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Abstract

The softmax attention has emerged as a noteworthy development in the field of
Deep Learning, building on the successes of Transformer-based architectures.
Their ever increasing sizes need increasing computational memory, that limits
their usage. We propose QgV, a sigmoid gate that significantly boosts perfor-
mance without increasing architecture size. We also leverage Tensor Chains to
identify and prune the excess parameters. We find that such excess resides pri-
marily within the embedding layer, and not in the output linear layer. To further
improve performance and reduce parameters, we introduce H-SoftPOS, a hierar-
chical embedding layer. Remarkably, on the WMT14 English-German validation
set, our approach yields a threefold reduction in perplexity, surpassing the current
state-of-the-art, while reducing parameter counts also by a factor of 3. When we
further reduce the number of parameters up to sevenfold, we can still achieve a
21% decrease in perplexity with respect to the baseline Transformer. To test gen-
eralization capabilities, we conduct experiments on the 7 language pairs of the
WMT17 dataset. Our model, Anthe, outperforms existing techniques in terms of
test loss while simultaneously halving the number of parameters. Moreover, we
observe a 70 times reduction in variance with respect to the prior state-of-the-art.
We make the code publicly available1. In conclusion, our proposed method yields
significant improvements in performance at lower memory cost.

1 Introduction

The Transformer [1] has led to major breakthroughs in Artificial Intelligence on a wide range of
tasks, such as language modeling [2], translation [1], speech recognition [3], and protein folding
[4]. These architectures have become increasingly wider [2] and deeper [5], leading to a massive
increase in the number of parameters. ChatGPT-3 has 175 billion parameters [6, 2], surpassing
previous models by orders of magnitude. To address their computational demands, especially in
handling long sequences, researchers have proposed approximate attention mechanisms, such as
sparse-approximation [7, 8], low-rank approximation [9, 10, 11], their combination [12, 13, 14], and
I/O optimization techniques for additional speed-up [15]. However, it often seems that a reduction
in parameters leads to degraded performance [16].

In this article we propose a novel gating mechanism before the softmax attention that significantly
improves performance. Additionally, we show that removing weight-sharing between the output
projection and the embeddings can also improve performance, with a parameter increase of 43%.
To mitigate this increase in parameters without compromising accuracy, we introduce Hierarchical
Soft Part of Speech (H-SoftPOS) and Tensor Chain (TC). H-SoftPOS is based on the observation

1https://github.com/LuCeHe/anthe_official
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Figure 1: QgV, H-SoftPOS and TC. (a) QgV uses the Query tensor to gate the Value, before feeding
KQV to the attention. (b) Length two Tensor Chain (TC) with bond dimension b and external
dimensions Na = a1 · a2, Nc = c1 · c2. (c) H-SoftPOS starts with a smaller matrix embedding
(green) that is concatenated with hierarchical convolutions (blue) and their SoftPOS (red).

that language elements, such as sub-words, words or sentences, can have a limited set of context
dependent roles. Hence, we assign a learnable Part of Speech (SoftPOS) to each language element,
improving performance while decreasing the embedding parameter count. TC represents a matrix as
a tensor product contraction, drastically reducing the overall parameter count. Originally proposed in
physics to characterize the short-range entanglement in one-dimensional quantum systems [17, 18],
it has since found many other applications [19]. We name the resulting architecture the Anthe for
Gates, and TC and Hierarchical SoftPOS for Attention. Our contributions are:

• we introduce the QgV, a gate between Values and Keys in the attention, Sec. 2;
• we introduce H-SoftPOS to reduce embedding parameters without loss in performance by

accounting for the limited roles language elements can play in speech, Sec. 2.1;
• we introduce the TC to represent any matrix as a product of small tensors to drastically

reduce the amount of trainable parameters in Sec. 2.1;
• we report improvements of Anthe over Transformer first on English-German language

translation, and then on other seven language pairs in Sec. 3.

2 Improving performance through gating

Gating mechanisms have been widely used to avoid gradient explosion [20]. The LSTM, GRU,
Neural Turing Machine, Differentiable Neural Computer, and Mogrifier LSTM are well-known ex-
amples of models with gates [20, 21, 22, 23, 24]. In the Transformer architecture, Queries, Keys
and Values, are mapped linearly before the softmax attention. In this work we refer to the weights
{WQ,WK ,WV } as pre-attention, or patt. We propose a novel gating mechanism,

Vs = WV V σ(WQQ), Qs = Q, Ks = WKK,

Attention(Qs,Ks, Vs) = softmax
( QsK

T
s√

dmodel/dh

)
Vs

(1)

where σ is the sigmoid, dmodel the width and dh the heads in the attention. QgV does not change
parameter count and improved performance more than the alternative combinations, see Tab. 3.
In addition, we find that having independent weights for the embeddings and output projection
significantly improves performance. We also replace the feed-forward layer with GEGLU [25, 26,
27], as we observe a small but statistically significant improvement.
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2.1 Reducing the number of parameters without compromising accuracy

