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Abstract

Prompt tuning (PT), where a small amount of trainable soft (continuous) prompt
vectors is affixed to the input of language models (LM), has shown promising
results across various tasks and models for parameter-efficient fine-tuning (PEFT).
PT stands out from other PEFT approaches because it maintains competitive
performance with fewer trainable parameters and does not drastically scale up its
parameters as the model size expands. However, PT introduces additional soft
prompt tokens, leading to longer input sequences, which significantly impacts
training/inference time and memory usage due to the Transformer’s quadratic
complexity. Particularly concerning for Large Language Models (LLMs) that face
heavy daily querying. To address this issue, we propose Decomposed Prompt
Tuning (DEPT), which decomposes the soft prompt into a shorter soft prompt
and a pair of low-rank matrices that are then optimised with two different learning
rates. This allows DEPT to achieve better performance while saving over 20%
memory and time costs compared to vanilla PT and its variants, without changing
trainable parameter sizes. Through extensive experiments on 21 natural language
processing (NLP), we demonstrate that DEPT outperforms state-of-the-art PEFT
approaches, including the full fine-tuning baseline in some scenarios. Additionally,
we empirically show that DEPT grows more efficient as the model size increases.
Code is available at https://github.com/ZhengxiangShi/DePT.

1 Introduction

Prompt Tuning (PT) [21] has emerged as a promising parameter-efficient fine-tuning (PEFT) ap-
proach, which appends trainable continuous prompt vectors to the input. PT stands out from other
PEFT approaches as it maintains competitive performance with fewer trainable parameters and does
not drastically scale up its trainable parameters as the model size expands. While PT has shown
promising results across various tasks and models, it has two major limitations: (1) PT often suffers
from slow convergence and is sensitive to the initialization [21, 45, 48]; and (2) PT extends the total
length of the input sequence, consequently exacerbating the computation demand (i.e., train/inference
time and memory cost), due to the quadratic complexity of the Transformer [44]. This is further
accentuated given the slow convergence issue. Recent studies [40, 45, 23] have proposed the variants
of the vanilla PT to tackle the first issue by initially pre-training soft prompts on a variety of source
tasks, which is known as Parameter-Efficient Transfer Learning (PETL). Some studies [1, 48] also
improve the performance of the PT by jointly training learned prompts from these source tasks on
multiple target tasks (referred to as Multi-task Learning). However, the issue of increased compu-
tational load due to the extension of sequence length remains largely unaddressed. While PETL
approaches can reduce the training steps for model convergence, each optimization step remains
computationally expensive in terms of time and memory. Most importantly, it does not enhance the
efficiency during the inference, which is particularly crucial in the era of Large Language Models
(LLMs), considering that the trained models may be queried millions of times per day.
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In this work, we propose Decomposed Prompt Tuning (DEPT), which decomposes a trainable
soft prompt into a shorter soft prompt and a couple of low-rank matrices, where the multiplication
of low-rank matrices is then added element-wise to frozen word embeddings. This shorter soft
prompt and the updated word embedding matrix are then optimised using two different learning rates.
Experimental results on 21 NLP tasks demonstrate DEPT outperforms the state-of-the-art PEFT
approaches, including the full fine-tuning baseline in certain scenarios (§3.1). Our study empirically
shows that DEPT largely improves the training efficiency across various model architectures and
sizes, saving more than 20% in both training time and memory costs compared to the vanilla PT.
Importantly, DEPT becomes increasingly efficient as the model size grows, making it particularly
advantageous and suitable for LLMs (§3.2).

