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Abstract

This paper proposes a framework leveraging small samples from different Auto-
matic Speech Recognition (ASR) data sources to predict model performance and
facilitate ASR data selection decisions. By utilizing data distribution distance and
a mapping technique inspired by neural scaling laws, our framework estimates
the model performance for various data mixtures within the disclosed range and
extrapolates it onto much larger target data sizes. This is the first study on extending
this novel approach to ASR problems. Experiments conducted on the LibriSpeech
and the TED-LIUM3 datasets confirm the effectiveness of the proposed data selec-
tion framework. Compared to a heuristic-based selection baseline, our framework
consistently demonstrates 13 ∼ 17% relative word error rate reductions under 40/
50/ 100-hour fine-tuning data hour budgets.

1 Introduction
In Automatic Speech Recognition (ASR) domain, researchers have started training single ASR models
capable of processing speech data from diverse acoustic channels, background environments, speaker
groups, accents, and even languages [1]. Within the realm of general-purpose large language models
(LLMs) and unified ASR models, scaling laws have been established that explore the relationship
and interplay between model performance, model size, and the amount of training data [2, 3].
These studies emphasize the importance of preparing high-quality training data to optimize model
performance. However, in real-world scenarios, multiple data sources are often available for model
training, raising the question of how to effectively combine data from these different sources to
extract good performance out of a model. Two prevalent approaches have been utilized for data
combination in ASR training. The first approach involves using all available data from each source
without re-weighting or re-balancing the datasets [1]. While this approach is simple, it may not be
the most efficient allocation of the training computation budget, as some data could be duplicated
and less relevant than others. The second approach entails applying a combination of weights to
mix training data from different sources based on heuristic assumptions or manual tuning. Although
this approach offers improvements over the non-weighted approach in terms of the training cost,
it does not guarantee that the combination weights are geared for the target tasks due to a shift in
the sampling distribution due to heterogeneous weights [4–6]. (For extended related work, please
see Appendix A.) Additionally, manual weight tuning can also be expensive and time-consuming.
Furthermore, existing scaling laws primarily focus on the overall size of the training data, neglecting
the fact that different types of data might have distinct scaling relationships with model performance.
This limitation underscores the need to explore alternative approaches to data combination. Another
challenge in data selection arises when the full dataset from each source is not completely revealed,
where only a subset of examples is disclosed or available, leaving the question of whether to utilize the
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dataset unanswered. To address these issues, a recent work proposed projektor, a data selection
approach that combines performance scaling laws with optimal transport-based distribution distance
computation [7]. This approach allows for the determination of appropriate mixing weights for each
data source, given a total training data budget and target model performance evaluation setup, without
actually performing full-scale model training. The proposed approach has demonstrated effectiveness
in image recognition and Natural Language Processing (NLP) tasks. Therefore, in this paper, we
aim to extend projektor to ASR tasks. The contributions of this paper include establishing the
necessary adaptations required to implement the idea of projektor to ASR tasks and conducting
experiments to analyze its effectiveness in model fine-tuning scenarios. By investigating the suitability
of this approach in ASR, we aim to advance the understanding of data selection methods for ASR
tasks and potentially contribute to more efficient and optimized ASR model training.

2 Methods
First proposed in [7], projektor integrates Optimal Transport (OT) and scaling laws to provide
accurate predictions on the performance of machine learning models to guide the selection of training
data. In this section, we first introduce the technical framework and formulate the data selection
problem in ASR inspired by [7]. Then, we discuss the detailed operational pipeline for implementing
the method before applying it to ASR tasks. We start with the preliminaries.

Consider m datasets D1, . . . , Dm representing m different data sources and a practitioner with a
validation set Dval, who would like to combine samples from these datasets to train a model A with
performance metric L. Given a selection budget of N samples and a mixing ratio of data sources
p = {p1, . . . , pm}, ∀i 0 ≤ pi ≤ 1, and

∑
pi = 1, denote the selected dataset by D(N,p) = S1∪· · ·∪Sm,

where Si ⊆ Di is a random collection of subset of samples of Di and |Si| = piN . The practitioner
seeks to maximize the resulting model performance by strategically choosing the mixing ratio p of
m data sources for a given target dataset size N , i.e., maxp L(A(D(N,p)), Dval).

