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Abstract

Retrieval-augmented language models have demonstrated remarkable effective-
ness, particularly in knowledge-intensive tasks. Previous studies on retrieval aug-
mentation typically require tuning the parameters of language models or updating
the vector datastore, resulting in huge computational costs. However, it becomes
infeasible as the scale of language models and the vector datastore continues to in-
crease, especially when language models are only accessible through APIs. Hence,
we treat the language model as a black box and keep the vector datastore frozen.
We propose a lightweight retrieval tuning technique by introducing a self-adapted
similarity matching module, employing less than 1M parameters. Proximal Policy
Optimization (PPO) is utilized to fine-tune the introduced parameters because the
black-box language models cannot be trained end-to-end. Our approach exhibits
great scalability as it can be employed in any scenario, regardless of the frozen
vector datastore and the black-box language model. Moreover, our approach has
high training efficiency, the speed bottleneck of which lies in the inference of
the black-box language models. Experiments conducted on the MMLU and Triv-
ialQA benchmarks demonstrate that our lightweight retrieval tuning technique
significantly improves the performance of retrieval augmentation across different
scales and architectures of language models. Specifically, our method improves
InstructGPT’s performance on the MMLU benchmark by 6%.

1 Introduction

Large language models (LLMs) such as GPT-4[1] have made remarkable progress, which are now
capable of achieving performance levels close to that of humans across a wide range of downstream
tasks [2, 3, 4]. Although language models can leverage general knowledge to perform well on some
tasks such as machine translation [5], existing work points out that due to their limited domain-
specific knowledge, LLMs may suffer from hallucination [6, 7] in certain knowledge-intensive
downstream tasks, such as open-domain question answering [8]. Fortunately, retrieval-augmented
language models [9, 10, 11] effectively alleviate this problem by retrieving targeted knowledge or
prompts from an external datastore.

However, previous approaches to retrieval augmentation require fine-tuning language models and
dense retrievers using downstream data [9, 12]. This necessitates access to the complete parameters
of the language model and the retriever and the ability to fine-tune with limited computational re-
sources. Unfortunately, most existing LLMs that exhibit excellent performance such as GPT4 [1] are
only accessible via API calls. Even for open-source language models, a single GPU is insufficient
to support loading all the parameters (#>100B). Therefore, considering language models as black
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boxes is worthy of exploration. In addition, constructing a large vector datastore by storing embed-
dings of the source data using a pre-trained dense retriever becomes a trend [13, 14]. To adapt the
dense retriever for downstream tasks by fine-tuning, the vector datastore must be frequently updated,
resulting in high computational costs. While several research [15, 16, 17] has focused on enhancing
retrieval augmentation capabilities for downstream tasks using black-box language models, they ig-
nore the high costs of updating the large-scale vector datastore. The left side of Figure 1 illustrates
that previous studies suppose that both language models and retrieval models can be trained, with
relatively small model parameters and external corpus sizes.
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Figure 1: Comparison of our method LRT and pre-
vious methods. Previous work trains the retriever
and the language model of small scale jointly. The
LRT requires neither re-indexing the large vector
datastore nor updating the parameters of the large
language model, it solely involves training a linear
layer, making it highly lightweight.

In this paper, we introduce a lightweight re-
trieval tuning technique (LRT) for black-box
language models. Our approach does not re-
quire updating the whole retrieval model, thus
preserving the reusability of the vector data-
store. We argue that due to the distribution
shift in downstream tasks, the embedding cor-
responding to the query may not effectively
retrieve the most suitable external documents.
Therefore, specifically, we apply a linear layer
to the querys embedding to obtain a new embed-
ding for document matching. The matched doc-
uments and query are then fed into the black-
box language model to obtain the final predic-
tion. By evaluating the prediction, we design
a reward based on the evaluation metric, which
serves as a learning guide for the learnable pa-
rameters. We optimize this reward using the
Proximal Policy Optimization (PPO) reinforce-
ment learning algorithm [18]. Figure 1 demon-
strates the difference between our method and
previous methods. The advantage of our pro-
posal is that it be flexibly applied to different
black box models and different forms of exter-
nal vector datastore.