H-SoftPOS. Maintaining high performance with fewer parameters is especially important for huge
architectures like recent Transformer-based models. The idea behind Hierarchical Soft Part of
Speech (H-SoftPOS) is that sub-words play limited roles in a word (e.g. prefix, suffix, past tense of a
verb, etc.). Similarly, words play limited roles in a sentence (e.g. verb, noun, adjective, etc.), and so
on hierarchically. Since the role depends on the context, there is a soft aspect to consider. We start
with a small embedding demb and assign a learnable Part of Speech (SoftPOS) to each subword. We
use 1D convolutions to convert the sub-word embedding into word and sentence embeddings, and at
each level we assign a SoftPOS. Finally, we concatenate the initial small embedding with the con-
volutions and their SoftPOS, to have a full embedding representation. The matrix Wsp ∈ Rnsp×dsp

represents nsp POS roles, of size dsp. We repeat the process at lsp hierarchical levels. If S are the
input sequence integers, then

Embeddinghsp(dmodel)(S) = Concat
lsp⋃
l=1

{
Xl,SoftPOS(Xl)

}
X1 = Embedding(demb)(S)

Xl = Conv1D(kernel = 3, dilation = 2l, pad = causal)(Xl−1)

SoftPOS(Xl) =Wspsoftmax(Xl[:nsp])

(2)

where we use lsp = 2, dsp = ⌊dmodel/2lsp⌋ and demb = dmodel − (2lsp − 1)dsp. We use X[:nsp]
to denote the first nsp elements of the vector, resulting in an embedding of dmodel width, with four
times fewer parameters and same performance as the original version. The embedding X1 has a
matrix of size demb × nvocab and sums a non-learnable cosine positional encoding [1].

Tensor Chain. The Tensor Chain (TC) is a method to represent a linear map as a product and
contraction of smaller tensors [28, 29]. It is used in quantum many-body systems for a compact
representation of the exponential degrees of freedom in the system[30, 31]. In Deep Learning, [19]
replaced the linear layers with TCs in convolutional models without any loss of prediction accuracy.
A weight matrix WNa,Nc

of size RNa×Nc can be decomposed as

WNa,Nc
= Reshape

{
Trb

[
w

(1)
a1,b,c1

(
n−1∏
i=2

w
(i)
ai,b,b,ci

)
w

(n)
an,b,cn

]
, Na ×Nc

}
, (3)

where, Na =
∏n

i=1 ai, Nb =
∏n

i=1 bi, wabc, wabbc are the weight tensors, and n is the length
of the chain. The trace is taken over the index b, the bond. This internal index can vary between
consecutive tensors, but we chose it to be the same for simplicity. It can be implemented through
the einsum function. For illustration, a TC of length 3 is,

einsum
(
a1b1c1, a2b1b2c2, a3b2c3 → a1a2a3c1c2c3,

[
w

(1)
a1,b1,c1

, w
(2)
a2,b1,b2,c3

, w
(3)
a3,b2,c3

] )
. (4)

As we apply TC to different parts of the network, we use the notation TCwhere:r to indicate where TC
is used, to reduce the parameter count by a ratio r. We use emb, for embedding, ff for feed-forward or
GEGLU, patt for pre-attention linear layers, layer for patt and ff simultaneously, and output for the
last linear layer.The bond parameter is the solution to the equation b(a1c1+ancn)+b2

∑n−1
i=2 aibi =

rNaNc, for a given selection of parameters (ai, ci). The external dimensions ai and ci are chosen
to be close to the n-th root of Na and Nc. We implement TC during training, and use n = 2 unless
stated otherwise. If the parameter reduction has minimal effect on loss, then many of the parameters
in the original linear layer were of no functional importance.

3 Results

Here we report on our ablation study on the language translation task WMT14 English to German.
We trained for a maximum of two days on a single GPU and a batch size of 32, and early stopping
on the validation loss with a patience of 10 epochs. Our baseline Transformer has a dmodel = 512
width, N = 6 layers, dh = 8 heads, a dropout probability of pdropout = 0.1, and a width for
the feed-forward layer of dff = 4dmodel. We used the same tokenizer for all the languages, which
is a byte-pair encoding [32] with 32K sub-words, trained on the WikiText-103 dataset [33]. We
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used the Adam optimizer [34] with a constant learning rate lr = 3.16e−5 which was chosen after a
grid search for optimal performance of the baseline Transformer. To account for statistical fluctua-
tions, we report the mean and standard deviation over 4 random seeds. Notice that our Transformer
implementation results in 60M parameters because we used 32K sub-words, while the original 37K
sub-words for the English-German pair, results in 63M parameters, closer to the 65M reported in [1].
We introduce our innovations sequentially in Tab. 1, on the WMT14 DE/EN validation split. We use

