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Abstract

We study recent techniques targeted to improve the parameter efficiency and
modeling quality of large language models (LLMs). We experiment with recently-
proposed training approaches, such as overtraining for a large number of tokens-per-
parameter on a high-quality dataset, carefully tuning hyperparameters with maximal
update parameterization (µP), and adjusting learning rate and batch size. We also
test recent state-of-the-art model features, namely, rotary and ALiBi position
embeddings, and the Swish-gated linear unit (SwiGLU). We find a pretraining
recipe that improves over Cerebras-GPT µP validation loss by 12.7% for the same
parameter budget.
With this recipe, we train the state-of-the-art 3B parameter foundation model, called
the Bittensor Language Model ("BTLM-3B-8K"), which is sized to deploy easily
on memory or compute-constrained devices. Over a broad set of downstream tasks,
BTLM beats all other 3B foundation models by 2-5.5%, making it competitive with
some 7B parameter models that are 2.5× larger. BTLM-3B-8K is available under
an Apache 2.0 license on Hugging Face: https://huggingface.co/cerebras/
btlm-3b-8k-base.

1 Introduction

Large Language Models (LLMs) can perform a diverse collection of text-based tasks with brief
instructions [2], making them useful in many settings. Models with at least 7 billion parameters are
considered to provide strong language and reasoning capabilities. Unfortunately, 7B models are hard
to deploy for inference on devices with memory or compute limitation, because even when quantized,
they require 6-9GB of memory, almost double that of a device like the iPhone 13 (4GB).

We aim to develop a state-of-the-art 3B model capable of inference on memory- and compute-
constrained devices. We leverage open-source scaling laws, starting from Cerebras-GPT [9], which
provide compute-optimal projections for LLM model quality. By training small models, we ablate
the effects of recent LLM techniques to improve parameter efficiency and model quality.
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In this process, we identify a new LLM training recipe that improves over Cerebras-GPT µP perfor-
mance by 12.7%, improving parameter efficiency. We test training algorithm advancements such as
overtraining on many tokens-per-parameter [14, 33] and maximal update parameterization to improve
training dynamics and hyperparameter tuning [35]. We also test model architecture changes that
improve model quality. Specifically, we test rotary (RoPE) [29] and ALiBi position embeddings [24],
and the Swish-gated linear unit (SwiGLU) [27]. Finally, we identify a better learning rate decay
schedule that improves loss when training on a large number of tokens per parameter.

We use our new recipe to train the state-of-the-art 3B parameter foundation model, called the Bittensor
Language Model ("BTLM-3B-8K"). BTLM-3B-8K is sized to deploy easily on memory- or compute-
constrained devices, such as laptops and mobile phones. Over a broad set of downstream tasks,
BTLM beats all other 3B foundation models by 2-5.5%, and it is competitive with some 7B parameter
models, which require 2.5× more inference memory and compute.

2 Model Architecture and Training Experiments

In this section, we experiment with state-of-the-art training approaches and architectural changes and
measure how they affect training efficiency. Overtraining on many tokens-per-parameter improves
loss by 7.7% for the same parameter budget, while roughly even loss improvement can be attributed
to training algorithm adjustments (2.8%) and model architecture features (2.7%). Overall the
combination of these features gives a 12.7% improvement in validation loss over the Cerebras-GPT
µP baseline.

Baseline Model Our baseline model is Cerebras-GPT µP with 111M parameters, trained with 20
tokens per parameter (“TPP”) on The Pile dataset [10] at sequence length of 2,048 tokens. Table 1
lists the model and training hyperparameters for our baseline model (“Cerebras-GPT”), the features
we experiment with, and our final selected training recipe.