Our experiments show that LRT can improve the performance of black box language models on a
series of downstream benchmarks. Specifically, LRT improves the performance of the InstructGPT
by 6% over zero-shot on the MMLU dataset, using only 0.59M trainable parameters. The advantage
of our method is that it does not need to fully fine-tune the pre-trained retriever in the case of the
language model black box. According to our estimation, the number of parameters trained using
our method is generally less than 1 million for most scenarios. This is considerably smaller than
the parameter sizes of language models and retrieval models. Consequently, our method is more
lightweight when compared to previous approaches.

2 Related Work

Retrieval-based methods to provide external knowledge to language models have been proved ef-
fective in a range of downstream knowledge-intensive tasks [9, 19, 11] and can effectively alleviate
the language model’s hallucination. Prior research often involves training retrievers and language
models separately. KNN-LM [20] utilizes k-nearest neighbors retrieval on a set of tokens to de-
rive token distributions, which are then ensembled with the language model’s predictions. RETRO
[10] uses a fixed retriever to only fine-tune language models with back-propagation. Some methods
[19, 9, 11, 21] aim to update the retriever-LM system comprehensively by adopting an end-to-end
approach. These methods all require obtaining parameters of the language model and then updating,
which cannot be applied to black-box language models.

Recently, efforts have been made to address fine-tuning the retriever for the black-box language
model. REPLUG [15] utilizes a frozen language model to provide probability on different doc-
uments, thereby supervising the retrieval model. AAR [16] employs FiDAtt scores to manually
construct positive and negative documents for a given query and then adjusts the retriever through
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contrastive loss. Some [17] employing in-context learning to select retrieval documents also make
progress. Due to the requirement of adjusting the retrieval encoder in these methods, it becomes
necessary to periodically update the whole datastore which incurs a significant computational cost.

3 Lightweight Retrieval Tuning

Retrieval-augmented language models utilize a retriever to retrieve effective prompts from exter-
nal corpus to improve the generalization performance of language models. Specifically, we have
an external corpus, denoted as D = {d1, ..., dm}, and a query q to the language model. Follow-
ing previous work, we use a dense retriever E to encode each document and the query. Then
the similarity between the query and the document embedding is computed by the dot product,
Sim(q, d) = E(q)T · E(d). The top-k documents with the highest similarity score are retrieved
and concatenated with the query to form the input of LM: x = concat(di1 , ..., dik , q). We eliminate
the need for on-the-fly computation during retrieval by precomputing the embeddings of documents
beforehand. To ensure the retrieval model effectively retrieves optimal documents, it is crucial to
obtain high-quality embeddings. In this regard, we employ Contriever [12] which achieves desirable
embedding distribution through contrastive pre-training. However, given that downstream tasks ex-
hibit shifted distributions and various large models possess distinct prompt preferences, it becomes
imperative to adapt the retrieval process for specific tasks.

Due to the limitations of black-box language models, updating the language model specifically for
downstream tasks is not always feasible. Some methods address this issue by fine-tuning the re-
trieval model using data from downstream tasks. However, updating the embeddings of documents
frequently can be costly due to the large size of the external corpus. Additionally, updating the vector
datastore can increase the generalization risk, resulting in performance degradation. To overcome
these challenges, we introduce a lightweight retrieval tuning technique (LRT).

Formally, we define the dataset for the downstream task S = {(q1, y1), (q2, y2), ..., (qn, yn)}. We
have a black-box language model LM and a dense retriever E. The output probability is computed
from total probability law, p(y | q) =

∑
d∈D p(y | concat(d, q)) · λ(d, q). Where p(y | concat(d, q))

denotes the output probability of the language models and λ(d, q) is estimated by the dense retriever,

λ(d, q) = eE(q)TE(d)/τ∑
d′∈D eE(q)TE(d′)/τ . We select the top-k documents with high similarity scores and denote

them as D′ to replace D due to the large size of the external corpus. τ is the temperature coefficient.

Given that the parameters of the language model and the dense retriever are unavailable, it is not
possible to directly fine-tune p and λ. Furthermore, we are unable to obtain the exact probability of
the language model, as LM(·) merely represents a sampling result from this probability distribution.
So we changed the form of λ and introduced the learnable layer fθ.