params dev PPL

Anthe = B’ + QgV + H-SoftPOS + TCff :.005, patt:.07 30M 3.5674 ± 0.0130
B’ + QgV + H-SoftPOS + TCff :.1 46M 2.7690± 0.0048
B’ + QgV + H-SoftPOS 68M 1.2627 ± 0.0018
B’ + QgV + TCemb:.2 67M 1.4146 ± 0.0799
B’ + QgV 93M 1.2642± 0.0035
B’ = B + GEGLU 93M 2.5665± 0.0055
B = Transformer + no-shared embeddings 93M 2.5987± 0.0155
Transformer + shared embeddings 60M 3.8245± 0.0670
Transformer 512 [1] 65M 4.66
Transformer 1024 [1] 213M 4.33

Table 1: Anthe on the English-to-German translation development set WMT14. We use the
same hyper-parameters as [1], for dmodel = 512, and we report at the bottom their two best results
for dmodel = 512, 1024. Our QgV results in better performance, while H-SoftPOS slightly improves
performance while reducing the number of parameters. TC drastically reduces the number of pa-
rameters while retaining a better performance than the Transformer. The reduction of parameters
with respect to Transformer 1024 is sevenfold, while retaining an improvemed performance.

as a baseline B the Transformer without weight sharing, and B’ when we change the feed-forward
module by GEGLU in B. Removing shared weights improves performance with an increment of
33M parameters, a 43%. Instead, GEGLU and QgV improve performance without an increase in
parameters. In experiments not reported in the table, perplexity improves over the Transformer with
weight sharing from 3.8245 ± 0.0670 to 3.4310 ± 0.0179 with only the addition of the QgV. H-
SoftPOS improves minimally performance but improves significantly parameter count. Finally, TC
brings down the number of parameters below the original Transformer with better performance. We
note that drastic reductions in parameters through TC eventually degrade performance, and we only
report the best combinations. In App. A we study the impact of TC length, various gating alter-
natives, and search for excess parameters through TC. We find length 2 TC gives the best results,
QgV gating provides better scores than other options, and the embedding layer has a high number
of excess parameters while the output linear layer does not have any. In App. B we confirm these
improvements persist on 7 new language pairs from WMT17, with Anthe decresing perplexity by
two, with only half the parameters. Finally, in App. C we also confirm improvements in language
modeling tasks, e.g PTB [35] and WK2 [36], with respect to the baseline. Due to the non symmetric
connections between encoder and decoder in the language translation architecture, QgV is not equiv-
alent to KgV, but in the decoder only architecture in this appendix, we verify they are equivalent.

4 Discussion and Conclusion

Introducing QgV, a sigmoid gating mechanism, as well as H-SoftPOS, a hierarchical embedding
layer, and TC, tensor chain representation, we reduced the parameter count required while enhancing
performance over the Transformer as we showed experimentally on WMT14 and WMT17, and for
language modeling on PTB and WK2 datasets. We call Anthe the resulting architecture. We found
that an excess of parameters existed through the use of H-SoftPOS and TC. In fact, the embedding
layer can be significantly pruned without major losses in performance, while the output linear layer
needs all its parameters. We also see that the feed-forward layer can be pruned more than the pre-
attention linear maps. Surprisingly, our Anthe has more than half of all its parameters in the linear
readout layer. In light of these findings, we believe that our approach holds great promise for further
advancing the field of Artificial Intelligence research in language tasks.

4



5 Acknowledgements

We thank Professor Jean Rouat, for feedback on the manuscript, and Digital Research Alliance of
Canada and Compute Canada for the High Performance Computing hardware used for some of the
experiments. Part of this research also used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008,
2017.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[3] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision. arXiv preprint
arXiv:2212.04356, 2022.

[4] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al.
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Supplementary Material

A Further analysis

The performance suffers the most when TC is applied to the output linear map, while performance
suffers the least when TC is applied to the embedding, see Tab. 4. This suggests that the embedding
has excess parameters that can be pruned, while the output map might be more important than
often assumed. Additionally QgV outperforms every other combination of gating mechanisms as
explained in the results section, see Tab. 3 for the results. We also explore different TC lengths in
Tab. 2, and a length of 2 gives the best results. Finally, completely removing pre-attention improves
performance while the removal of ff degrades it, see Tab. 5. However, one can aggressively apply
TC to ff without negative effects, see Tab. 1.