2 Method
The decomposition of the soft prompt. Our approach differs from the vanilla PT [21] in the
aspect of inputs. We decompose a trainable prompt matrix P ∈ Rl×d from the vanilla PT into
two components: (1) a shorter trainable prompt matrix P s ∈ Rm×d; and (2) a pair of low-rank
matrices, A ∈ Rs×r and B ∈ Rr×d, where typically the rank of the matrices r ≪ min(s, d). The
first component, the smaller trainable prompt matrix, is appended to the word embedding matrix in a
similar manner as in the vanilla PT. The second component uses the multiplication of two low-rank
matrices to represent the update of the word embedding through a coordinate-wise sum:

W
′

i = Wi +∆Wi = Wi +BA ∈ Rs×d, (1)

where Wi is frozen and does not receive gradient updates during the training, whereas A and B
are trainable. Following [15], we use a random Gaussian initialization for A and zero for B, so
∆W = BA is zero when the training starts. The loss function is then optimised as follows:

LDEPT = −
∑
i

logP (yi | [P s,W
′

i ] ; Θ) (2)

In our experiment, we choose the values of m and r to satisfy the equation l×d = m×d+(s+d)×r
for maintaining the exact size of trainable parameters as in the vanilla PT. Consequently, m is always
less than l when r > 0. This design improves memory efficiency and reduces computational expense
compared to the vanilla PT, as the shorter input sequence length (i.e., m+ s < l + s) substantially
reduces computation due to the quadratic complexity of the Transformer [44].

Two rates of learning. Our strategy also differs from the vanilla PT method in the aspect of training.
We train the shorter trainable prompt matrix, P s, with the learning rate α1 and the pair of low-rank
matrices, A and B, with the learning rate α2, rather than applying a single learning rate as in the
vanilla PT. The α1 is typically much larger than the α2.

3 Experiments and Results

In this section, we evaluate our proposed method DEPT across 21 NLP (see §3.1) and then assess
the train/inference time and memory cost (see §3.2). Please see experimental setup in Appendix §B.

3.1 Main Results

This section shows the empirical evidence supporting the effectiveness of our proposed method
DEPT. Our experimental results reveal two key findings: (1) DEPT consistently outperforms the
vanilla PT and its PETL variants; and (2) DEPT achieves competitive or even better performance
than state-of-the-art PEFT approaches while using fewer trainable parameters. Below we delve
deeper with respect to various tasks.

#1. Performance on GLUE and SuperGLUE benchmarks. As shown in Table 3, our experi-
mental result indicates that DEPT outperforms state-of-the-art PEFT approaches, such as Adapter,
LoRA and LST on the GLUE and SuperGLUE benchmarks, while using fewer trainable parameters.
Remarkably, DEPT also outperforms the full fine-tuning baseline on both benchmarks. In addition,
DEPT outperforms vanilla PT and its variants that introduce additional transfer learning and multi-
task learning. For example, DEPT surpasses MPT with 0.1% on the GLUE benchmark and 0.4% on
the SuperGLUE benchmark, without utilizing additional transfer learning or multi-task learning.
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Table 1: Test results on GLUE and SuperGLUE benchmarks, with the corresponding size of trainable
parameters. All of the results are based on T5-BASE models. We use Pearson correlation for STS-B,
F1 for MultiRC (Multi), and accuracy for other tasks as evaluation metrics.

Method #Para GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Mean Multi Bool WiC WSC CB Mean

Single-Task Learning

Fine-tuning1 220M 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.9 72.8 81.1 70.2 59.6 85.7 73.9
Adapter1 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.5 75.9 82.5 67.1 67.3 85.7 75.7
AdapterDrop1 1.1M 86.3 90.2 93.2 93.6 91.4 86.3 71.2 62.7 84.4 72.9 82.3 68.3 67.3 85.7 75.3
BitFit1 280k 85.3 90.1 93.0 94.2 90.9 86.8 67.6 58.2 83.3 74.5 79.6 70.0 59.6 78.6 72.5
LoRA2 3.8M 86.3 89.0 93.2 94.3 90.9 90.1 75.5 63.3 85.3 – – – – – –
LST2 3.8M 85.6 88.8 93.3 94.1 90.7 90.4 71.9 58.1 84.1 – – – – – –
PT4 76.8k 83.4 90.2 93.1 91.9 90.2 90.1 78.8 60.7 84.8 65.7 63.7 50.8 51.9 67.9 60.0
DEPT (ours) 76.8k 85.0 90.4 93.2 94.2 90.8 90.7 79.1 63.8 85.9 74.3 79.3 68.7 67.3 92.9 76.5

