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Abstract

Transformer models, despite their impressive performance, often face practical lim-
itations due to their high computational requirements. At the same time, previous
studies have revealed significant activation sparsity in these models, indicating the
presence of redundant computations. In this paper, we propose Dynamic Sparsified
Transformer Inference (DSTI), a method that radically reduces the inference cost of
Transformer models by enforcing activation sparsity and subsequently transforming
a dense model into its sparse Mixture of Experts (MoE) version. We demonstrate
that it is possible to train small gating networks that successfully predict the relative
contribution of each expert during inference. Furthermore, we introduce a mech-
anism that dynamically determines the number of executed experts individually
for each token. DSTI can be applied to any Transformer-based architecture and
has negligible impact on the accuracy. For the BERT-base classification model, we
reduce inference cost by almost 60%.

1 Introduction

In recent years, Transformer [1] became a go-to model architecture in many fields of deep learning
such as natural language processing [2, 3] or computer vision [4, 5]. Those models often have a large
number of parameters [3, 6], which gives them sufficient expressivity and enables them to effectively
accumulate knowledge. However, despite their impressive performance [3, 7], they require costly
high-end computational resources, and their applications are limited due to high latency and energy
consumption. Simultaneously, sparse Mixture-of-Experts (MoE) models have gained significant
attention as a compelling approach for enhancing model expressiveness and capacity [8]. Unlike
their dense counterparts, these models are able to handle a much larger number of parameters with
only a slight increase in processing time, and many of the latest state-of-the-art Transformer models
use MoE layers [9, 6, 10]. Unfortunately, training MoE models from scratch may be unstable and is
prone to expert imbalance or representation collapse [8, 11], which limits their applicability.

In this paper, we follow the recently introduced approach of turning dense models into sparse MoE
models [12] and propose Dynamic Sparsified Transformer Inference (DSTI), a simple and practical
way to significantly reduce the computational cost of the inference in Transformer models. Inspired
by the recent works that show the benefits of the natural sparsity emerging in the Transformer
models [13], we propose to train the dense models with an additional loss component that enforces
activation sparsity. Then, we construct the MoE layers by splitting the dense matrices of FFN layers
into experts and subsequently training small gating networks. Moreover, we propose a novel learning
objective for training the routers that enables them to accurately predict the relative contribution of
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each expert. Finally, we introduce Dynamic-k routing, which allows the model to adapt the amount
of compute to the difficulty of the input, which increases its efficiency even further. DSTI achieves
performance close to the original dense model while using only a fraction of its computational
resources.

2 Related Works

Mixture-of-Experts models Sparse MoE was first proposed for RNNs by Shazeer et al. [8] and
since then has been successfully applied in the NLP domain [14, 6]. Recently, those models have also
been gaining popularity in computer vision [9, 15]. Sparse Mixture-of-Experts (MoE) transformers
replace the FFN layers with multiple experts, which themselves are smaller feedforward networks,
and a router that selects which experts to use for the current input. This change significantly increases
model capacity, while inducing only a small computational overhead through the use of the router.
Additionally, recent research suggests that MoE models have favorable properties in the context of
the scaling laws [16].

Sparsification of Dense Transformers Several works notice the difficulties of end-to-end training
of MoE models and propose alternative methods to obtain Sparse MoE more efficiently. Methods
such as EvoMoE [17] or Sparse Upcycling [18] propose to progressively make the model sparser
over the course of the training. Other works observe that activation patterns in Transformers are
highly sparse [12, 13], and propose to take advantage of this phenomenon without training. Notably,
Zhang et al. [12] introduced MoEfication, a method that enhances the computational efficiency of
Transformer models. Our method builds on MoEfication and follows the expert construction scheme
proposed in this paper.

3 Method

DSTI is a three-step method for obtaining an efficient Transformer MoE model. The first stage of
our method consists of fine-tuning a pre-trained model with an auxiliary loss that enforces activation
sparsity. The FFN modules in every layer are then divided into experts, and at the last step we train
the routing networks that enable dynamic selection of experts. In this section, we describe all the
components of DSTI in detail.

Enforcing activation sparsity The scheme of reducing inference cost by dividing the model into in-
dependently activated modules relies on the well-known phenomenon of activation sparsity exhibited
by most deep neural networks [19], especially Transformer architecture-based models [13]. Taking
inspiration from this observation, we anticipate that enforcing activation sparsity with an auxiliary
loss may allow for execution of an even smaller number of experts, resulting in overall computational
savings. As such, we propose to apply the ℓ1 norm penalty on the feature representations in the
middle layer of each FFN module:

Ls(x) =
1

L

L∑
l=1

||al||1, (1)

where al is the activation tensor from the middle layer of the l-th FFN for input x, and L is the
number of Transformer blocks. Overall, the model is trained with the following cost function:

L(x) = LCE(ŷ, y) + αsLs(x) (2)

where LCE is the standard cross-entropy loss, and αs is the hyperparameter for scaling the sparsity
enforcement loss. While this loss could be applied during pretraining, in practice we add it during
finetuning of the model so that application to pretrained models is still possible.

Expert construction We construct the experts using parameter clustering method proposed by
Zhang et al. [12], which we briefly describe here for the convenience of the reader. Weights of
each neuron from the first matrix W1 are treated as its features and are fed into a balanced k-means
algorithm [20]. The resulting cluster indices are used to split the first linear layer W1, the first bias
vector b1, and the second linear layer W2 into E experts. The second bias b2 is not affected by this
procedure. The process is repeated for each FFN block.
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Regression routing objective In a standard MoE-based model, the gating networks are trained
in an end-to-end manner. Contrary to this, we train each gating network independently, similarly
to Zhang et al. [12]. However, instead of framing the problem as a classification task1, our gating
network directly predicts the sum of activations in the hidden layer of each i-th expert si =

∑
j aij .