TC length params dev PPL

2 33M 3.5592± 0.0096
4 29M 3.7582± 0.1157
3 33M 3.9060± 0.0137

Table 2: TCs. The Anthe variant that we use
in this study is B’ + QgV + H-SoftPOS +
TClayer:.1. The length of the TC has an im-
pact on performance, the shortest being the
best.

gate dev PPL

B’ + QgV 1.2642 ± 0.0035
B’ + VgQ 1.2771± 0.0012
B’ + KgV 2.5341± 0.0058
B’ 2.5665± 0.0055
B’ + VgK 2.6079± 0.0066
B’ + QgK 2.6113± 0.0091
B’ + KgQ 2.6315± 0.0093

Table 3: Gatings: QgV outperforms all the
other combinations of gating mechanisms.

TC params dev PPL

B’ + QgV 93M 1.2642± 0.0035
B’ + QgV + TCemb:.8 86M 1.3787± 0.0048
B’ + QgV + TCemb:.2 67M 1.4146± 0.0799
B’ + QgV + TClayer:.2 61M 4.4466± 0.0134
B’ + QgV + TClayer:.8 85M 4.5861± 0.0157
B’ + QgV + TCoutput:.2 80M 6.8445± 0.0985
B’ + QgV + TCoutput:.8 89M 9.7301± 0.1794

Table 4: Finding the excess parameters.
Parameters in the linear output layer seem
to be much more important, since when re-
duced by 20% and 80%, it results in the
strongest decrease in performance. However,
decreasing the number of learnable parame-
ters in the embedding has less of an impact
on the performance.

gate params dev PPL

Anthe + no patt 29M 3.2351 ± 0.0186
Anthe 30M 3.5674± 0.0130
Anthe + no patt + no ff 29M 4.3444± 0.0359
Anthe + no ff 30M 4.9069± 0.0266

Table 5: Removing or TC? Removing completely the pre-attention linear layers improves perfor-
mance with respect to using TC on them, while removing the linear layers in the GEGLU worsens
performance with respect to TC.
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B Multiple language translation pairs

We consider the 7 WMT17 language pairs in Tab. 6. Both RU/EN and ZH/EN pairs exceed 9G in
size, so we limit them to 9G to make better use of our limited resources. We compare Transformer to
Anthe with and without TC. Remarkably the small Anthe outperforms the Transformer in all pairs,
with only half its parameters, and reduces the results variance up to 70 times. Also, removing patt
from Anthe causes a small improvement, apart from the LV/EN and TR/EN language pairs.

CS/EN DE/EN FI/EN
dataset size 1.6G 8.1G 3.9G

params test PPL test PPL test PPL

Anthe + no patt 29M 4.6167 ± 0.6501 3.7891 ± 0.0444 4.2269 ± 0.1164
Anthe 30M 4.5259 ± 0.5028 3.9822± 0.0131 4.1558 ± 0.0202
AnthenoTC 68M 5.1874± 1.1889 5.3560± 0.0480 5.8806± 0.1741
Transformer 60M 11.1995± 4.4999 6.2168± 0.5581 6.8927± 1.4090

LV/EN RU/EN TR/EN ZH/EN
4.3G 9G 306M 9G

params test PPL test PPL test PPL test PPL

Anthe + no patt 29M 9.4998± 0.6706 4.2085 ± 0.1171 4.1760± 0.0125 6.3080 ± 0.2609
Anthe 30M 8.8340 ± 0.1074 4.2563 ± 0.0838 4.1473 ± 0.0046 6.4599 ± 0.0456
AnthenoTC 68M 8.2546 ± 0.1130 6.6637± 0.1169 4.1697± 0.0190 9.5552± 0.3533
Transformer 60M 10.9181± 1.9593 8.2324± 0.1390 5.4590± 0.0262 15.3343± 0.8857

Table 6: Different Languages. Test perplexity on the WMT17 pairs. The Anthe outperforms the
Transformer in all the language pairs with half the parameters, and improvements in perplexity up
to a factor of two, e.g. CS/EN. Removing the pre-attention linear maps remains on par with Anthe.

C Laguage modeling

Results for PTB and WK2 datasets, trained for 100 epochs with batch size 8 on a single GPU, and
4 different seeds. Given the architecture size and simple training procedure, there is no expectation
of outperforming GPT-3 and Sparse-GPT [37]; both of which have more than 80 billion paramters,
see Tab. 7. With respect to the transformer baseline, small GPT-2, trained in the same fashion, there
is significant improvement. Both KgV and QgV achieve the same performance within one standard
deviation.

dataset PTB WK2
Model params test PPL test PPL

GPT-2/Anthe (KgV) 66.3M 66.89± 0.46 263.27± 3.99
GPT-2/Anthe (QgV) 66.3M 66.94± 0.37 262.10± 2.35
GPT-2 124.4M 105.71± 4.87 1740.82± 274.11
GPT-3 175B 20.5±− −
Sparse-GPT (50% sparsity) 87.5B − 8.21±−

Table 7: Language Modeling.
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