Table 1: Overview of baseline, experimentally tested features, and final BTLM recipe.
Features Cerebras-GPT Experiments BTLM Recipe
Model Dimensions dmodel = 768 nlayers = 10 dhead = 64
Activation Function GeLU SwiGLU SwiGLU
Position Embeddings Learned RoPE, ALiBi ALiBi

Batch Size (Sequences) 120 120 – 420 420
LR Decay Ratio (rdecay) 10× 10× – 370× 118× (TPP/2)
µP Hyperparameters

Proxy model’s layer width (dmodel,base) 256 256 256
Base Learning Rate (ηbase) 6e-3 8e-3 – 2e-2 1.2e-2
Weight Initialization Std. Dev. (σbase) 0.08 0.07 – 0.12 0.073
Embedding Multiplier (memb) 10.0 1.0 – 20.0 14.6
Output Logits Multiplier (mout) 1.0 0.35 – 3.0 2.22

2.1 Model Architecture Improvements

SwiGLU We replace the GeLU non-linearity with the SwiGLU activation function [27]. To ensure
similar compute FLOPs to the GeLU model, which uses feed-forward network filter size dffn =
4dmodel, we adjust the SwiGLU filter size to dffn = 8

3dmodel to account for the additional projection.

ALiBi and RoPE We experiment with both ALiBi [24] and RoPE [4] positional embeddings. Unlike
learned embeddings, these methods inject position information into the model at every layer, and
not just at the initial one, which leads to performance gains. Here, we focus exclusively on the
performance observed at a context length of 2,048.

2.2 Training improvements

Overtraining on many Tokens-Per-Parameter We follow prior studies that show training with
higher TPP can improve model quality for a given parameter count. In particular, we aim to train a
2.6B paramter model on SlimPajama (627B tokens or 236.4 TPP), so we choose that TPP to study at
the small scale.
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LR Decay Ratio We execute a line search to determine the optimal learning rate decay ratio,
discovering a heuristic value that approximates TPP/2, which aligns with a 10x decay when set at 20
TPP. Comprehensive details are available in Appendix A. The experimental values for rdecay can be
found in Table 1.

µP We follow [9] µP hyperparameters (HPs) search experiments explained in the Appendix G.2.
In our experiments we found its beneficial to use different µP parameters as outlined in the BTLM
Recipe column in Table 1.

2.3 Ablation Results and Discussion

We compare modeling and training techniques by looking at the loss improvement in the Table 2 and
the trade-offs between loss improvements versus increase in the parameter counts in the Figure 1.
Additionally, a plot illustrating FLOP budget against loss can be found in Appendix C for further
reference. Overtraining to 236 TPP gives a big parameter-efficiency boost, improving loss by 7.7% at
the expense of 11.8x more FLOPs. According to Cerebras-GPT scaling laws, this is FLOP-inefficient
by 8.2%, because it is well past the TPP point of diminishing returns. But it is a big overall gain
that we deem to be worth it for compactness of the model. The next biggest gains come from tuning
the training hyperparameters (muP and learning rate schedule), giving 2.8% gain. Finally, model
architecture features, SwiGLU and ALiBi (or RoPE) show 2.7% gain when combined.

Figure 1: Cross-entropy loss at specific parameter counts,
highlighting how modifying tested features contributes to
improved parameter efficiency.

Table 2: Ablation results showing loss
improvements and changes in training
FLOPs for each ablation starting from
the Cerebras-GPT µP, 111M baseline.

Variant Loss FLOPs
Baseline: Cerebras-GPT µP,
111M

2.586 2.23e18

TPP: 20 → 236 2.386 2.63e19
rdecay : 10× → 118× 2.328 2.63e19
Act.: GeLU → SwiGLU 2.296 2.63e19↰

RoPE 2.259 2.60e19↰

ALiBi 2.267 2.60e19↰

µP Tuning 2.258 2.60e19

3 Scaling to BTLM-3B-8K

In this section, we specify the architecture and training configuration for BTLM-3B-8K. We present
downstream task results, which show that BTLM beats all other 3B foundation models by 2-5.5%
and is even competitive with some 7B parameter models.