We train the gating network using the standard mean squared error. Assuming ReLU activation
function is used, si is always positive, and to ensure the positive output of the gating network, we take
the absolute value of the gating network output. The regression-based formulation is still compatible
with commonly used top-k expert selection, but enables more precise attribution of the contribution
of each expert, as we show later in the experiments section.

Dynamic-k gating Commonly used MoE layers always execute k top experts for each token,
where k is a predefined hyperparameter. This means that, regardless of the difficulty of the input,
the model spends the same amount of compute on each batch [21] or token [8]. However, cognitive
studies show that humans treat the data samples differently depending on their complexity and
spend significantly less time on the easy samples [22]. Similarly, various conditional computation
methods adjust their computational load to the difficulty of the input sample[23, 24]. Inspired by
this, we modify the expert selection mechanism to allow for a varying number of experts. Since our
gating network g approximates the actual contribution of every expert s ≈ ŝ = g(x), we use those
predictions to determine k. For each token, we set:

k = min{n ∈ {1, ..., E}|
n∑

i=1

sort(h)i > τ}, hi =
ŝi∑E
j=1 ŝj

(3)

where τ ∈ (0.0, 1.0) is a threshold that determines the preferred performance vs. computational
cost trade-off. Note that after model deployment, τ can be adjusted anytime without the need for
retraining.

4 Experiments

We evaluate the proposed method on emotion classification dataset [25] using BERT-base model [2]
with ReLU activation function, and compare it with MoEfication [12]. All of the models finetuned in
our experiments start from the same pretrained checkpoint. We use the parameter clustering and MLP
router variant of MoEfication. We set the number of experts to 128 and use 2-layer MLP routers with
a hidden size of 128. See the supplementary material for the full list of training hyperparameters.

To demonstrate the contribution of each piece of DSTI, we train additional variants of our method
with different components ablated out and show the results of our study averaged over three random
seeds in Figure 1. The models are evaluated in terms of task performance at different compute
budgets, adjusting k for methods with static Top-k expert selection, or τ in case of Dynamic-k. For
the comparison, we also provide the score of the standard dense BERT-base model. It can be seen that
the proposed DSTI offers a significantly better trade-off between computational cost and accuracy
than MoEfication, and each of its components plays a substantial role in the final performance.
We emphasize that due to the widespread availability of efficient MoE layer implementations, the
presented results translate to real speedups on both CPUs and GPUs.

4.1 Expert activation patterns

To explore the scale of variability of the computational effort introduced by Dynamic-k routing, we
investigate the distribution of executed expert counts in different layers of the model. Figure 2 shows
the selection frequency of a given fraction of experts for various τ thresholds for DSTI trained with
and without sparsity enforcement. As expected, models with higher activation sparsity require a
smaller number of experts to meet the defined threshold. It is important to highlight the range of
executed experts count, which for exemplary τ = 0.75 with sparsity enforcement can vary between
5% and 40% in most of the layers. This suggests that computational adaptability mechanisms are
crucial for efficient inference in Transformer-based models.

1It is worth noting that Zhang et al. [12] states that their learning objective is prediction of the sum of positive
values in each expert, but in the source code for the paper they instead frame it as a classification problem and
use modified binary cross entropy loss to train routers.
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Figure 1: Accuracy vs. averaged computational cost for BERT-base, MoEfication, DSTI, and the
ablated variants on emotion task. DSTI demonstrates superior performance on every considered
computational budget, and each of its components improves the performance upon the MoEfication
baseline.
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Figure 2: Distribution of the number of executed experts in each layer. The high variability of that
number explains the computational gains from using Dynamic-k.

5 Conclusions

In this paper, we have proposed DSTI, a method that obtains computationally effective Transformer
MoE models through enforcing activation sparsity, training routers with a novel regression objective,
and using Dynamic-k gating. Our approach demonstrates that activation sparsity is a key factor for
achieving efficient inference. With Dynamic-k gating we show that the intuition with different inputs
having varying levels of difficulty is also true in deep learning models, and it is wasteful to assume
a fixed amount of computation for each input. DSTI outperforms a simpler sparsification method,
MoEfication, on various compute budgets and reduces the cost of inference by almost 60% with
negligible impact on model accuracy.

5.1 Limitations and Future work

Following the previous works, we conduct our experiments using a ReLU-based model. While Zhang
et al. [12] showed that a GELU-based model could be converted to a ReLU-based one, we would like
to adopt DSTI to work with any Transformer-based model without conversion. Losses that enforce
activation sparsity could be a promising direction to achieve this goal. Moreover, we would like
to extend the analysis of our method to different tasks and modalities beyond text classification to
show its generality. Finally, as we believe our method is orthogonal to the other inference speed-up
methods, such as quantization or early-exits, we would like to explore the interplay between DSTI
and those methods.
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Appendix

Training details

In all our experiments we finetune model for 10 epochs using AdamW [26] algorithm with a 2×10−5

learning rate and batch size 64. Then, we select the best model according to the accuracy on the
held-off validation dataset. For training routers we set constant learning rate 10−3 and train them
for 20 epochs with Adam optimizer [27] and batch size 512. We set αs = 10−4, which significantly
increases model sparsity on average from 13% of non-zero activations in the FFN layer to 1%, while
preserving model performance.

Enforcing activation sparsity

Table 1: Enforcing activation sparsity in BERT-base with different regularization strength αs. We can
see that applying minor regularization significantly increases model sparsity without diminishing the
performance. These results are consistent with prior works [13].

αs Accuracy Sparsity

— 93.90% 13.05%
10−6 94.80% 4.29%
10−5 94.05% 1.95%
10−4 93.75% 0.90%
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