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Abstract

MEGA is a recent transformer-based architecture, which utilizes a linear recurrent
operator whose parallel computation, based on the FFT, scales as O(LlogL), with
L being the sequence length. We build upon their approach by replacing the linear
recurrence with a special temporal convolutional network which permits larger
receptive field size with shallower networks, and reduces the computational com-
plexity to O(L). The resulting model is called TCNCA, a Temporal Convolutional
Network with Chunked Attention. We evaluate TCNCA on EnWik8 language
modeling, long-range-arena (LRA) sequence classification, as well as a synthetic
reasoning benchmark associative recall. On EnWik8, TCNCA outperforms MEGA,
reaching a lower loss with 1.37×/1.24× faster forward/backward pass during train-
ing. The dilated convolutions used in TCNCA are consistently and significantly
faster operations than the FFT-based parallelized recurrence in GPUs, making
them a scalable candidate for handling very large sequence lengths: they are up
to 7.07×/2.86× faster in the forward/backward pass for sequences up to 131 k.
Further on LRA, TCNCA achieves, on average, 1.28× speed-up during inference
with similar accuracy to what MEGA achieves. On associative recall, we find that
even a simplified version of TCNCA, without excessive multiplicative and additive
interactions, remains superior or competitive to MEGA on a range of sequence
lengths and vocabulary sizes.

1 Introduction

The Transformer [1] is a powerful class of neural networks which has found success in a variety of
tasks including image processing [2], physical system modeling [3], drug discovery [4], but perhaps
most notably, language modeling [5], [6], [7]. While undeniably a strong candidate for a universally
applicable neural network, the operator at its backbone, attention, faces some crucial limitations. We
consider two limitations, including the O(L2) computational and memory complexity [8] of attention,
as well as its poor performance in long sequence classification, namely on the long-range-arena
(LRA) dataset [9], where it is drastically outperformed by linear recurrent models [10–12]; however,
these models lag behind the transformer on language modeling [13]. A more extensive review of
related works can be found in Appendix A.

A recent neural network, MEGA [14], combines the strengths of linear recurrences and attention
in a manner which scales sub-quadratically. Concretely, MEGA combines the damped exponential
moving average (EMA) known from time-series analysis [15], with chunked attention which operates
on fixed-size non-overlapping blocks in the input sequence. It achieves scores competitive with the
state-of-the-art in a range of disparate tasks including language modeling on the EnWik8 dataset [16]
and LRA sequence classification [9].
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We focus on EMA, which maps xt ∈ Rh to yt ∈ Rh using the parameters α, δ ∈ [0, 1]h, h ∈ N+ as:

yt = α⊙ xt + (1− α⊙ δ)⊙ yt−1. (1)

This operation can be directly computed as per equation 1. However, during training and non-causal
data processing, it can equivalently be computed as a convolution with a kernel which is of the same
shape as the input data [14]. This convolution can be efficiently performed in O(LlogL) time in the
frequency domain [17], [10]. This mode of operation is interesting because it allows for a higher
utilization of GPUs’ parallel processing capabilities [17].

In this work, we investigate the performance and runtime effects of replacing the bottleneck
EMA within the MEGA processing stack with a dedicated temporal convolutional neural network
(TCN) [18–21], an operator which scales linearly with the sequence length. The TCN employs
dilated convolutions, which allow the network to achieve a large receptive field with few parameters.
TCNs are typically implemented as a cascade of residual blocks, in which each block applies two
dilated convolution operations with equal dilations. In order to quickly reach large receptive fields,
the dilation exponentially increases with each successive block [18, 21]. Our model differs from what
is usually used in literature in that it only includes a single dilated convolution operation per residual
block. This construction allows for a larger receptive field size with shallower networks. Details are
given in Appendix E. We call the resulting model, which combines a TCN with chunked attention,
TCNCA.