λθ =
efθ(E(q))TE(d)/τ∑

d′∈D′ efθ(E(q))TE(d′)/τ
(1)

We believe that the pre-trained dense retriever provides an excellent embedding space where differ-
ent types of documents can be well distinguished. However, due to the distribution shift of down-
stream tasks, the embedding of the query is not able to be effectively aligned with the most suitable
documents. Therefore, we only apply fθ to the embedding of the query. To fully leverage the per-
formance of the pre-trained retriever, we adopt a linear layer, i.e. fW,b(x) = Wx+ b. We initialize
matrix W as an identity matrix and b as a zero vector. This guarantees that, in the initial training
phase, retrieved documents are acquired from the pre-trained retriever, which serves as a reliable
initialization. Additionally, it ensures that adjusted embedding does not deviate significantly from
the original embedding.

After introducing the learnable layer, our objective is to perform maximum likelihood estimation on
the training set. However, as the language model remains a black box, p(y | q) remains intractable.
Considering that the output of a language model is a sampling of p(y | q), comparing it with the
grounding labels provides an indication of the quality of the retrieved documents. As a result, we can
treat the language model as a reward model and λθ as the policy model, using reinforcement learning
algorithms to indirectly optimize our objective. We employed the Proximal Policy Optimization
(PPO) for updating parameters. Detailed explanations can be found in the appendix.
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Table 1: Results on MMLU and TriviaQA dataset for Flan-T5 and LLaMA-7B. The bold score
means the best performance.

Models #Parameters Methods MMLU TriviaQA
ALL Hum. Soc. Sci. STEM Other F1 EM

Flan-T5-Base
[24] 250M

Zero-shot 36.3 38.2 40.9 29.7 39.0 8.8 5.0
Retrieval 35.5 38.9 39.9 27.0 39.7 30.7 23.9
LRT(Ours) 36.7 38.5 40.6 29.7 40.8 34.4 27.1

Flan-T5-Large
[24] 780M

Zero-shot 44.9 43.5 52.4 36.7 50.2 17.9 13.1
Retrieval 45.5 45.9 53.2 36.5 50.3 34.2 27.4
LRT(Ours) 45.8 46.3 52.5 37.0 50.7 38.4 31.0

Flan-T5-XL
[24] 3B

Zero-shot 51.0 54.9 57.6 36.3 60.6 31.2 26.4
Retrieval 50.9 55.2 58.0 36.7 59.2 37.8 31.5
LRT(Ours) 51.6 55.2 57.5 38.1 60.6 43.7 36.8

LLaMA-7B
[25] 7B

Zero-shot 30.4 31.1 27.8 28.6 34.4 61.6 52.1
Retrieval 31.2 28.5 34.6 29.5 32.9 63.8 53.9
LRT(Ours) 31.6 35.6 31.3 27.5 33.3 64.5 54.6

4 Experiments

Following prior work [15], we choose MMLU [22] and TriviaQA [23] as the downstream tasks. We
consider language models of two architectures: encoder-decoder models and decoder-only models.
For encoder-decoder models, we consider Flan-T5 [24] models due to their strong performance on
a wide range of downstream tasks. As for the decoder-only models, we consider LLaMA-7B [25]
and InstructGPT[26] (we use the text-davinci-002) as representatives. We compared the zero-shot
and vanilla retrieval augmentation baselines with our LRT method. Since InstructGPT has longer
input token lengths than other language models, we also compared the few-shot baseline under the
few-shot setting (LRT w/ FS) on MMLU .

Table 2: Results for InstructGPT on MMLU

Methods MMLU
ALL Hum. Soc.Sci. STEM Other

Zero-Shot 59.5 65.9 68.0 44.0 66.3
Few-Shot 62.0 65.4 74.2 48.1 66.2
Retrieval 62.3 64.4 71.1 52.7 65.1

LRT 62.7 65.7 71.1 53.7 64.3
LRT w/ FS 65.5 69.5 75.7 54.6 67.1

Table 1 reports the results of our method LRT
compared with the baselines on MMLU and
TriviaQA for Flan-T5 and LLaMA-7B. We re-
port the accuracy of 4 sub-domains and the aver-
age accuracy across all sub-domains (ALL) on
MMLU. We report the EM (Exact Match) and
F1 scores for TriviaQA. Our approach demon-
strates a significant performance improvement
compared to the zero-shot baseline and the re-
trieval baseline, particularly in the TriviaQA tasks. This highlights the effectiveness of our algorithm.
Table 2 reports the results for InstructGPT on MMLU. Our approach achieves a 6% performance.