3.1 BTLM Architecture and Training Configuration

Architecture BTLM-3B-8K is a GPT-3-like autoregressive transformer decoder model with dense
multi-head attention. Based on experiments in Section 2.2, we incorporate three changes into the
architecture. First, BTLM uses µP, adding scaling factors to control activation magnitudes and improve
training dynamics. Further, we use the SwiGLU nonlinearity and ALiBi position embeddings.

Hyperparameters BTLM-3B-8K uses common dimensions for a “3B” parameter model (actual
parameter count is 2.6B). Hidden size is 2560, and it contains 32 decoder blocks. The multi-head
attention contains 80 heads, and the feed-forward networks have filter size 6826. We train with the
best µP hyperparameters from our sweep (see µP parameters in “BTLM Recipe” column in Table 1).
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Table 3: Average accuracy across groups of downstream tasks. All tasks use 0-shot evaluation, except
MMLU which is 5-shot.

Model Pre-training (↓) Downstream task accuracy (% ↑)
Tokens FLOPs CSR WK RC MMLU Code

StableLM-Alpha-v2 [34] 2.7B 1.1T 2.1e22 58.0 31.7 48.1 26.6 9.7
RedPajama-INCITE [32] 2.6B 800B 1.5e22 56.7 34.6 48.4 27.0 5.0
OpenLLaMA 3B v2 [12] 3.3B 1.0T 2.2e22 57.7 33.7 47.7 26.6 9.5
BTLM-3B-8K (Ours) 2.6B 627B 1.3e22 59.9 36.6 50.0 28.1 9.9
RedPajama-INCITE [32] 6.7B 1.0T 4.4e22 59.5 40.1 50.0 27.5 5.2
OpenLLaMA [12] 6.6B 1.0T 4.3e22 58.6 41.7 50.2 30.1 7.7
Mosaic MPT [31, 30] 6.7B 1.0T 4.4e22 63.2 42.7 50.7 28.5 15.4
LLaMA [33] 6.6B 1.0T 4.3e22 63.7 45.3 52.1 35.2 12.1

Training Dataset We train BTLM on a high quality dataset, SlimPajama [28] (Apache 2.0) (a
deduplicated version of RedPajama [8]), which contains 627B tokens (236 TPP for a 2.6B parameter
model). To ensure BTLM’s ability to perform inference on long context lengths, we train the model
in two phases: 470B tokens with a context length of 2,048 and 157B tokens with 8,192.

Optimizer, Training Schedule We train with the AdamW optimizer using hyperparameters β1 =
0.9, β2 = 0.95, ϵ = 10−8, weight decay of 0.1 and gradient clipping to a maximum norm of 1.0. We
warm the learning rate to its maximum value of 1.2e-2 over 375M tokens, and then linearly decay by
a factor of 118.2× to 0.85% of the base.

3.2 BTLM-3B-8K Evaluation

We evaluate models on zero-shot and few-shot downstream tasks using the Eleuther LM evaluation
harness ([11]) in the Table 32. We compare BTLM-3B-8K with many 3B and 7B parameter open-
source foundation models on a broad set of task domains: common sense reasoning (CSR) [1, 26, 36,
25, 21], world knowledge (WK) [7, 17, 16], reading comprehension (RC) [18, 6], massive multitask
language understanding (MMLU) [13], and coding [3].

BTLM-3B-8K achieves state-of-the-art performance among 3B parameter models, outperforming
others by a substantial margin while using the least pretraining compute and data. BTLM-3B-8K
was trained on 627B tokens, significantly less than RedPajama-INCITE-3B at 800B tokens and
OpenLLaMA 3Bv2 at 1T tokens. BTLM-3B is even competitive with 7B models, outperforming
RedPajama-INCITE-7B [32], OpenLLaMA-7B [12], and StableLM-Alpha-7B-v2 [34] in various task
domains, despite using 3.3x less training compute and 1.6x less training data. We believe that key
contributors to BTLM’s performance are the high-quality, deduplicated SlimPajama corpus, tuned µP
hyperparameters,optimized rdecay , SwiGLU nonlinearity, and ALiBi position embeddings.