We find that on EnWik8 language modeling, TCNCA outperforms MEGA [14] (and Transformer-
XL [22]), achieving a BPC score of 1.01, in addition to 1.37×/1.24× faster forward/backward pass.
On a synthetic reasoning benchmark, associative recall, a simplified version of TCNCA (see Appendix
C) is competitive with MEGA over a range of different sequence lengths and vocabulary sizes. On
64-dimensional sequences of lengths ranging from 8192 to 131072, the employed dilated convolution
operator is up to 7.07× and 2.86× faster than the parallelized EMA of MEGA in the forward and
backward pass, respectively. This signifies the scalability of the approach to long sequences thanks to
its linear complexity. On the LRA classification tasks, TCNCA slightly underperforms MEGA by
only 0.1% on average, while achieving 1.28× inference speedup.

2 The TCNCA model

An overview of the model and the operations used therein is shown in Figure 1. At a high-level, the
model can be thought of as a concatenation of a temporal convolutional neural network (Figure 1b)
with chunked attention (Figure 1d). The sketch is simplified; the actual construction follows the one
defined by MEGA [14], and is outlined in Appendix C.

Figure 1a shows a depth-N sequence processing stack. Each of the N -many layers consists of a
temporal convolutional network and chunked attention, both of which operate along the time axis,

Figure 1: (a) Simplified high-level overview of the TCNCA model. (b) The TCN residual block. (c)
Connectivity of a TCN with kernel size K = 3, dilation factor f = 3, and depth D = 2. (d) Chunked
attention operation which computes query-key similarities in fixed-width non-overlapping windows,
shown with chunk size 3.
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followed by a multi-layer perceptron (MLP) operating along the feature axis. For each embedding
dimension, a TCN with its own set of trainable parameters is instantiated.

The TCN block in Figure 1a is expanded in Figure 1b. Three integer hyperparameters govern the TCN
construction; kernel size K, dilation factor f , and depth D. The TCN consists of D-many residual
blocks, each of which implements a dilated convolution operation whose dilation is determined by
the layer index i = 0, ..., D− 1 and f as f i. In Figure 1c, we show the connectivity pattern of a TCN
with D = 2, f = 3 and K = 3.

Following the TCN, which scales as O(L), we have chunked attention. As already noted, it computes
the query-key similarities only within fixed-size non-overlapping windows within the sequence, as
shown in Figure 1d. This is also an O(L) operation.

3 Experiments

EnWik8 language modeling EnWik8 is a dataset which comprises a subset of the English
Wikipedia. We train and evaluate our model on EnWik8 character-level language modeling in
the same manner as was done in MEGA [14]. The results are shown in Table 1. More details are
given in Appendix F.

Table 1: EnWik8 bit-per-character scores. Results marked with a star (*) are taken from [14].
Model Transformer-XL MEGA TCNCA
BPC 1.06* 1.02* 1.01
Parameters 41M 39M 39M

TCNCA outperforms the Transformer-XL [22] as well as MEGA [14], reaching a 1.01 BPC score.
For transparency’s sake, we have to note that the scores reported in relevant literature are rounded
down to 2 digits after the decimal point, hence we do the same. With 4 digits after the decimal point,
the score we achieve is 1.0144 BPC.

We measure the forward and backward pass speed-up on a 16GB Nvidia V100 GPU during training.
During training, TCNCA achieves a 1.373× speed-up in the forward pass and a 1.245× speed-up
in the backward pass, compared to MEGA. However, speeding up the inference runtime of the
generative tasks is not straightforward and is one of the limitations of this work (see Appendix B).

Long-range-arena Long-range-arena [9] comprises six classification tasks with sequence lengths
ranging from 1024 to 16384. The benchmarks are varied, including pattern detection, sentiment
classification, mathematical reasoning, and visual logical reasoning. We use the same dimensionalities,
hyperparameters, and attention chunk sizes as those used in MEGA [14], and select the TCN
construction as per Appendix D. Results are shown in Table 2.

Although TCNCA lags behind the state-of-the-art state space method, S5 [12], by 2.3%, it is on par
with MEGA-chunk (just an average of a 0.1% lower accuracy) while achieving an average inference
speed-up 28%.