Multi-task Learning

Fine-tuning(m)1 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8 – – – – – –
Adapter(m)1 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4 – – – – – –
HyperFormer(m)1 638k 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8 – – – – – –
HyperDecoder(m)1 1.8M 86.0 90.5 93.4 94.0 90.5 87.7 71.7 55.9 83.7 – – – – – –

Single-Task Training + Transfer Learning

SPoT1 76.8k 85.4 90.1 93.0 93.4 90.0 79.7 69.8 57.1 82.3 74.0 77.2 67.0 50.0 46.4 62.9
ATTEMPT1 232k 84.3 90.3 93.0 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
MPT3 77.6k 85.9 90.3 93.1 93.8 90.4 89.1 79.4 62.4 85.6 74.8 79.6 69.0 67.3 79.8 74.1

Multi-task Learning + Transfer Learning

ATTEMPT(m)3 96k∗ 83.8 90.0 93.1 93.7 90.8 86.1 79.9 64.3 85.2 74.4 78.5 66.5 69.2 82.1 74.1
MPT(m)3 10.5k∗ 84.3 90.0 93.0 93.3 90.4 89.2 82.7 63.5 85.8 74.8 79.2 70.2 67.3 89.3 76.1
1 from [1]. 2 from [41]. 3 from [48]. 4 we reproduce and substantially increase the performance of the vanilla PT reported in the
prior work [1]. ∗ These values are obtained after amortizing over 8 tasks, and the minimal number of parameters to perform a
single task remains 232k and 77.6k for ATTEMPT and MPT. (m)represents additional multi-task training.

Table 2: Test results on MRQA 2019 Shared Task and other datasets using the T5-BASE model.
We report the F1 for MRQA tasks and accuracy for other datasets across three seeds, with standard
deviations in subscripts. All baseline results are directly quoted from [48].

Method #Para MRQA Others
NQ HP SQA News Mean WG Yelp SciTail PAWS Mean

Fine Tuning 220M 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
Adapters 1.9M 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
BitFit 280K 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7
PT 76.8K 67.9 72.9 75.7 61.1 69.4 49.6 95.1 87.9 55.8 72.1
SPoT 76.8K 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0
ATTEMPT 232K 70.4 75.2 77.3 62.8 71.4 57.6 96.7 93.1 92.1 84.9
MPT 77.6K 72.00.1 75.80.1 77.20.1 63.70.1 72.2 56.50.9 96.40.0 95.50.1 93.50.1 85.5
DEPT (ours) 76.8K 73.20.1 76.80.3 77.60.2 64.40.1 73.0 59.00.2 96.80.1 95.60.2 93.70.1 86.3

#2. Performance on MRQA 2019 Shared Task and other NLP datasets. Table 2 presents the
performance of various PEFT approaches, including DEPT, on the MRQA 2019 Shared Task and
four other datasets. We observe that DEPT improves the average performance of the vanilla PT
by a substantial margin of +3.6% on MRQA and +14.2% on the other datasets. DEPT exceeds the
performance of the PT variants that leverage additional transfer and multi-task learning, without
introducing extra trainable parameters to the vanilla PT or relying on any PETL approaches. While
DEPT improves over the vanilla PT and its variants are promising, there remains a disparity in
performance when compared to the full fine-tuning baseline.

3.2 Time and Memory Efficiency

This section shows the empirical evidence supporting the efficiency of our proposed method DEPT,
spanning over diverse model architectures of varying scales on the GLUE benchmark. To ensure a
fair comparison, we consistently keep the number of trainable parameters in DEPT the same as that
in the vanilla PT (l = 100). As a result, once we choose the length of the soft prompt m in DEPT,
the rank of the low-rank matrices r becomes deterministic. Below we elaborate on two key findings.
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Figure 1: Performance on the GLUE benchmark for different soft prompt lengths m in DEPT,
associated with corresponding relative train time and memory cost. The time and memory are
averaged over different model sizes using batch size as 16. DEPT consistently uses the same number
of trainable parameters as the vanilla PT (m=100).
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Figure 2: Average inference speed on GLUE benchmark using varying soft prompt length m and the
rank of low-rank matrices r, keeping the total number of trainable parameters constant. Small texts in
blue indicate the speed relative to the vanilla PT (represented by brown) (m=100).