2.1 projektor-based Data Selection
Optimal Transport is a distance metric between probability distributions [8] enjoying advantageous
analytical properties [9, 10]. Given training and validation probability measures µt, µv over space Z ,
OT distance is defined as OT(µt, µv) := minπ∈Π(µt,µv)

∫
Z2 C(z, z′)dπ(z, z′), where Π(µt, µv) denotes

the set of couplings over µt, µv and C : Z × Z → R+ is some positive cost function. Inspired
by theoretical results that the upper bound on the difference between training loss and validation
loss can be tightly bounded by an affine transformation of the OT distance [11, 12], [7] propose to
directly estimate this transformation by empirically fitting OT to model performance and then the
estimated transformation can be used for predicting the model performance for different data mixtures
as L̂

(
A(D(N,p)), Dval) = a1 ·OT

(
D(N,p), Dval)+a0, where a0, a1 can be estimated via least-square

fitting. An alternative nonlinear version is provided as [7] L̂(A(D(N,p)), Dval) =
∑m

i=1(c
i
2p

2
i +

ci1pi+ c0)+
∑m

i=1(b
i
2p

2
i + bi1pi+ b0) ·OT(D(N,p), Dval), where bi, ci are additional parameters for

fitting the performance predictor and pi is the data ratio associated with the data source i. However, if
the target size N is large, then fitting the predictor directly might be inefficient. Therefore, for better
efficiency, we apply the neural scaling laws that enable predicting empirical performance changing
with the size of the training dataset as EV [L(A(D(N,p));Dval)] ≈ −α log(N) + C, where α and C
are some constants [13]. By first fitting the predictors at smaller scales N0, N1 (in practice, we use
N0 < N1 < 1% ·N ), we then use smaller-scale predictors to directly fit neural scaling laws for this
particular distribution and project it onto larger scale N , which is

L̂(A(D(N,p);Dval) =

(
log

N1

N0

)−1 [
log

N

N0
L̂(A(D(N1,p));D

val) − log
N

N1
L̂(A(D(N0,p);D

val)

]
.

(1)

The predictions are used to support determining optimal data source selection p∗ =

argmaxp L̂(A(D(Ns,p)), D
val). The problem is then solved effectively via gradient methods,

where [12] allows almost free gradient calculation for the calibrated gradient of OT. Alg.1 in
Appendix B provides a comprehensive explanation of how this pipeline is implemented in practice.

3 Experiments
3.1 Experimental Setup and Implementation
To simulate data selection for training a general ASR model for different types of tasks, we selected
two distinct ASR tasks: LibriSpeech [14] and TED-LIUM3 [15]. Our objective was to train a single
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ASR model that performs well on both datasets, considering a limited training data budget. We
conduct comparisons of data selection strategies in the fine-tuning scenario, where a LibriSpeech
960 pretrained end-to-end ASR model [16] is fine-tuned using a combination of LibriSpeech and
TED-LIUM3 data. This scenario aims to assess the effectiveness of data selection for adapting a
pretrained model to a different task while maintaining a strong performance on the original task. A
visualization of the task and further implementation details can be found in Appendix B and C.

Datasets and Models. We use two different training data sources with distinct types of data:
LibriSpeech Clean 100 train and TED-LIUM3. The LibriSpeech Clean 100 training dataset consists
of 100 hours of the read speech recordings extracted from audiobooks. The TED-LIUM3 training
data consist of 546 hours of the speech data from TED Talks, where the speaker’s speaking styles
are quite different from that of LibriSpeech. To simulate the model training scenario with different
training data budgets for LibriSpeech and TED-LIUM3 training data, we prepare mixed subsets of
10, 20, 40, 50, and 100 hours. The amount of pilot data is limited to N0 < N1 = 1 hour uniformly
sampled from each data source. We use Torch Audio Emformer models [17, 18] for experiments.
For the fine-tuning task, we use the LibriSpeech pretrained Emformer model [16]. To establish the
scaling laws for data selection, we use even smaller-sized Emformer models (i.e., with two and
four transformer layers). We evaluate the trained model performance by the averaged Word Error
Rate (WER) on the LibriSpeech Clean Test and TED-LIUM3 Test datasets.

