 (1.0×) 4.98 (1.2×) 2.14 (2.7×)

QMsm (9k) Rgeo ↑ 16.9 (100%) 10.7 (63.3%) 16.8 (99.4%)
Time (s) 7.11 (1.0×) 5.17 (1.4×) 2.67 (2.7×)

SQAL (8k) Rgeo ↑ 18.9 (100%) 7.3 (38.6%) 18.9 (100%)
Time (s) 5.12 (1.0×) 2.33 (2.2×) 2.15 (2.4×)

Qspr (5k) F1 ↑ 34.2 (100%) 6.2 (18.1%) 34.0 (99.4%)
Time (s) 2.49 (1.0×) 2.13 (1.2×) 1.06 (2.3×)

Nrtv (10k) F1 ↑ 14.7 (100%) 2.0 (13.6%) 14.7 (100%)
Time (s) 7.64 (1.0×) 5.02 (1.5×) 3.39 (2.3×)

QALT (7k) AC ↑ 48.8 (100%) 6.8 (13.9%) 48.6 (99.6%)
Time (s) 4.17 (1.0×) 2.31 (1.8×) 1.85 (2.3×)

MuSQ (3k) F1 ↑ 18.6 (100%) 16.9 (90.9%) 18.5 (99.5%)
Time (s) 0.70 (1.0×) 0.66 (1.1×) 0.49 (1.4×)

SpDg (7.5k) ES ↑ 42.5 (100%) 2.9 (6.8%) 42.3 (99.5%)
Time (s) 4.72 (1.0×) 2.36 (2.0×) 2.09 (2.3×)

BkSS (7.5k) Cidx ↑ 19.5 (100%) 11.7 (60.0%) 19.3 (99.0%)
Time (s) 4.77 (1.0×) 2.41 (2.0×) 1.96 (2.4×)

Avg. (7.5k) / ↑ 23.9 (100%) 7.8 (32.5%) 23.8 (99.6%)
Time (s) 4.79 (1.0×) 3.19 (1.5×) 2.00 (2.4×)

Figure 2: Scalability analysis for IceFormer on the LongEval benchmark. The left figure shows the
results of the topic retrieval task; the right figure shows the results of the line retrieval task. X-axis:
length of the input prompt; Y-axis (Left): retrieval accuracy; Y-axis (Right): averaged process wall
clock time (second) of the attention module.

LongEval Results & Scalability Analysis. To provide a more comprehensive analysis of Ice-
Former’s scalability in the LLM setting, we conducted additional experiments on the LongEval
benchmark [7], which is designed to measure long-context performance and consists of two tasks:
topic retrieval task with prompt length varying from 3k to 16k, and line retrieval task with prompt
length varying from 5k to 16k. In Figure 2, we present the averaged latency of the attention module
corresponding to different input prompt length as well as the inference accuracy using the vanilla
Transformer and IceFormer. From the figure, IceFormer can achieve nearly identical inference
accuracy compared with the vanilla Vicuna-7b-v1.5-16k model. As the prompt length increases, there
is a corresponding increase in the inference latency for both methods and for both tasks. However,
even with very long prompt lengths, IceFormer maintains its scalability and consistently outperforms
the vanilla Transformer. Furthermore, as the length of the prompt increases, the difference in the
latency between IceFormer and the vanilla Transformer becomes larger, demonstrating the superior
scalability and efficiency of IceFormer in the context of LLMs.

5 Conclusion

In this paper, we present IceFormer, a new method for improving the inference time efficiency ofpre-
trained Transformers on the CPU. The experimental findings compellingly illustrate the effectiveness
of IceFormer in reducing the quadratic time and space complexity of vanilla Transformers.

5



References
[1] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,

Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and structured
inputs in transformers. arXiv preprint arXiv:2004.08483, 2020.

[2] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. Advances in neural information processing
systems, 28, 2015.

