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Abstract

Self-supervised speech recognition models require considerable labeled training
data for learning high-fidelity representations for Automatic Speech Recognition
(ASR), which is computationally demanding and time-consuming. We consider
the task of identifying an optimal subset of data for efficient fine-tuning in self-
supervised speech models for ASR. We discover that the dataset pruning strate-
gies used in vision tasks for sampling the most informative examples do not
perform better than random subset selection on fine-tuning self-supervised ASR.
We then present the COWERAGE algorithm for representative subset selection in
self-supervised ASR. COWERAGE is based on our finding that ensuring the cover-
age of examples based on training Word Error Rate (WER) in the early training
epochs leads to better generalization performance. Extensive experiments with the
wav2vec 2.0 and HuBERT model on TIMIT, Librispeech, and LJSpeech datasets
show the effectiveness of COWERAGE and its transferability across models, with
up to 17% relative WER improvement over existing dataset pruning methods and
random sampling. We also demonstrate that the coverage of training instances
in terms of WER values ensures the inclusion of phonemically diverse examples,
leading to better test accuracy in self-supervised speech recognition models.

1 Introduction

There has been rapid progress in recent years toward improving speech self-supervised learning
(speech SSL) models. Such models learn high-fidelity speech representations using a large amount
of unlabeled data and use paired data for fine-tuning on the downstream task of automatic speech
recognition (ASR) [2, 6]. However, still a significant amount of labeled training data is used in the
fine-tuning step for achieving robust performance, which is computationally demanding and time-
consuming. For example, the standard wav2vec2 fine-tuning procedure on Librispeech/Libri-light
requires ∼50−100 hours on a V100 GPU, which is significantly higher (> 50×) than the cost of
fine-tuning BERT on GLUE [9]. Moreover, this also hinders their usage in low-resource systems,
especially compute-restricted environments (e.g., cheaper GPUs and on-device computing), which is
presently a significant barrier in democratizing access to these models [1, 14].

Recent work uses adapters to enable efficient fine-tuning by using a fraction of parameters in speech
SSL models [18]. However, their usage necessitates task-specific modifications, which prevents
their applicability across different models and datasets. In contrast, we consider increasing the
efficiency of speech SSL fine-tuning procedure by reducing training data requirements and find
smaller, representative and model-agnostic subsets of data for fine-tuning speech SSL models.
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The data pruning mechanisms specifically tailored for deep learning models have been studied
extensively for standard vision tasks. These methods focus on selecting the most informative training
examples [19, 4, 14, 15, 8, 11, 12] which has been shown to perform better than the random selection
of the training data. The methods for identifying the important examples in these cases are based on
scores that are directly derived from the training properties and example difficulty such as the error
vector norm [14], the number of times an example is forgotten during training [19] or the holdout
loss [12]. However, no such mechanism has been studied yet for data pruning in speech SSL models.

We find that in standard datasets for training speech SSL models, sampling only the hard-to-learn
training examples based on word error rate (WER) does not consistently perform better than random
pruning. This is in contrast to data pruning strategies in vision tasks where this method outperforms
other baselines [19, 14, 17]. For better data subset selection in fine-tuning speech SSL models,
we propose COWERAGE, an algorithm designed to identify training examples important for better
generalization. We find that ensuring the coverage of diverse examples based on training WER values
in the early training epochs leads to better accuracy on unseen test data than random pruning or
selecting only the most informative (hard-to-learn) examples. Experiments show the effectiveness of
the COWERAGE algorithm over three primary pruning strategies: random selection, top k (hardest
subset selection), and bottom k (easiest subset selection). To understand the underlying mechanism
governing COWERAGE’s generalization properties, we establish a connection between the training
WER of the examples and their phonemic cover and find that our algorithm ensures the inclusion of
phonemically diverse examples (i.e., examples of both low and high phonemic coverage) without
explicitly learning any phoneme-level error model.