We do not perform an ablation to quantify the efficiency benefits of training on deduplicated data.
Also even greater parameter efficiency could have been achieved by training for more than 236.4 TPP.

4 Conclusion

We comprehensively study recent large language model techniques to improve parameter efficiency
and modeling quality. In small-scale experiments, we find a training recipe that improves over
Cerebras-GPT µP validation loss by 12.7% at the same parameter budget. This improvement can
be attributed to overtraining on many Tokens-Per-Parameter (7.7%), training algorithm adjustments
(2.8%) and model architecture features (2.7%). We demonstrate the parameter efficiency improvement
from this recipe by training the Bittensor Language Model ("BTLM-3B-8K"), a 3B parameter model
sized to deploy easily on memory or compute-constrained devices. Over a broad set of downstream
tasks, BTLM beats all other 3B foundation models by 2-5.5%, making it competitive with some 7B
parameter models that are 2.5× larger.

2Full results are listed in Appendix E
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Appendix

A Learning Rate Decay Sweep

To test the learning rate decay ratio scaling heuristic of rdecay = TPP/2 presented in Section 2.2, we
sweep the learning rate decay ratio (rdecay) for a 111M model trained on the Pile dataset. In Figure 2
we find that rdecay larger than TPP/2 improves Pile validation loss for both 370 TPP large batch size
and 236.4 TPP small batch size setting, suggesting this heuristic is useful. Furthermore, [14] found
rdecay = 10 to be optimal for 20 TPP models, also coinciding with our TPP/2 heuristic.

Figure 2: Shows greater than 20tpp 10x proportional could be best. But this is in a small BS setting
relative to the final setup.

B µP Hyperparameters Search Details

Considering the substantial impact of maximal update parameterization (µP) on the stability during
training, precision of scaling law predictions, and the quality of the model, we have integrated it into
our experimental framework. We follow [9] µP hyperparameters (HPs) search experiments explained
in the Appendix G.2. Transferring the learning rate can be less effective when the proxy model
is trained with a batch size smaller than the critical batch size, especially when the larger model
is trained at or above this critical batch size [20]. To mitigate this sub-optimality weincorporate a
larger batch size in this experiment to optimize learning rate transfer. We provide the full list of µP
parameters as well as their experimental ranges in the Table 1.

C FLOP efficiency

Figure 3 demonstrates cross-entropy loss for different modeling and architectural changes and their
corresponding loss improvements at different FLOP budgets.

D Training Loss Stability

It is common for LLMs to encounter loss instability which can lead to loss divergence and require
careful manual interventions to recover training ([37, 5]). Figure 4 shows that BTLM training
progressed with excellent loss stability, especially given how large our learning rate is relative to other
models. We attribute this stability to the maximal update parameterization which controls activation
explosion as model width is scaled up. BTLM only experienced two loss spikes: one at step 15 (59M
tokens) and another at the transition to 8,192 context length training as the model adapts to longer
sequences. The training fully recovered from both spikes, and they did not seem to impact the overall
trajectory of the loss curve.
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Figure 3: Cross-entropy loss at specific FLOP counts. We demonstrate how improving parameter
efficiency might negatively effect compute efficiency, and needs to be studied together.

Figure 4: SlimPajama train cross-entropy loss versus training tokens. We train for 470B tokens with
sequence length of 2,048 and 157B tokens with sequence length of 8,192.