[3] Anthropic. 100k context windows, 2023. URL https://www.anthropic.com/index/
100k-context-windows.

[4] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[5] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[6] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[7] Li Dacheng, Shao Rulin, Xie Anze, Sheng Ying, Zheng Lianmin, Gonzalez Joseph E., Stoica
Ion, Ma Xuezhe, and Zhang Hao. How long can open-source llms truly promise on context
length?, June 2023. URL https://lmsys.org/blog/2023-06-29-longchat.

[8] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[9] Dave Dice and Alex Kogan. Optimizing inference performance of transformers on cpus. arXiv
preprint arXiv:2102.06621, 2021.

[10] Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. arXiv preprint arXiv:2106.06899, 2021.

[11] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613, 1998.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[13] Ke Li and Jitendra Malik. Fast k-nearest neighbour search via prioritized dci. In International
conference on machine learning, pages 2081–2090. PMLR, 2017.

[14] Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. Advances in neural
information processing systems, 31, 2018.

[15] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages 142–
150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1015.

[16] Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning.
arXiv preprint arXiv:1804.06028, 2018.

[17] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product
search. In International Conference on Machine Learning, pages 1926–1934. PMLR, 2015.

[18] Kitaev Nikita, Kaiser Lukasz, Levskaya Anselm, et al. Reformer: The efficient transformer. In
Proceedings of International Conference on Learning Representations (ICLR), 2020.

[19] OpenAI. Openai gpt-4, 2023. URL https://openai.com/gpt-4.
[20] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng

Kong. Random feature attention. arXiv preprint arXiv:2103.02143, 2021.
[21] Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The acl

anthology network corpus. Language Resources and Evaluation, 47:919–944, 2013.

6

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://lmsys.org/blog/2023-06-29-longchat
http://www.aclweb.org/anthology/P11-1015
https://openai.com/gpt-4


[22] Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding, 2023.

[23] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[26] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[27] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 14138–14148,
2021.

[28] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H _2 o: Heavy-hitter oracle for
efficient generative inference of large language models. arXiv preprint arXiv:2306.14048, 2023.

[29] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[30] Lin Zheng, Chong Wang, and Lingpeng Kong. Linear complexity randomized self-attention
mechanism. In International Conference on Machine Learning, pages 27011–27041. PMLR,
2022.

[31] Zhenhai Zhu and Radu Soricut. H-transformer-1D: Fast one-dimensional hierarchical at-
tention for sequences. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 3801–3815, Online, August 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.294. URL https:
//aclanthology.org/2021.acl-long.294.

7

https://aclanthology.org/2021.acl-long.294
https://aclanthology.org/2021.acl-long.294


A Related Work

Efficient transformers can be categorized along two axes: method type and compatibility with
pretrained models. Along the first axis are sparsity-based methods and low-rank methods. Along the
second axis are methods that can and cannot be applied to pretrained unmodified Transformer models
without retraining.

Sparsity-based methods employ a sparsified attention mechanism to capture global information and
integrate it with local attention results. Some approaches aim to improve the space complexity
compared to the vanilla attention mechanism without improving the time complexity, e.g., top-k
Attention [10]. Other approaches aim to improve both, e.g., Sparse Transformer [5], Longformer [4],
and ETC [1]. A substantial limitation of these models is that the tokens that are attended to are
predefined and remain static, which do not adapt to varying input sequences. Because the original
attention operation is permitted to attend to any token, these models must be trained with their
respective predefined constraints on tokens to be attended to. Reformer [18] can attend to different
sets of tokens for different input sequences by using Locality Sensitive Hashing (LSH) [2] to group
tokens into chunks and subsequently attending only to tokens within the same chunk as each query
and adjacent chunks. However, Reformer imposes two constraints that are not in the original attention
operation: keys must be normalized and queries and keys must be the same. Therefore, Reformer
must be trained with these constraints built-in. As a result, these methods cannot be applied to
pretrained, non-modified, models directly; instead, the models must be retrained with the required
constraints before these methods can be used.