# 1. DEPT improves time and memory efficiency up to more than 20%. Figure 1 presents
the mean performance of DEPT, associated with average training time and memory, on the GLUE
benchmarks, against different lengths of soft prompt m. The average training time and memory
costs are computed across 8 tasks on the GLUE benchmark and three different model sizes. The
study reveals that decomposing the soft prompt (l = 100) into a small soft prompt and low-rank
matrics delivers comparable or even better performance while substantially enhancing the efficiency
of training and reducing memory utilization. Specifically, using a soft prompt length of 20 in DEPT
with the T5 model leads to a better average performance on the GLUE benchmark to vanilla PT,
while improving the efficiency of training and reducing memory utilization by approximately 25%.
This observation is also applicable when the GPT model is used as the backbone model.

# 2. DEPT grows more efficient as the model size increases. Figure 2 represents the inference
speed, measured by the average number of samples evaluated per second on the GLUE benchmark
using a single RTX 3090 GPU. The inference time is computed using the Huggingface Trainer Class.
We observe that the relative improvement in the number of inference samples per second over vanilla
PT grows as the model size increases. For example, when using the T5-SMALL model, the vanilla
PT evaluates 167.3 samples per second, while DEPT (m = 20) evaluates 178.3 samples per second,
resulting in a 6.5% boost in inference speed. In contrast, when the T5-LARGE is utilized, the vanilla
PT evaluates 21.0 samples per second and DEPT (m = 20) evaluates 24.8 samples per second,
resulting in an 18.1% increase in inference speed, a substantial rise from the previous 6.5%. This
indicates that DEPT is particularly beneficial and more applicable in the context of LLMs.

4 Conclusion

In this work, we propose Decomposed Prompt Tuning (DEPT), which substantially improves the
efficiency of the vanilla PT (up to over 20%) in terms of time and memory while delivering competitive
or even superior performance compared to the state-of-the-art PEFT methods. Remarkably, DEPT
efficiency amplifies with increasing model sizes, making it exceptionally apt for LLMs.
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Appendix Overview

The appendix is structured as follows:

Appendix §A discusses the related works.

Appendix §B describes the experimental setup.

Appendix §C provides a visualization of the model performance against the number of trainable
parameters on the GLUE and SuperGLUE benchmarks.

Appendix §D provides a brief description of all datasets used in this work.

Appendix §E provides implementation details and hyperparameters for all comparison methods
used in our experiments.

A Related Works

Parameter-efficient Fine-tuning. In contrast to standard fine-tuning and prompt-based fine-tuning
[6, 35, 36] where full parameters are updated, parameter-efficient fine-tuning (PEFT) approaches
have demonstrated remarkable performance across a wide range of tasks [47, 37] while updating
only a limited number of parameters. Adapters [14], along with its variants, HyperFormer [17] and
Compacter [28], add new trainable modules (adapters) to each transformer block of the T5 model
[31]. BitFit [2] limits updates only to the bias parameters, while this method tends to underperform on
larger networks [25]. Prefix-tuning [24] adds a soft prompt, parameterized by a feed-forward network,
to the model input. Diff pruning [12] learns a sparse update of a neural network’s weights at the cost of
more memory usage. FishMask [42] also performs sparse updates, but it is computationally intensive
and inefficient on contemporary deep learning hardware [25]. LoRA [15] employs a straightforward
low-rank matrix decomposition to parameterise the weight update. (IA)3 [26] scales activations by
learned vectors for few-shot learning. LST [41] operates a small transformer network on the side of
the pre-trained network, aiming to decrease the training memory. Prompt Tuning (PT) [21] appends
a trainable soft prompt to the model input embeddings. In comparison to the above-mentioned
PEFT approaches, PT uses fewer trainable parameters, which do not proliferate as the model size
expands. [29] introduces a method that combines Prefix-tuning, Adapters, and LoRA through a gating
mechanism. DEPT is also applicable to this method and can be easily integrated with other PEFT
approaches.