2 Method

Consider a self-supervised model f(x; θ) (θ ∈ Rd) that is pre-trained on a large unlabelled dataset
x ∈ Du on some objective Lp. The model obtained after self-supervised pretraining with weights θL
is then fine-tuned for the downstream task of ASR with another objective Lf on a labelled dataset
x ∈ Dl (which is generally smaller than Du). Dl consists of transcribed audios (i.e. audio and the
corresponding sentence that was uttered). Our goal is to prune Dl to obtain a subset Bl such that
the performance of self-supervised ASR model f(x; θ) after fine-tuning on Bl is better than random
pruning. We only consider pruning Dl (and not Du) since we aim to directly evaluate the impact
of different subset selection methods on the downstream task of ASR instead of the unsupervised
pre-training of speech SSL model. The performance of an ASR model is commonly evaluated via
WER ( I+D+S

N ), which is computed by aligning the word sequence generated by the ASR system with
the actual transcription (containing N words) and calculating the sum of substitutions (S), insertions
(I), and deletions (D) [21].

A number of active learning approaches are based on the inclusion of informative training examples
in the dataset for deep learning models, i.e., examples with high error during the training epochs. We
first quantify the importance of a training example in the context of a self-supervised ASR system to
form a baseline for the comparison of different pruning algorithms. The training WER of an example
after a few training epochs is representative of the difficulty of that example in being transcribed
correctly by an ASR system. Intuitively, a hard-to-learn example will have a higher training WER
due to the greater misalignment between the generated word sequence and the actual transcription.
We now use the training WER to present three different subset selection strategies for selecting a
subset Bl of the training data Dl for fine-tuning a self-supervised speech model on ASR.

Strategy 1: Picking the hardest k examples The first approach is to pick the top k training examples,
i.e., the ones with the highest WER. This replicates the pruning strategy of picking the highest error
examples [14, 11] during training. We first compute the training WER in a particular epoch (WER
selection epoch) for all the examples. Then we select examples with the highest WER and perform
fine-tuning on this subset. The number of examples selected is determined by the pruning fraction p.

Strategy 2: Picking the easiest k examples The second strategy is to pick the bottom k training
examples i.e., the ones with the lowest WER. This is the inverse of strategy 1 and removes the
harder-to-learn outliers from the training set in an attempt to retain representative examples.

Strategy 3: COWERAGE Subset Selection We now present a novel approach for dataset pruning,
which we call COWERAGE, i.e., picking examples to ensure the coverage of the training WER. The
following claim forms the basis of the COWERAGE algorithm.
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Claim 2.1. Ensuring the coverage of training WER values guarantees the inclusion of phonemically
diverse examples in the training data.

Figure 1: Fine-tuning a self-
supervised model for ASR using a
data subset selected by the COWER-
AGE algorithm.

With COWERAGE, we first compute the training WER for each
example in Dl, with the lowest WER as wl and the highest
WER as wh. We then use a stratified sampling approach of
partitioning N total examples from the range [wl, wh] into M
buckets, with each bucket defined as,

Si =W
(
wl +

i−1
M (wh − wl) , wl +

i
M (wh − wl)

)
where i = 1 . . . n. We then use simple random sampling to
select k examples uniformly from each bucket, X1,...,Xk ∼
U (Si), where k is decided by the fraction of the dataset to be
pruned and the size of the bucket. U (Si) denotes the uniform
distribution over the set Si. This stratified sampling method
ensures coverage of WER when selecting training examples.
The selected subset is used to fine-tune speech SSL model for
ASR and the test performance is evaluated through WER (Fig.
1). The overall algorithm is presented in Algorithm 1.