Low-rank methods approximate the attention weight matrix with a low-rank matrix to reduce the
quadratic time and space complexity. Examples of low-rank transformers include Linformer [26] and
Performer [6], which decompose the attention weight matrix into a product of tall and wide matrices
consisting of learned linear features or random features of the keys and queries, respectively. However,
these transformers typically introduce significant approximation errors because attention weight
matrices produced by the original attention operation, especially in the case of long input sequences,
typically have high rank. Consequently, models that use these approaches must be trained with low-
rank approximations built-in, in order to learn to be robust to the associated approximation errors. As
a result, these approaches cannot be applied to pretrained, non-modified, models directly; instead, the
models must be retrained with the required approximations before these methods can be used. Other
approaches provide more general methodologies that can leverage weights pretrained with standard
transformers without retraining. These transformers accelerate the execution of the standard attention
operation without altering the underlying architecture. Two examples are Nyströmformer [27] and
LARA [30], which replace the softmax structure in the self-attention mechanism with the product
of separately activated query and key matrices. Nyströmformer utilizes the Nyström method, while
LARA combines randomized attention (RA) and random feature attentions (RFA) [20] to reconstruct
the attention weight matrix. In another example, H-Transformer-1D [31] recursively divides the
attention weight matrix into blocks and truncates the small singular values of each off-diagonal
blocks. All these approaches leverage low-rank approximations, as opposed to sparsity.

Other works propose hardware-specific optimizations without aiming to improve the computational
complexity. Examples include Flash-attention [8], which optimizes reads and writes between levels
of GPU memory, and H2O [28], which dynamically retains a balance of recent and heavy hitters
tokens by a KV cache eviction policy. These strategies are dependent on implementation and are
specific to particular hardware platforms (e.g. GPU).

B Proofs

B.1 Proof 1

Here, we provide the full step-by-step derivation of the mathematical equivalence between conducting
k-nearest neighbor search on normalized keys and identifying the keys that obtain the highest attention

8



weight.

argmax
j

ai,j = argmax
j

softmaxj

({
q⊤
i kj′√
d

}m

j′=1

)
(3)

= argmax
j

q⊤
i kj√
d

(4)

= argmin
j

∥qi∥22 − 2q⊤
i kj + 1 (5)

Since ∥kj′∥2 = 1 for all j′, ∥qi∥22 − 2q⊤
i kj + 1 = ∥qi∥22 − 2q⊤

i kj + ∥kj∥22 = ∥qi − kj∥22,

argmax
j

ai,j = argmin
j

∥qi∥22 − 2q⊤
i kj + 1 (6)

= argmin
j

∥qi − kj∥22 (7)

B.2 Proof 2

Here, we provide the full step-by-step derivation of the result in 3.1 establishing the mathematical
equivalence between conducting k-nearest neighbor search on transformed keys and identifying the
keys that obtain the highest attention weight.

argmax
j

ai,j = argmax
j

softmaxj

({
q⊤
i kj′√
d

}m

j′=1

)
(8)

= argmax
j

q⊤
i kj√
d

(9)

= argmax
j

q⊤
i kj (10)

= argmin
j

−2q⊤
i kj (11)

= argmin
j

2− 2q⊤
i kj/c∥qi∥2 (12)

= argmin
j

1− 2q⊤
i kj/c∥qi∥2 + 1 (13)

= argmin
j

∥qi∥22/∥qi∥22 − 2q⊤
i kj/c∥qi∥2 + ∥kj∥22/c2 + 1− ∥kj∥22/c2 (14)

= argmin
j

q⊤
i qi/∥qi∥22 − 2q⊤

i kj/c∥qi∥2 + k⊤
j kj/c

2 + 1− ∥kj∥22/c2 (15)