Table 2: Long-range-arena accuracies (%) of state-of-the-art models. The Transformer scores are
taken from the reproduction in MEGA [14]. All other results, excluding TCNCA, were taken from
the respective papers. The last row reports the end-to-end inference speed-up of TCNCA measured
against MEGA-chunk.

Model ListOps Text Retrieval Image Path Path-X Average
Transformer [1] [14] 37.1 65.2 79.1 42.9 71.8 50 57.7
S4D [23] 60.5 86.2 89.5 89.9 93.1 91.9 85.2
S5 [12] 62.2 89.3 91.4 90.1 95.3 98.6 87.8
LRU [11] 60.2 89.4 89.9 89.0 95.7 96.0 86.7
SGConv [24] 61.4 89.2 91.1 87.97 95.4 97.8 87.1
MEGA chunk [14] 58.7 90.2 91.0 85.8 94.4 93.8 85.6
TCNCA 59.6 89.8 89.4 86.8 94.5 92.7 85.5
Speedup (forward pass) 1.05× 1.25× 1.18× 1.24× 1.25× 1.73× 1.28×
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Table 3: Associative recall accuracy (%) with varying sequence lengths and vocabulary sizes.
Vocabulary size 10 Vocabulary size 20

Seq. len. MEGA TCNCA-simple MEGA TCNCA-simple
64 98.8 100 62.4 56
1024 99.6 100 99.4 97.6
4096 100 100 100 99.6
8192 98.2 100 98.6 99.2

Associative recall This synthetic benchmark requires faithful attention and measures the basic
reasoning capability of neural sequence models, remembering associations between pairs of tokens
[25] [13]. For example, given a sequence of tokens a 2 c 4 b 3 d 1, if the model is prompted with a,
the expected output is 2, the token following a in the input sequence. If it were prompted with b, the
correct output would be 3, etc.

As mentioned, TCNCA is based on MEGA [14], and as such it involves an intricate interconnection
between the different modules it is composed of. We report TCNCA scores for the associative recall
in a setting in which the module interconnection is significantly simplified by eliminating excessive
multiplicative and additive interactions (TCNCA-simple, see Appx. C). Over the investigated range of
vocabulary sizes and sequence lengths in Table 3, TCNCA-simple remains competitive with MEGA.

Parallelized EMA vs. dilated convolution runtime measurements We measure the forward and
backward-pass runtimes of a dilated convolutional network and a parallelized EMA recurrence over
a range of sequence lengths, and report the results in Figure 2. For a clear comparison of the two
operations, we strip both of them of residual connections, non-linearities as well as normalization
layers. They are roughly parameter-matched, with EMA having 64 parameters and the dilated
convolution having 68 parameters. The dilated convolutional network is configured with K = 17,
D = 4, and f is increased until the receptive field of the network is larger than the sequence length it
operates on. The benchmarks were run on an Nvidia V100 with 16 GB of VRAM. Further details are
given in Appendix H.

(a) Forward pass runtime measurements. (b) Backward pass runtime measurements.

Figure 2: Run-time comparisons between a parallel linear recurrence including kernel generation
(blue) and a dilated CNN (orange) for the forward and backward pass, with varying sequence lengths.
The dilated convolutional network is consistently the faster operation.

4 Conclusion

In this work inspired by ground-breaking results from the team behind MEGA [14], we show that
a TCN and chunked attention hybrid model, TCNCA, is able to compete with the state-of-the-art
models on Enwik8 language modeling and Long-Range-Arena sequence classification. During
training and non-causal inference workloads, TCNCA consistently exhibits inference speed-ups in
the range of 5% to 73% compared to MEGA-chunk. We show that a simplified version of TCNCA
solves the associative recall synthetic reasoning benchmark with a similar accuracy as does MEGA.
Finally, we show that on the Nvidia V100 GPU, a dilated convolutional network is consistently faster
than an FFT-based parallelized EMA recurrence over a wide range of sequence lengths. Some of the
limitations of our approach are detailed in Appendix B.
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