Algorithm 1 COWERAGE Subset Selection for fine-tuning ASR Model
1: Input: SSL Pretrained Model f , Dataset Dl, Pruning Fraction p, Train Epoch e, Bucket Size b
2: W ← Finetune f on Dl and compute WER for each example on epoch e
3: retainFraction← 1− p, Bl ← ∅
4: W ← sortDescending(W )
5: buckets← createBuckets(W, size = b)
6: for bucket in buckets do
7: sampleSize← retainFraction ∗ b
8: S ← randomSample(bucket, sampleSize)
9: Bl ← Bl ∪ S

10: end for

2.0.1 Comparison to Random Sampling

We now highlight some key differences between random subset selection and COWERAGE.
Claim 2.2. In contrast to the COWERAGE algorithm, random sampling does not ensure selection of
examples from the tail WER range. The proof is presented in Appendix A.1.
Claim 2.3. Subsets selected by COWERAGE have a lower variance of the sample mean of WER than
randomly selected samples. The proof is presented in Appendix A.2.

3 Empirical Evaluation

Models and Datasets. We use the wav2vec2-base [2] (95M parameters) and HuBERT-base model
[6] (90M parameters) for our experiments. We fine-tune them on the training subsets of three speech
datasets: TIMIT [5], Librispeech 10h [13] and LJSpeech [7] and report WER for pruning fractions of
0.1, 0.3, 0.5, 0.7, and 0.9 to adequately evaluate low, moderate, and extreme pruning settings across
different strategies. Please see Appendix D.3 for details about train and test splits and Appendix D.4
for hyperparameters.

Experiments. We fine-tune wav2vec2-base model on the selected dataset and calculate the WER
of the training examples over ten independent runs. The training scores (averaged over 10 runs)
from a particular epoch are then used to prune the examples through the pruning strategies to
generate a subset of training data. The data subsets are then used to fine-tune wav2vec2-base and
HuBERT-base for ASR.

Results. We show the results of pruning experiments via different strategies across multiple pruning
fractions in Table 1. For each strategy and pruning fraction, we report the mean WER of three
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Table 1: Test WER for the four strategies of pruning the training set evaluated at multiple pruning
fractions (0.1, 0.3, 0.5, 0.7, 0.9) and different datasets (LJSpeech, LS-10h and TIMIT). The training
WER in a particular epoch is averaged over 10 runs and then used for a particular pruning strategy.
For each result, we do three independent runs and report the mean test WER. COWERAGE consistently
demonstrates the lowest WER at various pruning fractions. WER selection epoch (WSE) is set to 8
for these experiments. See Section B.4 for WSE ablation.

Dataset Strategy wav2vec2-base HuBERT-base

No pruning 0.1 0.3 0.5 0.7 0.9 No pruning 0.1 0.3 0.5 0.7 0.9
LJSpeech Random 0.052 0.062 0.071 0.085 0.128 0.251 0.091 0.117 0.128 0.140 0.196 0.272

Top K 0.052 0.060 0.064 0.077 0.101 0.238 0.091 0.109 0.118 0.135 0.168 0.248
Bottom K 0.052 0.057 0.063 0.070 0.091 0.166 0.091 0.105 0.116 0.130 0.151 0.181

COWERAGE 0.052 0.054 0.060 0.067 0.085 0.144 0.091 0.101 0.107 0.115 0.136 0.153
LS-10h Random 0.140 0.147 0.168 0.188 0.245 0.360 0.180 0.219 0.220 0.298 0.309 0.424

Top K 0.140 0.143 0.155 0.174 0.198 0.343 0.180 0.210 0.215 0.268 0.313 0.391
Bottom K 0.140 0.146 0.159 0.175 0.201 0.336 0.180 0.215 0.219 0.269 0.336 0.381

COWERAGE 0.140 0.142 0.150 0.164 0.192 0.277 0.180 0.185 0.211 0.250 0.290 0.341
TIMIT Random 0.315 0.325 0.341 0.357 0.394 0.557 0.328 0.357 0.373 0.392 0.452 0.675

Top K 0.315 0.322 0.334 0.392 0.472 0.678 0.328 0.345 0.366 0.435 0.532 0.871
Bottom K 0.315 0.336 0.360 0.411 0.521 0.887 0.328 0.346 0.391 0.447 0.568 0.931