= argmin
j

(qi/∥qi∥2 − kj/c)
⊤(qi/∥qi∥2 − kj/c) + 1− ∥kj∥22/c2 (16)

= argmin
j

∥qi/∥qi∥2 − kj/c∥22 + 1− ∥kj∥22/c2 (17)

= argmin
j

∥qi/∥qi∥2 − kj/c∥22 +
(
0−

√
1− ∥kj∥22/c2

)2

(18)

= argmin
j

∥TQ(qi)− TK(kj)∥22 (19)

= argmin
j

∥TQ(qi)− TK(kj)∥2 (20)

C Different k-NNS Algorithms Comparison

C.1 Fast k-NNS for Accelerated Attention

We compare the recall of true nearest neighbors and total construction and querying time of ten
k-NNS algorithms including Prioritized-DCI on fashion-mnist-784 dataset in Figure 4. As shown,
Prioritized-DCI can achieve the best recall-latency trade-off across all the tested algorithms, which
illustrates its suitability in the setting when the construction and querying time are both important.

9



Figure 3: Difference between ranking-based and bucketing-based k-NNS.

Figure 4: Comparison between ten k-NNS algorithms on fashion-mnist-784 dataset. There are in total
60,000 keys and 10,000 queries with 784 dimensions. The task is to find top-10 closest neighbors
from the entire set of keys for every query. X-axis: Average recall across all the queries; Y-axis: Total
latency (seconds) including database construction and querying. DCI denotes the Prioritized-DCI.

D Long Range Arena (LRA) Benchmark Experiments

In this section, we empirically analyze the performance of IceFormer on the LRA benchmark [23]
which is under the long-context scenario and is evaluated in lots of previous literature [31, 27, 30].

D.1 Datasets and Metrics

LRA consists of five different tasks: ListOps [16], document retrieval (Retrieval) [21], text classifica-
tion (Text) [15], CIFAR-10 image classification (Image) [12] and Pathfinder [14]. Specifically, all the
five tasks consist of sequences with at most 4k tokens. We summarize the dataset information in the
appendix for more details. In this experiment, we follow the train/test splits from Tay et al. [23] and
report the test dataset classification accuracy, average running time of the attention module, and CPU
memory usage during inference for each task.

In our LRA experiments, for Retrieval, Text and Pathfinder (64× 64 version), we directly use the
dataset from LRA codebase1. Because the original datasets for ListOps and Image only contain short
sequences, we generate longer samples for ListOps using the same code from the LRA codebase with
4000 as the maximum length; for Image task, we use a version of the CIFAR-10 dataset super-resolved

1https://github.com/google-research/long-range-arena/tree/main

10



to 64× 642 instead of the original low-resolution 32× 32 CIFAR-10 dataset. We follow the exact
same train/test split as the original LRA paper [23]. The details of the LRA dataset is listed in Table 2.

Table 2: LRA Dataset Details.
Task ListOps Text Retrieval Image Pathfinder

Max length 3,991 4,000 4,000 4,096 4,096
Avg. length 2,232 1,267 3,917 4,096 4,096

number of classes 10 2 2 10 2
Accuracy by chance 0.100 0.500 0.500 0.100 0.500

D.2 Base Model Configuration

We follow the experimental setup of prior work [31] for training the base model. However, since we
were not able to successfully train base Transformer models to satisfactory accuracy on Image and
Pathfinder datasets using the original setting, we decreased the number of heads and layers for these
two tasks. The details of the base model for each task are outlined in Table 3.

Table 3: Configurations of the base models for different tasks.
Task ListOps Text Retrieval Image Pathfinder

head embedding size 512 512 512 512 512
feed-forward size 2048 2048 2048 1024 1024
number of heads 8 8 8 4 4
number of layers 6 6 6 4 4

D.3 Baselines.