Transfer Learning for PT. Several recent works aim to enhance the performance of PT through
parameter-efficient transfer learning (PETL). PPT [11] strives to improve the performance of PT
[21] by further pre-training [13, 38], which necessitates a set of hand-crafted, task-specific designs
and considerable computational cost. [40] improves PT via prompt transfer across different tasks
and models. SPoT [45] adopts a single prompt, chosen based on a similarity measure at the cost
of a massive search. ATTEMPT [1] employs an attention mechanism over the source prompts to
initialize the prompt for target tasks at the cost of extra parameters. MPT [48] applies a shared
soft prompt across different tasks, while its effectiveness for a broad range of source tasks remains
untested - it is debatable whether a diverse range of tasks can utilise a single prompt to share all
knowledge effectively. Previous works [1, 48] might have overemphasized the importance of transfer
learning and multi-task learning in boosting model performance when extensive labelled datasets
are accessible. It is worth noting that the primary benefit of PETL for PT is in accelerating training
convergence and improving the model performance, particularly in the context of few-shot learning
[11].

B Experimental Setup

Datasets and tasks. We evaluate our proposed method DEPT on 21 NLP tasks. For NLP tasks,
we follow the previous works [45, 41, 1, 48] and use various datasets sourced from: (1) GLUE
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Table 3: Test results on GLUE and SuperGLUE benchmarks, with the corresponding size of trainable
parameters. All of the results are based on T5-BASE models. We use Pearson correlation for STS-B,
F1 for MultiRC (Multi), and accuracy for other tasks as evaluation metrics.

Method #Para GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Mean Multi Bool WiC WSC CB Mean

Single-Task Learning

Fine-tuning1 220M 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.9 72.8 81.1 70.2 59.6 85.7 73.9
Adapter1 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.5 75.9 82.5 67.1 67.3 85.7 75.7
AdapterDrop1 1.1M 86.3 90.2 93.2 93.6 91.4 86.3 71.2 62.7 84.4 72.9 82.3 68.3 67.3 85.7 75.3
BitFit1 280k 85.3 90.1 93.0 94.2 90.9 86.8 67.6 58.2 83.3 74.5 79.6 70.0 59.6 78.6 72.5
LoRA2 3.8M 86.3 89.0 93.2 94.3 90.9 90.1 75.5 63.3 85.3 – – – – – –
LST2 3.8M 85.6 88.8 93.3 94.1 90.7 90.4 71.9 58.1 84.1 – – – – – –
PT4 76.8k 83.4 90.2 93.1 91.9 90.2 90.1 78.8 60.7 84.8 65.7 63.7 50.8 51.9 67.9 60.0
DEPT (ours) 76.8k 85.0 90.4 93.2 94.2 90.8 90.7 79.1 63.8 85.9 74.3 79.3 68.7 67.3 92.9 76.5

Multi-task Learning

Fine-tuning(m)1 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8 – – – – – –
Adapter(m)1 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4 – – – – – –
HyperFormer(m)1 638k 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8 – – – – – –
HyperDecoder(m)1 1.8M 86.0 90.5 93.4 94.0 90.5 87.7 71.7 55.9 83.7 – – – – – –

Single-Task Training + Transfer Learning

SPoT1 76.8k 85.4 90.1 93.0 93.4 90.0 79.7 69.8 57.1 82.3 74.0 77.2 67.0 50.0 46.4 62.9
ATTEMPT1 232k 84.3 90.3 93.0 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
MPT3 77.6k 85.9 90.3 93.1 93.8 90.4 89.1 79.4 62.4 85.6 74.8 79.6 69.0 67.3 79.8 74.1