COWERAGE 0.315 0.320 0.333 0.339 0.369 0.455 0.328 0.335 0.355 0.381 0.445 0.616

independent runs. We observe that for the majority of pruning fractions, COWERAGE subset selection
is consistently better than the other three pruning strategies (top k, bottom k, and random pruning) for
TIMIT, LS-10h, and LJSpeech. At higher pruning fractions, the difference between the test WER
for COWERAGE and the other pruning strategies increases, e.g., on the Librispeech-10h dataset with
90% pruning, COWERAGE shows 17% relative WER improvement over Bottom K strategy compared
to 5% relative WER improvement at 30% pruning. This observation can also be made for random
sampling and is consistent with claim 2.2 where we consider the impact of smaller sample sizes
(higher pruning percentages) on the selection of examples from tail WER which subsequently affects
test error. On the TIMIT dataset, going from 10% pruning to 90% pruning leads to an absolute
increase of only 0.135 WER for COWERAGE compared to an increase of 0.551, 0.356, and 0.232 for
Bottom K, Top K, and Random respectively.

Transferability of representative subsets. Table 1 shows that COWERAGE demonstrates better
performance in the fine-tuning run of HuBERT-base on the subsets constructed through training
WER values of wav2vec2-base. The relative trend for other pruning strategies is also similar
to that of wav2vec2-base. This suggests that the representative subsets computed through one
speech SSL model are transferable to another speech SSL model, making them model-agnostic and
dataset-specific. This property is present in a few other pruning metrics for deep learning models as
well, including EL2N score [14] and RHO-loss [12]. Our explanation is that since the composition of
the representative subset is more influenced by the ranking of training examples instead of absolute
WER values, it makes them relevant for fine-tuning other speech SSL models. Additionally, the prior
averaging of the training WER values theoretically eliminates the influence of specific model weights,
which produces a more precise ranking of the examples. We can consider the representative subsets
constructed through COWERAGE as foundation datasets [17] which need to be constructed once and
can be later used to fine-tune multiple other speech SSL models.

Connection to Phonemes. To verify claim 2.1 and understand why COWERAGE performs better than
other pruning strategies, we conduct an experiment to determine how the phoneme distribution of
training examples varies with the training WER. We find an inverse relationship between the training
WER and the phonemic cover and identify that the coverage of training WER values in a particular
subset leads to the inclusion of phonemically diverse training examples (see Appendix C).

4 Conclusion
In this work, we proposed COWERAGE, a new method for pruning data for self-supervised automatic
speech recognition, which relies on sampling data in a way that ensures coverage of training WER
values. An evaluation on wav2vec2 and HuBERT and three datasets show that COWERAGE performs
better than random selection and other data pruning strategies that select harder-to-learn or easier-to-
learn examples. While we designed our approach to be dataset agnostic and applicable to different
distributions of training WER, it remains to be empirically evaluated whether our methodology
generalizes to noisier data and multilingual speech corpora.
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Supplementary Material

A Proofs

A.1 Proof of Claim 3.2

Proof. We consider the probability of randomly selecting an example WER (w) that is at least at a
distance of k standard deviation σ from the mean WER. By Chebyshev’s inequality: Pr(|X − W̄ | ≥
kσ) ≤ 1

k2 = p, which demonstrates that increasing the WER boundary w (and hence k) decreases
the probability of randomly selecting a sample with WER greater than w.1 We now consider the
probability of having at least one sample with a WER greater w when we independently draw n
samples from the training WER distribution. This is a complement of the event no sample having a
WER greater than w in n draws which is (1− p)n, and hence the event of interest has the probability
upper bound 1 − (1 − p)n = 1 − (1 − 1

k2 )
n. This demonstrates that decreasing the sample size

and increasing the pruning percentage reduces the probability of selecting a tail WER example. In
contrast, for COWERAGE, the probability of selecting at least one example with a WER greater
than W̄ + kσ is Pr(|Si| > 0) = q, where Si is a tail bucket with the WER range (a, b) such that
a ≥ W̄ + kσ and b > a. This probability (q) approaches 1 if we consider a bucket size satisfying the
range (a, b), and hence COWERAGE ensures selection of examples from the tail WER range.