Data Selection Methods. We consider the following two data selection approaches:

• Heuristic rule-based selection (50:50 Baseline): selects equal amounts of training data from the
LibriSpeech and TED-LIUM3 datasets based on a given data budget. The selection rule was based
on the averaged WER for both tasks, ensuring a balanced representation of data from both sources.

• Proposed approach: utilizes the performance of a small-scale model on the validation set to guide
data selection with optimal transport distance. By training or fine-tuning models using pilot data
and evaluating their performance on the validation set, the selection of data sources and amounts
was optimized with the gradient computed from the dual solution of OT.

By comparing these approaches, we assessed their effectiveness in preparing training data for ASR
models for different training data budgets. The heuristic rule-based selection offered a straightforward
approach, while the proposed approach incorporated OT distance and validation performance to guide
data selection, aiming to enhance overall performance on both LibriSpeech and TED-LIUM3 tasks.

3.2 Empirical Results

Scaling Laws for Different ASR Data Types. Our proposed approach assumes that different
types of ASR data could have different scaling laws of loss vs. training data size. To validate our
assumption, we follow the setup in [3] to derive the scaling laws of loss vs. training data size for
both the LibriSpeech and the TED-LIUM3 datasets. The losses were computed on the held-out
validation data. To derive the scaling law, we train a smaller Emformer model that keeps the same
model architecture of the pretrained Emformer RNN-T model [16], except that we reduced the
Emformer layer number from 20 to 10. The total model parameter for the smaller Emformer model
is 45.2 M. We reuse the feature extractor and sentence-piece model from the pretrained Emformer
Bundle [16]. For LibriSpeech and TED-LIUM3 data, we train a smaller model with 2, 5, 10, 20,
50, 100 hours of the training data on a single GPU and collect the minimal validation loss for each
training. The scaling laws thus obtained are Loss = −74.99 ln(N) + 1053.6 for LibriSpeech and
Loss = −115.6 ln(N)+1300.8 for TED-LIUM3 depicting higher slope for TED-LIUM3, confirming
our assumption that different types of ASR data may have different scaling laws, which motivates the
proposed approach for data selection. The Figure 3 for log-linear fits is relegated to Appendix A.

WER Performance Prediction with OT
10Hr 20Hr 40Hr 50Hr 100Hr

Linear 0.36 0.20 0.31 0.24 0.22
Quadratic 0.22 0.22 0.29 0.21 0.19
Ours 0.18 0.17 0.20 0.16 0.15

Table 1: Comparison of MAE values for predicting WER
performance on unseen data source compositions at dif-
ferent training data budgets: 10Hr, 20Hr, 40Hr, 50Hr,
and 100Hr.

We demonstrate that the proposed method effectively cap-
tures the intricate relationship between the model’s per-
formance metric (e.g., loss, test WER) and the selected
training data used for fine-tuning. Figure 4 demonstrating
the effectiveness of the fitted function in terms of predict-
ing the model’s performance is relegated to Appendix C.
To quantitatively validate the performance of our method,
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we compute the Mean Average Error (MAE) between the predicted WER and the actual WER of
different data source compositions for each training data budget. We benchmark our results with
baseline methods, Linear and Quadratic, which assume a linear and quadratic relationship with the
training data compositions, respectively. As we observe in Table 1, by obtaining the lowest MAE
values, our method outperforms the baseline methods in predicting WER in each of the data budget
cases. By incorporating optimal transport distance into the fitting function, we can better predict
average WER to further guide us in data selection.

Optimal Transport Guides Data Source Selection Budget Train Data Test WER (%)
(Hr) Method L:T3 (Hr) L Clean T3 Avg

40 Base 20:20 5.8 18.0 11.9
Ours 6:34 6.0 14.6 10.3

50 Base 25:25 4.9 18.1 11.5
Ours 8:42 5.0 13.9 9.5

100 Base 50:50 6.8 17.2 12.0
Ours 18:82 6.5 14.2 10.4

Table 2: Comparison between the heuristic selection
and the Optimal Transport (OT) Guided selection under
different fine-tuning data budgets. L and T3 represent
LibriSpeech and TED-LIUM3 data.