Our approach is extremely lightweight in terms of computational requirements. Assuming the em-
bedding size of the datastore is noted as dim, and considering that we only have one linear layer as
our learnable parameter, the total number of parameters is dim(dim + 1). For Contriever, its output
dimension is 768, resulting in a total parameter count of 590,592, approximately 0.59M, which is
negligible compared to the scales of language models. Our method only needs one forward pass,
and the computational bottleneck is determined solely by the inferencing cost of the black-box lan-
guage model. Furthermore, since we load the vector datastore before training, the index remains
unchanged throughout the training process which saves huge computational costs. This significantly
demonstrates that our approach outperforms other retrieval-augmentation methods.

5 Conclusion

In conclusion, this paper presents a novel approach for tuning retrieval-augmented language models
that addresses the challenges of computational costs and scalability. Our proposed technique pro-
vides a practical and efficient solution for improving retrieval augmentation in knowledge-intensive
tasks. It does not require adjusting the parameters of language models or updating the vector data-
store, allowing for training with black-box language models. The experimental results on MMLU
and TriviaQA demonstrate the effectiveness of our approach. Across different scales and various
architectures of language models, our lightweight retrieval tuning technique significantly improves
the performance of retrieval augmentation.
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A Details of Lightweight Retrieval Tuning Technique

A.1 Training Framework

We demonstrate the training framework of the lightweight retrieval tuning method in Figure 2.
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Figure 2: The training framework of LRT. The green dashed line indicates the direction of backprop-
agation.

A.2 Proximal Policy Optimization

Formally, our LRT technique can be modeled as a Markov Decision Process (MDP) S,A, P,R, γ.
The state space S is a continuous embedding space obtained by mapping the query through the
retriever. The action space is the set of the top-k retrieved documents and the transition probability
P is determined by λθ. The reward function R is given by evaluating the prediction of the language
model. The discount factor denoted as γ is assigned a value of 0 in our setting, indicating that we
are only concerned with maximizing the one-step reward.

To fine-tune the trainable layer, we employ the Proximal Policy Optimization (PPO) algorithm. Re-
cently, PPO has played a significant role in aligning LLMs with human preferences. One of its
advantages is that the penalty term in the algorithm ensures that the updated parameters do not devi-
ate significantly from the old parameters, thereby adapting the model to downstream tasks without
sacrificing generalization ability.

We consider λθ as the policy network, where the action space has a size of k and is a subset of the
corpus D. The loss function of the PPO algorithm is defined as follows:

Lpolicy =min{rA, clip(r, 1− ϵ, 1 + ϵ)A}

r =
p(d | q)
p0(d | q)

=
λθ(d, q)

λθ(0)(d, q)

(2)

where θ(0) = (W (0), b(0)) = (I, 0), which is fixed for sampling while θ will be updated during
training. We construct a value network Vϕ. It takes a state E(q) as input and outputs an estimated
state value Vϕ(E(q)). Then the advance A calculated by:

A = R− Vϕ(E(q))

The reward represents the quality of the document and can be defined by evaluating the correctness
of the language models prediction. Additionally, drawing inspiration from RLHF, we add a negative
KL divergence term to the reward to prevent policy network forgetting. We formulate the reward as:

R=Evaluation Metric − β log(
λθ

λ
(0)
θ

) (3)
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Table 3: Cases study on TriviaQA. The color green represents the correct retrieval, while the color
red indicates the wrong.

Queries Original Retrieval Document Original Retrieval Answer LRT Retrieval Document LRT Answer
Which English
county is the setting
for most of painter
John Constable’s
works?

... Portrait of Maria Bicknell,
Mrs. John Constable (1816)
Tate Gallery, London ... Wey-
mouth Bay: Bowleaze Cove and
Jordon Hill (181617) National
Gallery, London ...

Gallery, London (%) ... In his youth, Constable
embarked on amateur sketching
trips in the surrounding Suffolk
and Essex countryside, which
was to become the subject of a
large proportion of his art...

Suffolk (!)

The River Tigris rises
in which country?

...The Tigris is 1,850km long,
rising in the Taurus Mountains
of eastern Turkey about 25km
southeast of the city of Elazig
and about 30km from the head-
waters of the Euphrates...

sailed up the Tigris and the
Shatt al-Arab... (%)

...The Tigris is heavily dammed
in Iraq and Turkey to provide
water for irrigating the arid and
semi-desert regions bordering
the river valley...

Turkey (!)

The design of the evaluation metric depends on the downstream tasks. For example, we can use
either accuracy or F1 score for classification task. β is the hyperparameter, which is set to 1.0
during our training. To train the value network, we have the value loss:

Lvalue =
(
R− Vϕ(E(q))

)2
(4)

As a result, The final loss function consists of two components: the policy loss and the value loss.