A.2 Proof of Claim 3.3

Proof. We first consider the variance of samples selected by COWERAGE. Let Sij be the sample i

from bucket Sj . The average WER in bucket j is W̄j =
∑

i Sij

k , variance in bucket j is σ2
j and the

overall average is W̄ =
∑

j W̄j

M . The variance of the sample mean of WER is,

VarCOWERAGE[W̄ ] =

∑
j Var

[
W̄j

]
M2

(1)

Var
[
W̄j

]
is the variance of the sample mean within a particular bucket and is equivalent to

σ2
j

k . Thus,
we get

VarCOWERAGE[W̄ ] =

∑
j Var

[
W̄j

]
M2

=

∑
j σ

2
j

M2k
=

∑
j σ

2
j

MN
(2)

Now we consider the variance of a simple random sample. Var[W̄ ] = σ2

N with σ2 = E
[
W 2

]
− µ2.

Considering the contribution from each bucket in the random sample, we can specify σ2 =
∑

j E[Sj ]

M −

µ2 =
∑

j(µ
2
j+σ2

j )
M − µ2 =

∑
j((µj−µ)2+σ2

j )
M . Thus,

VarRANDOM[W̄ ] =

∑
j

(
(µj − µ)

2
+ σ2

j

)
MN

(3)

Comparing (1) and (3), VarRANDOM[W̄ ] ≥ VarCOWERAGE[W̄ ] and the result follows.

1Note that the probability of sampling from the tail of the WER degrades quadratically.
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B Ablation study

The Impact of Offset. To identify whether there is another contiguous subset of examples below the
ones with the highest WER which can perform better than random pruning, we introduce an offset
while selecting the top k training examples, mirroring the protocol presented by [14]. We compute
the training WER for the examples and sort them in ascending order. We then maintain a sliding
window from offset k to k +N which keeps N data points but incrementally excludes the training
examples with the highest WER. For offset sizes from 0 to 500, we notice a change in the test WER
but no single offset size is consistently better than random pruning. An important implication of this
finding is that no contiguous subset of training examples picked according to the WER is better than
random pruning in the TIMIT speech corpus, contrary to the previous studies on vision datasets that
have shown a clear correlation between the top-scoring examples and the accuracy [14].

Figure 2: The test WER for the different offsets while picking the top k examples compared over
different pruning fractions of the TIMIT dataset. Note that no single offset consistently performs
better than random pruning.
B.1 Selection within the buckets.

The strategy proposed in the original COWERAGE algorithm is to randomly sample elements from
each bucket. We also evaluate two other strategies: picking the first k examples within each bucket
and picking the last k ones, similar to strategies 1 and 2 except that now we are sampling within a
particular bucket. The results in Table 2 show that the random selection outperforms other strategies.
Additionally, we evaluate the impact of increasing the bucket size on the test WER in Appendix B.5.

Table 2: Test WER for different strategies of picking samples within each bucket for COWERAGE
algorithm on 0.7 pruning fraction and WER Selection Epoch 8.

COWERAGE + Top k COWERAGE + Bottom k COWERAGE + Random

WER 0.378± 0.002 0.401± 0.002 0.369± 0.004

B.2 Phoneme Recognition on TIMIT

We evaluate the subset selection methods on the task of phoneme recognition with wav2vec2-base
on TIMIT dataset and report the phoneme error rate (PER) on the test set (Table 3). COWERAGE
consistently demonstrates the lowest PER on all the pruning fractions above 0.2.

B.3 Training time for subsets

Practically, the choice of pruning fraction can be made according to the intended size of the final
dataset under the given time and memory constraints. We conduct an experiment to determine the
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Table 3: Phoneme recognition on the TIMIT dataset with wav2vec2-base. We report PER for
multiple pruning fractions and different strategies.