In addition to the vanilla Transformer, we compare with Nyströmformer [27], H-Transformer-1D [31],
LARA [30] and Reformer [18]. In order to compare with Reformer, we train a Transformer model
with shared Q and K according to Nikita et al. [18]. For fair comparisons, we use the LRA evaluation
benchmark implemented in PyTorch by [27], and only replace the self-attention module while making
other parts of each model exactly the same as the vanilla Transformer.

D.4 Implementation Details.

For each task, we begin by training a base model using GPU with a vanilla Transformer architecture.
Then we replace the vanilla attention module with one of the five efficient attention modules mentioned
earlier and directly apply the pre-trained weights for inference. To ensure fair comparison, we
adjust the batch size to 1, eliminating the need for a padding mask since our proposed IceFormer
automatically ignores padding masks during inference. Note that because of the additional shared-KQ
constraint, for the Pathfinder task, our attempts to train a shared-KQ Transformer were unsuccessful.
As a result, we have excluded the corresponding results from the subsequent analysis. Additionally,
during the inference, we utilize a total of 4 CPU threads. The machine used for LRA benchmark is
Intel(R) Core(TM) i7-6850K.

D.5 Inference Results.

We conducted a comparison of IceFormer with five baseline methods on five LRA tasks. Ideally, the
accuracy of the vanilla Transformer (non-shared-KQ) serves as an upper bound for the approximated
accuracy of the other four models (IceFormer (non-shared-KQ), Nyströmformer, H-Transformer-1D,
and LARA). Similar for the shared-KQ Transformer. Also, the attention module inference time of
the vanilla Transformer would be the longest, with other efficient Transformers achieving shorter
inference times at the cost of sacrificing prediction accuracy. Table 4 presents the prediction accuracy
and inference time of the attention module for each method. The hyper-parameter settings are listed in
the appendix. In general, our proposed IceFormer consistently outperforms all efficient Transformers,
offering the best accuracy approximation while requiring the least inference time across all five tasks.
This demonstrates the generalizability and effectiveness of our model.

2https://www.kaggle.com/datasets/joaopauloschuler/cifar10-64x64-resized-via-cai-super-resolution

11



Table 4: The performance of vanilla Transformer, and approximate attention baselines on the LRA
benchmarks.

Method shared-KQ ListOps Text Retrieval Image Pathfinder
Acc Time (s) Acc Time (s) Acc Time (s) Acc Time (s) Acc Time (s)

Transformer [25] ✗ 0.4255 2.9208 0.6019 0.6933 0.6586 8.3588 0.4132 4.9303 0.7514 0.9620
✓ 0.4145 1.8608 0.5986 0.6603 0.6681 6.7946 0.3844 5.9804 / /

Reformer [18] ✓ 0.4121 1.4281 0.5941 0.2288 0.6467 1.4751 0.3726 3.6927 / /
LARA [30] ✗ 0.4125 0.6146 0.5831 0.2348 0.6401 1.8605 0.3094 2.6720 0.7380 0.5961

Nyströmformer [27] ✗ 0.4128 0.7994 0.5838 0.3542 0.6540 2.4179 0.3754 1.7644 0.6758 0.3211
H-Transformer-1D [31] ✗ 0.3265 1.9301 0.5944 0.4811 0.5808 3.5605 0.2286 1.2586 0.5286 0.5708

IceFormer (ours) ✗ 0.4153 0.3766 0.5978 0.0921 0.6541 0.8337 0.4046 0.5076 0.7442 0.3058
✓ 0.4124 0.4678 0.6001 0.0903 0.6602 0.8480 0.3752 0.9581 / /

Figure 5: Changes of speed and accuracy on five LRA tasks. X-axis: the averaged wall clock time of
attention module. Y-axis: the model prediction accuracy. We test different values of k: {3, 5, 8, 10}.

D.6 Speed & Accuracy Trade-off.

