
Towards End-to-end 4-Bit Inference
on Generative Large Language Models

Saleh Ashkboos∗
ETH Zurich

saleh.ashkboos@inf.ethz.ch

Ilia Markov∗

IST Austria
ilia.markov@ist.ac.at

Elias Frantar
IST Austria

elias.frantar@ista.ac.at

Tingxuan Zhong
Xidian University

ztx12190033@gmail.com

Xincheng Wang
Xidian University

xcwang.post@gmail.com

Jie Ren
KAUST

jie.ren@kaust.edu.sa

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

Dan Alistarh
IST Austria & Neural Magic
dan.alistarh@ista.ac.at

Abstract

We show that the majority of the inference computations for large generative models
such as LLaMA and OPT can be performed with both weights and activations
being cast to 4 bits, in a way that leads to practical speedups while at the same
time maintaining good accuracy. We achieve this via a hybrid quantization strategy
called QUIK, which compresses most of the weights and activations to 4-bit,
while keeping some outlier weights and activations in higher-precision. Crucially,
our scheme is designed with computational efficiency in mind: we provide GPU
kernels with highly-efficient layer-wise runtimes, which lead to practical end-to-
end throughput improvements of up to 3.1x relative to FP16 execution. Code and
models are provided at https://github.com/IST-DASLab/QUIK.

1 Introduction
Large language models (LLMs) from the Generative Pretrained Transformer (GPT) [19] family have
gained massive popularity. One key contributor to their adoption by enthusiasts has been the ability to
compress them using advanced quantization techniques, e.g., [6, 9, 15, 28], enabling local storage and
efficient generative inference for these models, even on personal computers. Yet, the vast majority of
work on quantization can be categorized into two cases:

• Weight-only quantization methods [6, 7, 9, 12, 15, 15] that help reduce the massive memory-transfer
costs of LLM execution, but do not reduce computation, and thus cannot provide significant speedup
for computationally-bound settings, such as prompt processing or large-batch inference.

• Joint weight-activation quantization methods, which can provide computational improvements, but
either focus exclusively on 8-bit weights and activations [6, 27], or execute with large amounts of
accuracy loss relative to their uncompressed counterparts [22, 28].

Contribution. In this paper, we take a step towards bridging the precision gap between accurate
weight-only (typically 4-bit) and weight-and-activation methods (typically 8-bit), and present prelimi-
nary results showing that a large fraction of the computation in modern LLMs such as OPT [30] and
LLaMA-2 [24] can be performed accurately using 4-bit activations and weights.

∗These authors contributed equally.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/IST-DASLab/QUIK


0.5

0.41

0.91

0.0

-0.8

0.5

0.41

0.91

0.0

-0.8

0.2 -91 0.65 121 0.01

-0.12 29 0.51 -99 0.76

0.88 65 0.53 -85 -0.52

0.51-76-0.1843-0.91

0.09

0.48

111

-87

0.64 81 0.76

0.71 72 0.54

0.12

0.65

0.55

-0.7

-0.19

-0.99

-0.81

0.76

-0.16

0.7

-0.6

0.73

0.09

0.41

-0.61

0.21

0.62

0.01

0.76

0.77

0.12

0.65

0.55

-0.7

-0.19

-0.99

-0.81

0.76

-0.16

0.7

-0.6

0.73

0.09

0.41

-0.61

0.21

0.62

0.01

0.76

0.77

INT4 FP16
X

W

(1) Extract the outlier features from input.
(2): Identify corresponding weight columns. (3): Push them to the end during GPTQ.

�� 	�� ���
	����

���

��

���

��

��

�

���


�
��
��
��
��
��
��
�
��
��
��
��

���	����	����������

��	�
���������
�����������
���������	
�����������

2.35x

3.1x

2.14x speedup

Figure 1: Outlier-aware quantization with QUIK. Left: The weight columns are extracted based on
the outlier columns in the input. We permute the outlier columns toward the end of the matrix before
applying GPTQ quantization to accumulate the quantization errors in the FP16 columns. Right:
QUIK achieves up to 3.1× speedup with minor accuracy degradation on LLaMA-2 models.