Multi-task Learning + Transfer Learning

ATTEMPT(m)3 96k∗ 83.8 90.0 93.1 93.7 90.8 86.1 79.9 64.3 85.2 74.4 78.5 66.5 69.2 82.1 74.1
MPT(m)3 10.5k∗ 84.3 90.0 93.0 93.3 90.4 89.2 82.7 63.5 85.8 74.8 79.2 70.2 67.3 89.3 76.1
1 from [1]. 2 from [41]. 3 from [48]. 4 we reproduce and substantially increase the performance of the vanilla PT reported in the
prior work [1]. ∗ These values are obtained after amortizing over 8 tasks, and the minimal number of parameters to perform a
single task remains 232k and 77.6k for ATTEMPT and MPT. (m)represents additional multi-task training.

[47] benchmark, including MNLI [50], QQP1, QNLI [32], SST-2 [39], STS-B [3], MRPC [7], RTE
[10] and CoLA [49]; (2) SuperGLUE benchmark [46], including MultiRC [18], BoolQ [4], WiC
[30], WSC [22], and CB [5]; (3) MRQA 2019 Shared Task [9], including Natural Questions [20],
HotpotQA [51], SearchQA [8] and NewsQA [43]; (4) other datasets, including WinoGrande [34],
Yelp-2 [52], SciTail [19] and PAWS-Wiki [53].

Baselines. We compare DEPT with a variety of baselines: (1) fine-tuning (FT), where all the
model parameters are tuned during adaptation on each downstream task; (2) the vanilla PT [21],
where target prompt vectors are initialized by randomly sampled top vocabularies, and its variants
using additional transfer and multi-task learning, including SPoT [45], ATTEMPT [1], and MPT
[48]; (3) state-of-the-art PEFT approaches including Adapters [14], AdapterDrop [33], BitFit [2],
HyperFomer [17], HyperDecoder [16], P-tuning [27], LoRA [15], LST [41], and their multi-task
learning variants. For a fair comparison, we directly quote performance metrics from published
papers [28, 17, 1, 48, 41] for a fair comparison, where all these baselines using the T5-BASE as the
backbone and adhere to the train, validation and test splits used by [17, 28] for NLP tasks.

Implementation details. In our study, we mainly experiment using the T5-BASE model with 220M
parameters [31]. We consistently set the number of virtual tokens l as 100 across all tasks for the
vanilla PT and adjust the hyper-parameters of DEPT accordingly to maintain the equivalent number
of trainable parameters. For instance, the vanilla PT contains l × d trainable parameters where the
hidden size d is 768 for the T5-BASE, and DEPT can configure the number of virtual tokens m as 40
and the rank of low matrices r as 45, resulting in m× d+ (s+ d)× r trainable parameters. This
yields a total of 76, 800 trainable parameters, aligning with the vanilla PT.

We also extend our evaluation to include T5-SMALL (60M), T5-LARGE (770M), GPT2-SMALL

(110M), GPT2-MEDIUM (345M), and GPT2-LARGE (774M) models.

1https://www.quora.com/q/quoradata/
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C Model performance against the parameter-efficiency

We visualize the experimental results in Table 3, as shown in Figure 3. The visualization shows that
our proposed method DEPT outperforms other PEFT approaches and full fine-tuning baselines on
the GLUE and SuperGLUE benchmark (y-axis) while updating only a small number of trainable
parameters (x-axis).
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Figure 3: The average performance against the number of trainable parameters on the GLUE and
SuperGLUE benchmark using the T5-BASE model.

D Dataset

In this work, we use 23 popular datasets from previous few-shot learning and PEFT research. We
limit the maximum training data number of Yelp-2 to 100k samples. We train MNLI with longer
steps, 200k steps in total. For the GLUE dataset, we use the HuggingFace dataset2. For the Super
GLUE dataset, we use the HuggingFace dataset3. For MRQA 2019 Shared Task and other datasets,
we use the HuggingFace dataset4.