Strategy Pruning Fraction

0.1 0.3 0.5 0.7 0.9
Random 0.124 0.133 0.148 0.230 1.000
Top K 0.118 0.137 0.168 0.244 1.000

Bottom K 0.122 0.142 0.170 0.282 1.000
COWERAGE 0.120 0.133 0.145 0.211 1.000

total steps required for convergence and the real training time for wav2vec2 on TIMIT. The results
are shown in Table 4 (for a constant learning rate). We report the real training time for the pruned
datasets as a fraction of the training time for the complete dataset (x) for relative comparison. There
is a significant reduction in training time for higher pruning fractions.

Table 4: Steps required for convergence and training time for wav2vec2 on TIMIT for different
pruning fractions. We replicate the results of COWERAGE from Table 1 for relative comparison.

Pruning Fraction 0.9 0.7 0.5 0.3 0.1 0

Steps required for convergence 1050 1900 2400 2800 3170 3350

Training time 0.42× 0.62× 0.77× 0.85× 0.90× ×
Test WER (COWERAGE) 0.455 0.369 0.339 0.333 0.320 0.315

B.4 WER Selection Epoch

An important hyperparameter in the COWERAGE algorithm is the epoch at which the training WER
is computed for individual examples and then used for pruning i.e. the WER selection epoch. We
evaluate the effect of different selection epochs on the final test WER (Table 5) in TIMIT and observe
that the training WER in the early training epochs can be reliably used for ranking the examples and
applying a particular pruning strategy. Hence, we select WSE = 8 for the final results in Table 1. Note
that COWERAGE consistently demonstrates a lower WER than other strategies on all epochs that we
test (8, 12, 16, 20) for the majority of pruning fractions (0.2− 0.9) across all the datasets (TIMIT,
LS-10h, LJSpeech). This suggests that the selection of a reasonable WSE can usually be made with
less than five distinct epoch values while still achieving better results than the other strategies.

B.5 Selecting the number of buckets

We conduct an experiment with different bucket sizes on wav2vec2 and TIMIT with 0.7 pruning
fraction. The results are shown in Table 6. Our evaluation shows that increasing the bucket size
beyond a certain threshold provides diminishing returns in performance. Increasing the bucket size
from 50 to 100 yielded 4.8% reduction in WER whereas increasing it from 100 to 500 resulted in
only a 0.27% reduction in WER.

Choosing 500 buckets in the COWERAGE algorithm provided robust performance across a wide
range of dataset sizes, which ranged from 4620 examples in TIMIT to more than 10,000 examples
in LJSpeech. The number of buckets can be increased further but it should be no greater than
pruningFraction * datasetSize.

B.6 Transferability to larger models

To find out if the subsets created through a smaller model are transferable to a larger speech SSL
model, we conduct an experiment with wav2vec2-large (317M parameters; pre-trained on Lib-
rispeech 960h) and fine-tune it on the subsets constructed through wav2vec2-base. We observe
that COWERAGE subsets still outperform the rest of the pruning strategies, further validating the
hypothesis of transferability of pruning scores.
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Table 5: Test WER for the four strategies of pruning the training set evaluated at multiple pruning
fractions and different training WER selection epochs. The training WER in a particular selection
epoch is averaged over 10 runs and then used for a particular pruning strategy. For each result, we do
three independent runs and report the mean test WER. COWERAGE consistently demonstrates the
lowest WER at various pruning fractions and selection epochs. WSE: WER Selection Epoch.

WSE Strategy Pruning Fraction

No pruning 0.1 0.3 0.5 0.7 0.9
8 Random 0.315 0.325 0.341 0.357 0.394 0.557

Top K 0.315 0.322 0.334 0.392 0.472 0.678
Bottom K 0.315 0.336 0.360 0.411 0.521 0.887

COWERAGE 0.315 0.320 0.333 0.339 0.369 0.455
12 Random 0.315 0.325 0.341 0.357 0.394 0.557

Top K 0.315 0.316 0.345 0.386 0.461 0.579
Bottom K 0.315 0.323 0.353 0.398 0.499 0.781

COWERAGE 0.315 0.322 0.328 0.354 0.370 0.536
16 Random 0.315 0.325 0.341 0.357 0.394 0.557