We show the performance of our data selection method and
compare it with the results of the heuristic-based selection.
Our method selects a data source composition by following
the OT-based gradient descent. We report the actual aver-
age WER performance for each data source composition
selected by our method. Table 2 presents the WER results
of fine-tuning with the baseline and the proposed selection
for data budgets of 40, 50, and 100 hours. Our selection
puts a higher selection weight onto TED-LIUM3 data than
on the LibriSpeech as it is a more challenging task for the
LibriSpeech pretrained Emformer. We observe that the proposed data selection method outperforms
the baseline heuristic rule-based selection approach by consistently reducing average WER by an ab-
solute of 1 ∼ 1.5% (or a 13 ∼ 17% relative WER reduction) in each budget cases. While our method
maintains a similar WER performance of the original task (i.e., LibriSpeech), it also significantly
improves the WER performance on the new task (i.e., TED-LIUM3).

Performance Projection onto Larger Data Budgets

Figure 1: Projected WER performance using proposed data
source mixtures. Comparison with baseline selection and
actual WER performance.

After selecting the data source composition for each
data budget, our method proceeds to project WER per-
formance onto larger data scales without actually fine-
tuning the model by incorporating the OT-based scaling
law as derived in Eq. 1. We first fit two functions on
smaller data budget scales, i.e., 10Hr and 20Hr, respec-
tively, then we project the performance onto larger data
budgets of 40Hr, 50Hr, and 100Hr. For each data bud-
get, we apply the data selection ratio given in Table 2
and predict the average WER performance as proposed
in Eq. 1. We compare our selection method’s predicted
WER with the actual average WER of that given selec-
tion. We additionally compare with WER performance
using the heuristic-based selection baseline (50:50 ra-
tio). Lastly, we attempt to find the "ground-truth" op-

timal WER performance by grid-searching over data compositions. We note that only our method
projects the model’s performance, while the heuristic-based selection cannot make such a projection
prediction. In Figure 1, we observe that our predicted average WER does not depart from the actual
WER by more than 0.3% and outperforms the baseline method in each data budget case by more
than 1% of WER reduction. Moreover, we notice that our selection’s WER performance is close to
the "ground-truth" WER, which indicates the potential of our method in both selecting data source
compositions and predicting average WER performance for large data scales.

4 Conclusion
In this paper, we explore the application of the performance scaling via optimal transport approach
to ASR data selection from partially revealed sources. We demonstrate that different types of ASR
data exhibit distinct scaling laws, which motivates the proposed data selection approach. We evaluate
the proposed data selection approach in the setting of model fine-tuning. Preliminary results on
LibriSpeech and TED-LIUM3 show the proposed approach outperforms the heuristic rule-based
baseline. Future work involves conducting experiments with larger models/datasets and exploring
other factors, such as data quality and data influence. Our research contributes to advancing automatic
speech recognition with a better budget-efficient utilization of diverse ASR datasets, which could be
key for building high-performance general ASR models given a data budget constraint.
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Appendices
Appendix A Related Work

Existing research on selecting training data for ASR primarily focuses on training within homogenous
data from a single source, rather than optimally mixing heterogeneous data from different sources to
train general ASR models.

Current methods often employ heuristic selection criteria to identify informative training data. For
instance, Wu et al.[4] utilized the maximum entropy principle to select training data that contains
the most informative examples, aiming to encourage the phoneme distribution approximating a
uniform distribution. Submodular optimization [5] has also been commonly employed in data
selection/distillation for ASR tasks under a variety of formulations. For example, in a recent work
[6], Park et al. proposed a submodular function incorporating a loss ratio to determine the importance
of each data sample. While these approaches contribute to data selection within a single data type,
our study focuses on the selection and mixing of different types of ASR data for optimal general ASR
model training.

Appendix B Algorithm

Algorithm 1: projektor performance predictor (adapted from [7])

In :Pilot Datasets Dpi
1 , Dpi

2 , . . . , Dpi
m; Query Data Budget N ; Query Mixing Ratio p;

0-Data Scale Size N0; 1-Data Scale Size N1; Learning Algorithm A; Performance Metric
Function L(·, Dval); OT Distance Function OT (·, Dval).