E Full Downstream Evaluation Results

We demonstrate full downstream evaluation results on the standard tasks in the Table 4 with average
results for individual groups such as common sense reasoning (CSR), world knowledge (WK), reading
comprehension (RC), massive multitask language understanding (MMLU), and code tasks. Tables 5,
6, 7 contain detailed results for each task in the grouped categories. We provide results on long-context
benchmarks [15, 38, 19] in the Table 8 and on the Figure 5. Finally, we evaluate BTLM model on
the safety benchmarks and outlines results in the Table 9. Overall BTLM exhibits bias, toxicity, and
truthfulness like existing models. Nevertheless, we recommend exploring harm mitigation strategies
in deployment contexts [22]. Additionally, more careful dataset curation techniques such as filtering
not-safe-for-work URLs [23] showed to be helpful in reducing model harmfulness.

F BTLM-3B-8K SlimPajama Extrapolation

To further assess BTLM’s extrapolation capability, we evaluate on the SlimPajama test set with
32,768 context length and plot loss at each token position in Figure 6. We evaluate checkpoints at
different points during training to gain insight into how extrapolation capability evolves.

[24] report that ALiBi grants impressive extrapolation properties with a 255M parameter model trained
on 103M tokens. This corresponds to just 0.4 tokens TPP, well below the 20 TPP recommendation
from [14]. With our 1.2 TPP checkpoint we observe similar extrapolation performance as [24] but
this result appears to only be possible due the overall loss being quite poor quite early in training.
As training progresses, our model learns to “overfit” to the current context length. We observe that
the final checkpoint from the 2,048 context length training phase (75% complete) cannot extrapolate
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Table 4: Average accuracy on common sense reasoning (CSR), world knowledge (WK), reading
comprehension (RC), massive multitask language understanding (MMLU), and code tasks. All tasks
are using 0-shot evaluation, except MMLU which is 5-shot. Code accuracy refers to HumanEval
pass@1 accuracy.

Model Pre-training (↓) Downstream task accuracy (↑)
Tokens FLOPs CSR WK RC MMLU Code

StableLM-Alpha-3B-v2 2.7B 1.1T 2.10e22 58.0 31.7 48.1 26.6 9.7
RedPajama-INCITE-3B 2.6B 800B 1.50e22 56.7 34.6 48.4 27.0 5.0
OpenLLaMA 3Bv2 3.3B 1T 2.20e22 57.7 33.7 47.7 26.6 9.5
BTLM-3B-8K 2.6B 627B 1.3e22 59.9 36.6 50.0 28.1 9.9
StableLM-Alpha-7B-v2 6.7B 1.1T 4.90e22 61.2 38.3 48.1 26.6 15.0
Falcon-7B 6.9B 1.5T 7.00e22 63.4 45.0 51.1 26.3 0.0
RedPajama-INCITE-7B 6.7B 1T 4.40e22 59.5 40.1 50 27.5 5.2
Falcon-RW-7B 6.3B 350B 1.5e22 61.0 39.1 49.8 26.2 N/A
OpenLLaMA 7B 6.6B 1T 4.30e22 58.6 41.7 50.2 30.1 7.7
MPT-7B 6.7B 1T 4.40e22 63.2 42.7 50.7 28.5 15.4
XGen-7B-8K 6.7B 1.5T 7.10e22 60.7 40.0 51.5 35.9 14.2
OpenLLaMA 7Bv2 6.6B 1T 4.30e22 60.5 40.7 50.7 40.4 14.7
LLaMA-7B 6.6B 1T 4.30e22 63.7 45.3 52.1 35.2 12.1
LLaMA-2-7B 6.6B 2T 9.30e22 63.4 47.5 53.2 45.8 13.7

Table 5: Zero-shot validation accuracy on each common sense reasoning task, except for Open-
BookQA which uses the test split.

Model Common Sense Reasoning (↑)
PIQA SIQA HellaSwag WinoGrande OBQA Avg.