LPPO = Lpolicy + Lvalue (5)

By iteratively optimizing the loss function, we can retrieve documents that better align with down-
stream tasks, thereby improving the performance of the language model in a black-box scenario.

B Experimental Supplement

B.1 Task Description

MMLU is a multitask language understanding benchmark, which contains multi-choice question-
answering subtasks in 57 topics. These topics can be divided into four categories: the humanities,
STEM, the social sciences, and others. Due to insufficient computing resources, we use their devel-
opment set as our training set, and their validation set as our test set. In addition, We use their train
set as our external corpus (#>100M). We evaluate the accuracy of these four categories on our test
set separately and use the average accuracy of all subtasks as our final accuracy metric.

TriviaQA is a reading comprehension dataset, which is composed of question-answer-evidence
triples. Each question has six evidence documents on average. We use the Wikipedia domain to
train and test. We randomly select 2000 samples from their training set as our training set and keep
10% of the training set as our test set. We use all the evidence documents of our training set and test
set as the external knowledge base. The F1 score and Exact Match (EM) on our test set are reported.

B.2 Training Details

For all our experiments, we set τ = 1 for simplicity. To speed up the training process, we use FAISS
for efficient similarity search and pre-compute the embeddings of documents in the corpus. Given a
query q, we first compute its embedding, and then get its final embedding after it is passed through
our linear head. We retrieve the top-10 (i.e. k = 10) documents of the query from the FAISS
index and compute the similarity scores. Our value network is a three-layer MLP with 128 nodes
in the hidden layer. We use the Adam optimizer to train our networks. In the PPO settings, we set
ϵ = 0.1. For MMLU, the ’Evaluation Metric’ in the reward function is accuracy, and for TriviaQA
is F1-score. All our experiments are conducted on an NVIDIA A800.

B.3 Deeper Analysis

Effectiveness of PPO algorithm To demonstrate the effectiveness of the Proximal Policy Op-
timization algorithm, we record the training curves. The results of three Flan-T5 models on the
TriviaQA task are reported. The upper of Figure 3 illustrates the variation curves of policy loss
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and value loss during the training process. These losses decrease as the number of training epochs
increases, indicating that the PPO algorithm functions properly. The lower of Figure 3 presents the
performance changes in the training and validation sets. We test the validation set every 5 epochs.
As the number of training epochs increases, the reward values on the training set consistently rise,
implying that performance improvements can be achieved by optimizing our trainable module. On
the validation set, there is also a tendency for performance improvement. However, due to the dis-
tribution shift between the training set and the validation set, the curves may fluctuate, and even the
training exhibit overfitting. In our experiments, we implement early stopping to alleviate overfitting.

Figure 3: The training curve on TriviaQA of Flan-T5 models. The two above charts demonstrate the
variations in policy and value loss and the two below charts showcase the changes in reward for the
training and validation sets.

Why does LRT improve performance? We further investigated the reasons for performance im-
provement in LRT. On TriviaQA, we observe two typical cases, as shown in Table 3. The first
case demonstrates that the original retrieval baseline fails to retrieve the document containing the
final answer thus providing the wrong answer. However, after our training, the retrieval module
can accurately identify the corresponding content from Wikipedia. Therefore, the final prediction is
correct. In the second case, although the original retrieval baseline retrieves a document covering
the final answer, due to the limitations of the language model itself, it fails to recognize the correct
answer and makes an incorrect prediction. Our approach, on the other hand, is able to find an alterna-
tive document containing the correct answer, which is aligned with the preferences of the language
model. Thus the model can make the correct prediction. These results demonstrate that our LRT
technique can not only retrieve more relevant documents but also adapt better to the preferences of
the language model itself.

C Limitations

Due to resource constraints and geographical limitations, our work is not executed on larger-scale
models, including open-source models such as LLaMA-33B and API-based models like PaLM2
and GPT4. In addition, considering the limited computational resources, we have not utilized the
entire original training dataset during our training process. Instead, we have divided a subset of the
training set. This allows for potential enhancements to our method. Furthermore, as a result of the
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restricted number of trainable parameters within our method, there is a reduction in the expected
generalization performance. We will explore novel approaches that are not only lightweight but also
demonstrate strong generalizability.
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