Out :Projected Model Performance→ [0, 1].
1 P← Generate mixing ratios
2 DT0, DT1← Initialize empty lists to store OT distances
3 L0, L1← Initialize empty lists to store performance values
4 for Mixing Ratio pi in P do
5 S0, S1 = D(N0,pi),D(N1,pi) newly composed datasets of size N0, N1

6 DT0← append OT (S0, D
val) Optimal Transport distance between S0 and Dval

7 DT1← append OT (S1, D
val) Optimal Transport distance between S1 and Dval

8 L0← append L(A(S0), D
val) Performance of a model trained on S0

9 L1← append L(A(S1), D
val) Performance of a model trained on S1

10 L̂(A(D(N0, ·)), Dval)← Fit the function from Eq. in Section 2.1 with ((P, DT0), L0)
11 L̂(A(D(N1, ·)), Dval)← Fit the function from Eq. in Section 2.1 with ((P, DT1), L1)
12 L̂(A(D(N,p));Dval)← Project performance by substituting L̂(A(D(N0,p)), D

val) and
L̂(A(D(N1,p)), D

val) into Eq. 1
13 return L̂(A(D(N,p);Dval)

To fit the function that predicts the model performance for different data mixtures with Equation from
Section 2.1 (Lines 10-11, Algorithm 1), we first need to generate training data for two data scales
N0 and N1 (Lines 4-7 for generating OT distances and Lines 8-9 for generating model performance
values). Then, we apply the neural scaling law in Equation 1 to project the performance onto a larger
target data size, N (Line 12). We will make our code public after the review process is over.

Appendix C Experimental Details

We followed the official TorchAudio implementation for fine-tuning the LibriSpeech (LS) pretrained
Emformer RNN-T (with LS SOTA performance) [19]. All our experiments are conducted on a single
48GB A6000 GPU. While model fine-tuning requires 2-3 GPU hours, our optimal transport distance
can be efficiently computed within 2-3 seconds.
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Figure 2: Problem visualization of training data selection. Given K hours of training data budget,
the goal is to split the budget into training data sources to maximize model performance on all tasks
combined (e.g., average WER score).

Figure 3: Comparing the scaling law between
validation loss and training data size for the Lib-
riSpeech and TED-LIUM3 training datasets.

Figure 4: Actual WER vs Predicted WER, show-
ing alignment of fitting OT to predict WER.

We verify that the fitted function based on optimal transport in Equations from Section 2.1 can
effectively predict the model’s performance, i.e., average WER in our case. Indeed, we visually
observe in Figure 4 that our predicted WER values align well with the actual WER performance.

Optimal Transport Computation. To compute the OT distances of the audio clips, we use the
Wav2Vec2 [20] as the embedding space and measure the distances between the extracted features
averaged over attention layers. The optimal transport distance is computed with the help of the
open-source Python library, POT: Python Optimal Transport [21].

Additional explanation of results. In our experiments, we want to emphasize the effectiveness of
our method for selecting a fine-tuning data ratio and compare it with the baseline method. We show
that our data ratios are non-obvious and outperform the baseline selection by improving the model’s
WER performance.

Orthogonal to our focus, we observe a non-trivial behavior of fine-tuned models when increasing
the budget. We conjecture that the addition of TED-LIUM3 fine-tuning data to the LibriSpeech data
causes the LibriSpeech SOTA performance of the pretrained model to weaken since the TED-LIUM3
domain naturally diverges from the LS domain. With more TED-LIUM3 data, the model weights
optimized for LibriSpeech will start to degrade. To mitigate this problem, we can lower the learning
rate, which can decrease the overfitting and the catastrophic forgetting effects when fine-tuning the
model.

We hope our work can attract the community to further explore and develop automatic speech
recognition models on multiple, diverse tasks by incorporating strong data selection methods.
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Budget Train Data Test WER (%)
(Hr) Method L:T3 (Hr) L Clean T3 L Other

40 Base 20:20 5.8 18.0 13.8
Ours 6:34 6.0 14.6 13.5

50 Base 25:25 4.9 18.1 12.0
Ours 8:42 5.0 13.9 12.0

100 Base 50:50 6.8 17.2 15.4
Ours 18:82 6.5 14.2 15.2

Table 3: Comparison between the heuristic selection and the OT-guided selection under different
fine-tuning data budgets for the fine-tuning tasks. L and T3 represent LibriSpeech and TED-LIUM3
data, respectively. Evaluation on Test LibriSpeech Clean (L Clean), Test TED-LIUM3 (T3), and Test
LibriSpeech Other (L Other), respectively. Preliminary Results.
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