RedPajama-INCITE-Base-3B-v1 73.8 44.9 63.2 63.6 37.8 56.7
OpenLLaMA 3Bv2 76.2 44.8 65.2 63.3 39.2 57.7
StableLM-Base-Alpha-3B-v2 77.2 44.1 65.8 62.3 40.8 58.0
BTLM-3B-8K 77.2 46.5 69.8 65.8 40.4 59.9
OpenLLaMA 7B 74.5 46.9 64.7 66.8 40.0 58.6
RedPajama-INCITE-7B-Base 77.4 45.1 70.4 64.0 40.4 59.5
OpenLLaMA 7Bv2 78.2 47.0 69.6 65.8 42.0 60.5
XGen-7B-8K-Base 75.9 47.9 74.2 65.5 40.2 60.7
Falcon-RW-7B 79.1 46.6 72.1 65.7 41.4 61.0
StableLM-Base-Alpha-7B-v2 79.8 44.1 71.7 69.1 41.2 61.2
MPT-7B 80.6 48.1 76.2 68.1 42.8 63.2
Falcon-7B 80.5 49.1 76.3 67.1 44. 63.4
LLaMA-2-7B 79.0 49.0 76.0 68.9 44.2 63.4
LLaMA-7B 79.2 48.5 76.2 70.0 44.4 63.7

well beyond 2,048 context length. This demonstrates that ALiBi alone does not provide competitive
extrapolation capability, and we suggest using variable context length training schedules to improve
performance. The final BTLM-3B-8K model trained on 8,192 with a context length can extrapolate
well up to ≈9,216 context length but suffers loss degradation beyond this.
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Table 6: Zero-shot accuracy on reading comprehension and world knowledge tasks. We report test
accuracy except for BoolQ, where we report validation accuracy.

Model Reading Comprehension (↑) World Knowledge (↑)
R-m R-h BoolQ Avg. ARC-e ARC-c NQ TQA Avg.

StableLM-Alpha-3B-v2 41.2 38.9 64.3 48.1 53.8 32.9 5.5 34.5 31.7
OpenLLaMA 3Bv2 40.6 36.8 65.6 47.7 61.9 35.1 6.3 31.5 33.7
RedPajama-INCITE-3B 40.1 37.9 67.4 48.5 61.6 34.4 6.4 36.0 34.6
BTLM-3B-8K 40.6 39.4 70.0 50.0 66.9 37.6 6.9 34.9 36.6
StableLM-Alpha-7B-v2 42.3 38.8 70.2 50.4 59.4 38.1 9.1 46.5 38.3
Falcon-RW-7B 41.7 38.6 69.1 49.8 67.9 38.7 9.8 39.9 39.1
RedPajama-INCITE-7B 41.2 38.2 70.8 50.1 69.3 39.2 5.5 46.2 40.1
OpenLLaMA 7B 42.3 37.7 70.5 50.2 67.1 37.1 12.2 50.3 41.7
MPT-7B 40.3 38.0 73.7 50.7 70.0 41.9 11.9 47.1 42.7
OpenLLaMA 7Bv2 41.2 38.7 72.3 50.7 68.0 40.2 7.9 46.9 40.7
Falcon-7B 42.3 37.2 73.8 51.1 70.8 43.5 14.6 50.9 45.0
XGen-7B-8K 41.2 39.0 74.2 51.5 66.9 41.1 07.2 44.6 40.0
LLaMA-7B 40.9 40.3 75.0 52.1 72.9 44.7 11.7 52.1 45.3
LLaMA-2-7B 42.3 39.5 77.8 53.2 74.6 46.3 12.5 56.6 47.5

Table 7: Five-shot accuracy on the Massive Multitask Language Understanding (MMLU) benchmark
and zero-shot performance on HumanEval (HE) with pass@1 and pass@100 on the test splits.