On the accuracy side, we show significantly improved results relative to prior work, by introducing
a hybrid selective quantization procedure, by which matrices are split into “base” weights and
activations, which are processed exclusively at 4-bit precision, and “outlier” weights and activations,
which are processed at higher precision. Using this approach as well as additional key insights on
layer sensitivity, we can run the vast majority of the computation in highly-accurate models such as
LLaMA-2 [24] in INT4, while dropping less than 0.5 perplexity across model sizes.

Importantly, our hybrid scheme, termed QUIK, is designed in a way that incurs minimal runtime
overhead in a practical implementation. We demonstrate this by implementing efficient kernels,
which show high per-layer speedups and yield up to 3.1× end-to-end throughput improvements
relative to the FP16 baseline (Figure 1). Along the way, we also perform a study of the efficiency of
different low-precision formats on current GPU architectures.

2 Method

2.1 Accurate Quantization via QUIK

We focus on the task of accelerating linear layers within Large Language Models (LLMs) by
employing 4-bit quantization for both weight matrix W and input matrix X. Following the PyTorch
definition [18], a linear layer carries out a linear transformation along with a bias vector denoted as b,
taking the form of XWT + b. We now describe the background and details of the technique.

Outliers in Input Quantization. While there are several methods for accurate weight quantization,
it is known that the activation matrices are hard to quantize [5, 27, 28]. This is mainly because of
the presence of outlier features in such matrices, where some of the columns have up to 100x larger
magnitudes. LLM.int8 [5] identifies and extracts the outlier columns of X during the forward pass
and quantizes the rest of the elements with 8-bit. However, this method is not efficient at runtime due
to the added computational cost of determining outliers on-the-fly. Recent work [27] has shown that
the outlier features are fixed for each layer across various datasets, which means we can extract the
outlier indices offline using a small calibration set.

GPTQ Weight Quantization. GPTQ [9] involves the quantization of the weight matrix W while
retaining the activations X in FP16. To achieve this goal, it iterates over the weight columns, and
for each column, it proceeds to quantize all of its elements simultaneously. Following this, GPTQ
adjusts the remaining unquantized columns by using second-order information to compensate for the
introduced quantization error in the current step. This process accumulates the quantization errors at
the last columns, making them more sensitive to the quantization.

QUIK: Activation Outlier-Aware GPTQ. During the linear transformation XWT, the outlier
columns in X will always multiplied by certain columns in WT (see Figure 1). We can utilize this
observation and improve the quality of GPTQ quantization, while quantizing (part of) the activations
as well. To this end, since the outlier columns are fixed across datasets, we begin by extracting the

2



indices of the outlier columns by means of a calibration set. Then, we rearrange the weight columns
(and their corresponding rows and columns in the Hessian matrix), to shift the outlier columns toward
the end. Finally, we perform quantization on the weight columns up to the index of the outlier features.
This circumvents quantization of these hard-to-quantize columns, and also helps to improve GPTQ
quantization by aggregating the quantization errors to the columns we keep in FP16, and removing
potential weight outliers from the 4bit weight quantization scale.

Weight Clipping. Weight clipping improves quantization by trimming the input distribution before
rounding. This could be done by either training the whole network to find the optimal clipping
thresholds [3, 8, 22]; or employing heuristic methods [12, 13, 15]. We found that applying linear
search over the clipping thresholds for weight quantization improves final perplexity.

Partial Quantization. The described approach is sufficient for effective quantization of OPT
models with minimal impact on accuracy (see Section 3). However, highly-accurate massive models
such as LLaMA2-70B present a unique challenge due to their FeedForward layers, which involve
three linear transformations along with element-wise multiplication, as well as their use of GeLU
activations. More specifically, previous work [14] has shown that the Downproj layers have a wide
input distribution, making their quantization hard. We found that we can recover the accuracy by
quantizing the Downproj layers using only 8 bits, without any additional changes to our methods. We
describe the selection procedure and provide additional discussion in Section ??.