E Implementation Details

Our code is implemented using Pytorch5, Huggingface Transformers6, and Huggingface PEFT7.
Below, we provide a comprehensive list of the hyperparameters used in our code. For prompt tuning
and DEPT, as shown in Table 5, we conduct a grid search for learning rates. For the soft prompt, we
search the learning rate within the set {3e-1, 4e-1, 5e-1}. For the low-rank matrice pairs, we search
the learning rate within the set {1e-04, 5e-4, 1e-03}. We choose a batch size of 16. We typically use
the max sequence length as 256 except the SuperGLUE-MultiRC where the max sequence length
is set as 348. In each trial, we train the model for 30,000 steps, evaluate performance every 1,000
steps, and select the best checkpoint based on optimal performance on the evaluation set. For the
large dataset with more than 100,000 training example, we follow the prior work [45] to train the
vanilla PT and our proposed method DEPT with up to 300,000 steps. Training more steps is helpful
for improving the performance of the vanilla PT for the large dataset. The best performance is

2https://huggingface.co/datasets/glue
3https://huggingface.co/datasets/super_glue
4https://huggingface.co/lucadiliello
5https://pytorch.org/
6https://github.com/huggingface/transformers
7https://github.com/huggingface/peft
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GLUE Benchmark

Dataset Source Target #Train #Valid #Test Type
MNLI 31.8 1.0 392,702 9,832 9,815 NLI
QQP 24.1 1.0 362,846 1,000 40,431 Paraphrase
QNLI 38.4 1.0 103,743 1,000 5,463 NLI
SST-2 10.4 1.0 66,349 1,000 872 Sentiment
STS-B 21.9 1.0 5,749 750 750 Sent. Similarity
MRPC 45.9 1.0 3,668 204 204 Paraphrase
RTE 54.4 1.0 2,490 138 139 NLI
CoLA 8.7 1.0 8,551 521 522 Acceptability

SuperGLUE Benchmark

Dataset Source Target #Train #Valid #Test Type
MultiRC 286.1 1.0 27,243 2,424 2,424 Question Answering
BoolQ 108.3 1.0 9,427 1,635 1,635 Question Answering
WiC 18.4 1.0 5,428 319 319 Word Sense Disambiguation
WSC 28.1 1.0 554 52 52 Common Sense Reasoning
CB 64.6 1.0 250 28 28 NLI
ReCoRD 210.7 1.5 137,484 1,370 15,176 Common Sense Reasoning

MRQA 2019 Shared Task

Dataset Source Target #Train #Valid #Test Type
NaturalQuestions 242.7 4.5 103,071 1,000 12836 Question Answering
HotpotQA 225.7 2.6 71,928 1,000 5,901 Question Answering
SearchQA 942.8 2.0 116,384 1,000 16,980 Question Answering
NewsQA 615.5 5.1 73,160 1,000 4,212 Question Answering

Other Datasets

Dataset Source Target #Train #Valid #Test Type
WinoGrande 23.8 1.0 39,398 1,000 1,267 Common Sense Reasoning
YelpPolarity 134.0 1.0 100,000 1,000 38,000 Sentiment
SciTail 30.8 1.0 23,596 652 652 NLI
PAWS 44.7 1.0 4,9401 8,000 8,000 Sent. Similarity

Table 4: The datasets evaluated in this work. Source indicates the average length of the source
sentences in the training set. Target indicates the average length of the target sentences in the training
set. STS-B is a real-valued regression task over the interval [0, 5]). Note that we only sample examples
from the original training set in our few-shot experiments.

determined by the relevant evaluation metric. We train the T5 model from the original checkpoint
rather than the LM-adapted 1.1 version [21].
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Hyperparameter Assignment

number of steps 30,000 steps (evaluate every 1,000 steps)

batch size 16

maximum learning rate (α1) 3e-1, 4e-1, 5e-1

maximum learning rate (α2) 1e-04, 5e-4, 1e-03

length of the soft prompt (m) 20, 40, 60, 80

maximum sequence length 256

learning rate optimizer AdamW

Adam epsilon 1e-6

Adam beta weights 0.9, 0.98

learning rate scheduler Warmup linear

Weight decay 0.01

Warmup proportion 0.06

Table 5: Hyperparameters for Prompt Tuning and DEPT.
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