Top K 0.315 0.324 0.332 0.413 0.467 0.704
Bottom K 0.315 0.323 0.346 0.382 0.468 0.657

COWERAGE 0.315 0.322 0.329 0.356 0.382 0.565
20 Random 0.315 0.324 0.340 0.357 0.401 0.557

Top K 0.315 0.328 0.370 0.422 0.518 0.709
Bottom K 0.315 0.321 0.352 0.389 0.457 0.587

COWERAGE 0.315 0.321 0.334 0.340 0.376 0.545

Table 6: Test WER for wav2vec2 on TIMIT for different number of buckets in the COWERAGE
algorithm

Number of Buckets 1 10 50 100 500 1000

Test WER 0.394 0.393 0.389 0.370 0.369 0.369

Table 7: Test WER for different for wav2vec2-large fine-tuned on subsets created through
wav2vec2-base.

Strategy Pruning Fraction

0.1 0.3 0.5 0.7 0.9
Random 0.300 0.308 0.322 0.356 0.545
Top K 0.295 0.297 0.345 0.385 0.634

Bottom K 0.306 0.326 0.391 0.505 0.833
COWERAGE 0.290 0.296 0.318 0.332 0.490
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Figure 3: The training WER and the phonemic cover of examples in TIMIT dataset (without pruning)
compared over multiple training epochs. The WER is computed by averaging the training scores of
the examples with the same phonemic cover. The training scores for each training example and a
particular epoch are computed by averaging over 10 runs.

B.7 Standard deviation for test WER on TIMIT

Table 8: The standard deviation for the test WER of wav2vec2 presented in Table. 5
WSE Strategy Pruning Fraction

0.1 0.3 0.5 0.7 0.9
TIMIT Random ±0.003 ±0.005 ±0.002 ±0.025 ±0.003

Top K ±0.001 ±0.007 ±0.010 ±0.001 ±0.002
Bottom K ±0.002 ±0.002 ±0.002 ±0.009 ±0.002

COWERAGE ±0.001 ±0.006 ±0.016 ±0.004 ±0.005

C Connection to Phonemes

To understand why COWERAGE performs better than other pruning strategies, it is important to
find out how does the phoneme distribution of training examples vary with the training error during
fine-tuning of the self-supervised speech recognition models. We now perform empirical analysis to
verify claim 2.1. For this analysis, we select the standard TIMIT dataset as it contains time-aligned,
hand-verified phonetic and word transcriptions for each training example.

We first record the training WER of each training example in the TIMIT dataset over 10 runs and
average it. Then, we compute the total number of unique phonemes in each example, which we call
the phonemic cover. Subsequently, we group together the training examples with same phonemic
cover and calculate the average training WER for each group (Fig. 3). In the earlier training
epochs, the examples with a relatively low (< 17) or a high (> 28) phonemic cover have a greater
WER (blue line in Fig. 3) as compared to the examples with a moderate number of phonemes
(17 ≤ phonemicCover ≤ 28). In the later epochs (≥ 12), the inverse relationship between the
training WER and the phonemic cover becomes more evident; the examples with a greater number of
distinct phonemes have a lower training WER and vice versa.

Significance. This relationship between the training WER and the phonemic cover has several
implications. Firstly, it demonstrates that there is a sizable population of sentences with a low
phonemic cover that are harder to learn and hence represent a high training WER. Similarly, there are
many low WER sentences with a high phonemic cover. More importantly, this experiment validates
our claim that ensuring the coverage of training WER values in a particular subset leads to the
inclusion of phonemically diverse training examples without explicitly learning any phoneme-level
error model. This is beneficial as accurate phonetic data is not available for the majority of 7000
spoken languages [3]. In contrast, any method that directly ensures phoneme diversity requires an
accurate phonetic transcription beforehand, which is a resource-intensive process requiring manual
labeling by linguists.
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To verify if the difference between the phoneme distributions of the examples within the COWERAGE
subset and the other two strategies (top k and bottom k) is statistically significant, we conduct the
Mann-Whitney U test, a non-parametric test, at a significance level of 0.01. We found that the
differences were statistically significant at the 1% level (p-value < 0.01). The results are shown in
Table 9.