Model
MMLU (↑) Code (↑)

Hum. STEM Soc. Sci. Other Avg. HE@1 HE@100
StableLM-Alpha-3B-v2 27.1 26.2 24.9 28.2 26.6 9.7 33.3
OpenLLaMA 3Bv2 25.7 26.0 26.6 28.5 26.7 9.5 32.9
RedPajama-INCITE-3B 26.2 26.6 29.6 25.9 27.1 5.0 13.3
BTLM-3B-8K 27.6 27.1 27.9 29.8 28.1 9.9 29.7
Falcon-RW-7B 27.3 23.2 25.6 27.7 26.0 N/A N/A
Falcon-7B 26.9 25.9 24.4 27.6 26.2 0.0 1.8
RedPajama-INCITE-7B 26.2 27.4 30.6 26.4 27.7 5.2 19.2
MPT-7B 27.4 28.1 29.2 29.7 28.6 15.4 54.2
OpenLLaMA 7B 28.4 28.4 31.3 32.9 30.3 7.7 24.9
LLaMA-7B 34.0 30.6 38.4 38.2 35.3 12.1 35.9
XGen-7B-8K 33.6 29.8 39.5 41.6 36.1 14.2 41.5
OpenLLaMA 7Bv2 37.0 33.4 45.4 47.0 40.7 14.7 47.3
StableLM-Alpha-7B-v2 42.6 36.6 49.3 51.2 44.9 15.0 44.9
LLaMA-2-7B 43.1 36.9 51.7 52.6 46.1 13.7 43.6

Table 8: ROUGE scores on the QMSum and GovReports long text summarization tasks. To test the
interpolation regime for models, we only evaluate samples less than 8,192 tokens in length.

Model Pretraining (↓) QMSum (↑) GovReports (↑)
Tokens FLOPs R-1 R-2 R-L R-1 R-2 R-L

XGen-7B-8K 6.7B 1.5T 7.0e22 11.8 3.0 9.1 11.8 5.6 8.3
MPT-7B-8K 6.7B 1.5T 7.1e22 14.8 5.2 11.3 8.5 3.9 6.2
BTLM-3B-8K 2.7B 627B 1.3e22 16.3 2.5 12.4 15.5 5.8 10.2
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Figure 5: Accuracy on the LongEval-Lines and LongEval-Topics long-range retrieval tasks.

Figure 6: SlimPajama test set cross-entropy loss for various BTLM checkpoints at each token
position. Inference is performed on examples packed to 32,768 tokens in length.

Table 9: Zero-shot evaluations on bias, toxicity, and truthfulness benchmarks: TruthfulQA,
WinoGender, ToxiGen, and CrowS-Pairs.

Task Subtask BTLM-3B- OpenLLaMA RedPajama- Falcon- LLaMA-2-
8K 3Bv2 INCITE-7B 7B 7B

TruthfulQA ↑ Multiple choice 35.9 34.8 33.0 34.2 39.0

WinoGender ↑

hers/her/she 60.0 56.7 63.3 60.0 69.2
his/him/he 60.0 56.7 60.0 55.0 62.5
their/them/someone 57.5 60.0 72.5 56.7 69.2
hers/her/she (gotcha) 48.3 37.9 48.3 41.4 62.1
his/him/he (gotcha) 29.0 35.5 51.6 45.2 67.7
All 59.2 57.8 65.3 57.2 66.9

ToxiGen ↓ Multiple choice 50.7 44.6 45.3 52.7 57.8

CrowS-Pairs ↓

Age 75.8 53.9 71.4 71.4 74.7
Disability 69.2 64.6 76.9 67.7 67.7
Gender 67.2 53.8 68.4 66.9 62.5
Nationality 60.2 52.3 62.5 61.1 59.7
Physical Appearance 77.8 66.7 79.2 76.4 77.8
Race/Color 54.1 49.6 59.7 56.7 61.6
Religion 74.8 71.2 76.6 73.9 81.1
Sexual Orientation 86.0 69.9 88.2 86.0 78.5
Socioeconomic Status 69.0 59.5 69.5 69.5 74.2
Average 65.1 56.0 65.6 67.8 66.9
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