For IceFormer, increasing the extent of approximation generally improves model efficiency but can
lead to a decrease in prediction performance. Here, we study how the extent of approximation affects
inference speed and accuracy by varying the number of returned candidates of IceFormer, k, from 3
to 10 for each task and present the results in Figure 5. From the figure, we observe that across all
tasks, when k becomes larger, IceFormer achieves improved prediction accuracy but becomes less
efficient.

D.7 Memory Complexity Analysis.

Table 5 summarizes the maximum memory usage for each method during inference. We employ the
same hyper-parameters as in Table 4 and maintain a batch size of 1 to eliminate the need for padding
masks. The table reveals that IceFormer consistently exhibits the lowest peak memory usage across
all tasks. In comparison to the vanilla Transformer, IceFormer achieves memory savings of up to
0.862 GB.

Table 5: Peak memory usage (GB) on LRA benchmark. The peak memory usage is the total memory
usage of the whole program, which includes the memory for the Prioritized DCI database/index.

Method shared-KQ ListOps Text Retrieval Image Pathfinder

Transformer [25] ✗ 3.729 4.327 5.031 3.778 3.926
✓ 3.631 4.265 4.877 3.740 /

Reformer [18] ✓ 3.623 3.983 4.250 3.687 /
LARA [30] ✗ 3.584 4.129 4.566 3.772 3.943

Nyströmformer [27] ✗ 3.478 3.982 4.375 3.463 3.845
H-Transformer-1D [31] ✗ 3.883 4.328 4.543 3.553 3.603

IceFormer (ours) ✗ 3.374 3.834 4.169 3.304 3.465
✓ 3.306 3.756 4.053 3.286 /

D.8 Approximation Quality.

In order to assess how well various efficient Transformers approximate the outputs of the vanilla
modified attention module, we measure the approximation error by computing the L2-norm of
the difference between their attention module outputs and those of the standard vanilla attention
module. The averaged approximation errors for different efficient Transformers, utilizing the same

12



hyper-parameter settings of Table 7, are summarized in Table 6. As indicated in the table, IceFormer
consistently achieves the lowest approximation errors across all LRA tasks, providing further evidence
of its approximation efficacy.

Table 6: Quality of the approximation on LRA benchmark. The approximation error of the attention
module output is reported for each method across all the tasks.

Method shared-KQ ListOps Text Retrieval Image Pathfinder

Reformer [18] ✓ 3.823 3.926 5.452 2.130 /
LARA [30] ✗ 2.395 9.456 10.025 22.066 9.261

Nyströmformer [27] ✗ 5.758 10.269 6.523 18.789 10.442
H-Transformer-1D [31] ✗ 6.110 10.605 5.676 53.926 12.228

IceFormer (ours) ✗ 2.140 3.891 1.825 6.873 8.749
✓ 1.562 1.686 2.499 2.127 /

D.9 Hyperparameters for the Baselines and the Proposed Method

For LARA and Nyströmformer, we tuned the parameter num_landmarks by optimizing over the range
{64, 128, 256, 512, 1024}. For H-Transformer-1D, we tuned the parameter block_size by optimizing
over the range {64, 128, 256, 512, 1024}. For Reformer, we tuned the parameters num_hash and
bucket_size: we considered the values of num_hash in range {1, 2, 4} and the values of bucket_size
in range {64, 128, 256, 512, 1024}. For IceFormer, we tuned the parameter top_k over the range {3,
5, 8, 10, 15, 20}. In general, a larger value for bucket_size, num_landmarks, block_size, or top_k
indicates less aggressive approximation, meaning that the model performance is closer to that of the
vanilla Transformer. We select the values of the hyperparameters that lead to the best accuracy-time
trade-off for each model, and list them in Table 7.