Table 9: The statistical significance of the difference between the phoneme distribution of the
examples within the COWERAGE subset and the other two strategies (top k and bottom k). MWU:
Mann-Whitney U.

MWU p-value

Top k vs COWERAGE 2146027.5 < 0.001

Bottom k vs COWERAGE 2229653.0 < 0.001

C.1 Phonemic diversity and latent representation in speech SSL

How does phonemic diversity impact the discrete latent speech representations within self-supervised
speech recognition models? To answer this, we study the latent representation (qt) learned by
the quantizer within wav2vec2 for different phonemes. [2] analyze the conditional probability
P (phoneme | qt) for each of the 39 phonemes in the TIMIT train set by computing the co-occurence
between the phonemes and speech latents (see Appendix D of [2]). They demonstrate that different
discrete latents specialize in different phonetic sounds in wav2vec2 model. Building upon this, [16]
analyze the relationship between attention and phonemes in Transformer-based ASR models by
considering the attention map that extracts phonologically meaningful features. They observe that
the characteristic feature of phonetic localization is the higher attention weights assigned to similar
phonemes in the attention map (see Fig. 3 of [16]). Given these observations, we hypothesize that the
performance gains for COWERAGE are due to the greater phonemic diversity which enables a more
robust latent representation of each phoneme in wav2vec2. This view is supported by the results in
Table 1 which demonstrate bigger gains in test WER for higher pruning fractions in COWERAGE.
We conjecture that this is due to greater example diversity provided by COWERAGE and lack of
representation of examples from the tail WER range in the case of other approaches.

D Implementation Details

D.1 Resources

We use a single 80GB NVIDIA A100 GPU for running all the experiments on the cloud. In this
setting, the standard wav2vec2-base fine-tuning step (single run) on multiple pruning fractions took
≈ 1.25 GPU hours for the TIMIT dataset, ≈ 6 GPU hours for LJSpeech dataset, and ≈ 5.5 GPU
hours for Librispeech 10h dataset. The total project (from the early experiments to the final results)
consumed about 2200 GPU hours.

D.2 Code and Licenses

We release our code under the MIT license. All the data pruning strategies are implemented in
Python, and the resulting subsets are used to fine-tune wav2vec2. The publicly available Hug-
gingFace [20] implementation 1 of wav2vec2-base model2 is used which is based on the standard
wav2vec2-base-960h fairseq implementation3. The HuggingFace transformers repo is available
under the Apache License 2.0 license and the fairseq repo is available under the MIT license.

D.3 Data

TIMIT [5]. We use the full TIMIT dataset with predefined training and test sets. The training set
contains 4620 examples and the test set contains 1680 examples. TIMIT is available under the LDC

1https://github.com/huggingface/transformers
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md
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User Agreement for Non-Members.
Librispeech [13]. We construct Librispeech 10h fine-tuning split by selecting 10h of utterances
randomly from the 100h train-clean split. The test-clean split is used for evaluation. Librispeech is
available under the CC BY 4.0 license.
LJSpeech [7]. This dataset contains 24 hours of English speech from a single speaker. For validation
and testing, we randomly select 300 utterances, mirroring the protocol followed in earlier works [10].
The rest is used for training. LJSpeech is available under the public domain license.

D.4 Training

In all experiments, wav2vec2-base is fine-tuned with a batch size = 8, epochs = 20, mean ctc-
loss-reduction, weight decay 0.005, and FP16 training. We use a data collator to pad the inputs
dynamically. For calculating the WER for each training example, we run a computation step after
each epoch and record the WER. The training WER in each epoch is averaged over 10 runs and then
used for a particular pruning strategy. For each test WER reported, we do three separate runs with
independent model initialization. A bucket size of 500 is chosen for the COWERAGE strategy, which
is sufficiently small to ensure the selection of representative examples for different pruning fractions.
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