Table 7: Hyperparameter settings for different methods.
Method hyper-parameter ListOps Text Retrieval Image Pathfinder

Reformer [18] num_hash 1 1 1 1 /
bucket_size 512 128 256 1024 /

LARA [30] num_landmarks 256 256 512 1024 1024

Nyströmformer [27] num_landmarks 256 256 512 512 1024

H-Transformer-1D [31] block_size 1024 512 1024 256 1024

IceFormer top_k 8 3 10 10 10

IceFormer (shared-QK) top_k 10 3 10 20 /

E More Details on the LLM Experiment

E.1 LLM Experiments Setting

The LLM that we use in the main paper, vicuna-7b-v1.5-16k, contains 32 attention layers, each of
which contains 32 attention heads with dimensionality equals to 128. Its maximum input sequence
length is 16,384. We observe varying levels of sparsity across different layers of LLMs, and this
sparsity remains consistent across different prompts. Therefore, in all the LLMs experiments in the
main paper, we apply IceFormer to approximate relatively sparse layers ranging from the sixteenth to
the thirty-first in vicuna-7b-v1.5-16k. This selection encompassed a total of 16 layers, equivalent to
half of the total number of layers in the model. We run all the experiment under CPU setting, and the
machine used for the LLM experiments is AMD Ryzen 9 5950X. During the inference, we utilize a
total of 24 CPU threads.

The k in the k-NNS of IceFormer for each task of the ZeroSCROLLS benchmark and the LongEval
benchmark is defined as:

k = max(min(⌊n ∗ α⌋, 50), 30)

where n is the number of input tokens, ⌊x⌋ is the floor function, and α is a hyper-parameter set by the
users. In the ZeroSCROLLS benchmark, we set α equals to 4e-3 for tasks SSFD and QMsm; 5e-3 for
tasks GvRp, SQAL, Qspr, Nrtv, MuSQ and BkSS; 6e-3 for tasks QALT and SpDg. In the LongEval
benchmark, we set α equals to 5e-3 for all the settings of both two tasks.

13



E.2 Causal Masks and Other Inference-Time Efficient Transformers

In the main paper, we did not compare IceFormer with LARA and Nyströmformer on LLMs. In this
section, we elaborate on the problems of causal masks for these two methods.

Most random-feature-based models such as LARA and Nyströmformer group different tokens into
different clusters, known as landmarks. In order to enable causal masking in these models, not only
does the masking need to be applied at the landmark level to prevent the leakage of information from
future tokens, an additional set of masks is also required to mask out different numbers of tokens
within the same landmark for different queries. The latter is not supported natively and is especially
difficult to implement. As a result, it is difficult to apply LARA and Nyströmformer to models that
have causal masks.

F Text outputs of IceFormer + LLM

In this section, we provide the text outputs of IceFormer when applied to the LLM (vicuna-7b-v1.5-
16k) in Figure 6&7.

Figure 6: Output of IceFormer (Top-30) + LLM with 4k input tokens. We ask the LLM to summarize
an article titled “Frozen Food: The World’s Favorite Killer”.

14



Figure 7: Output of IceFormer (Top-40) + LLM with 8k input tokens. We ask the LLM to summarize
an article titled “Research of How Online Behavioral Advertising Influences Consumers”.

15


	Introduction
	Notation and Preliminaries 
	IceFormer: Accelerated Self-Attention for General Keys without Retraining
	General Retraining-Free Accelerated Attention
	Accurate k-NNS for Accelerated Attention

	Experiments
	Conclusion
	Related Work
	Proofs
	Proof 1
	Proof 2

	Different k-NNS Algorithms Comparison
	Fast k-NNS for Accelerated Attention

	Long Range Arena (LRA) Benchmark Experiments
	Datasets and Metrics
	Base Model Configuration
	Baselines.
	Implementation Details.
	Inference Results.
	Speed & Accuracy Trade-off.
	Memory Complexity Analysis.
	Approximation Quality.
	Hyperparameters for the Baselines and the Proposed Method

	More Details on the LLM Experiment
	LLM Experiments Setting
	Causal Masks and Other Inference-Time Efficient Transformers

	Text outputs of IceFormer + LLM