2.2 GPU Kernel Support for QUIK

We now provide a high-level description of models in the QUIK format can be executed efficiently
on GPU. At the execution level, the quantized matrix multiplication consists of three parts: 1) quanti-
zation of activations, 2) matrix multiplication of quantized input and weights, and 3) dequantization
of the result. Please see Algorithm 1.

Algorithm 1 Quantization and Dequantization kernels.
1: function QUANTIZATION(input)
2: zeroAct, scaleAct←− findZeroScale(input)
3: for elem ∈ input, outElem ∈ output do
4: outElem←− (elem− zeroAct)/scaleAct− halfRange;
5: end for
6: return output, zeroAct, scaleAct
7: end function
8: function DEQUANTIZATION(input, zeroAct, scaleAct, scaleWeight,WeightsReduced)
9: for elem ∈ input, outElem ∈ output do

10: x←− elem ∗ scaleAct ∗ scaleWeight;
11: shift←− (zeroAct+ halfRange ∗ scaleAct) ∗WeightsReduced;
12: outElem←− x+ shift;
13: end for
14: return output;
15: end function

As long as activation quantization is asymmetric, we first find zero and scale of the vector and then
perform element-wise quantization shifting the values to fit into INT4 or INT8 range (by 8 for INT4,
by 128 for INT8, and halfRange in Algorithm 1). The second operation leverages CUTLASS support
of INT4|INT8 types; it takes two quantized matrices and outputs the matrix multiplication result
in INT32 format. Dequantization of the matrix multiplication result involves rescaling of the input
using scaling factors of the weights and activation quantizations. Due to the asymmetric nature of the
activation quantization, we also need to perform shifting of the result using pre-computed row-wise
aggregation of weights and zero factors of activations.

3 Experimental Validation

General setup. We evaluate our method on OPT [30] and LLaMA-2 [25] model, using Hugging-
Face [26] implementations of model definitions and datasets. Following SmoothQuant [27], we

3



extract outlier indices using 512 random sentences from the Pile [10] dataset. For GPTQ weight
quantization, we randomly select 128 samples with sequence length 2048 from the C4 dataset [20].
We apply symmetric quantization to weights and asymmetric quantization to activations. Clipping
thresholds for the weight quantization grid are found via a simple linear search over the squared error.
Our scheme quantizes a 70B model in less than 2 hours on an NVIDIA A100 GPU.

Table 1: Accuracy results for 4bit models. (Left) Perplexity of 4-bit OPT models on WikiText2
dataset. SmoothQuant, RPTQ, and OmniQuant results are taken from [22], RPTQ denotes their
improved numbers. (Right) QUIK ablation study results on 4bit LLaMA-2 family, also WikiText2
perplexity.

Model OPT
13B 30B 66B

Baseline 10.13 9.56 9.34

SmoothQuant 7.4e3 1.2e4 2.2e5
RPTQ 17.83 11.50 11.16
OmniQuant 11.65 10.60 10.29
QUIK (ours) 10.78 10.08 9.66

Model LLaMA-2
7B 13B 70B

Baseline 5.47 4.88 3.20

4-bit Down-Proj 8.87 7.78 6.91
256 Outliers 5.84 5.28 3.74

Accuracy Comparison on OPT. First, we compare the accuracy of QUIK against prior 4-bit acti-
vation quantization methods: SmoothQuant (applied for 4-bit) [27], RPTQ [28] and OmniQuant [22].
Table 1 (Left) shows the results of all methods for 4 larger OPT models on the WikiText2 task [17].
As can be seen, by effectively leveraging a small amount of full-precision outlier columns (here
256, which is ≈ 3% of OPT-66B’s hidden size), QUIK is able to significantly outperform prior 4-bit
methods, dropping only 0.3 to 0.5 points in perplexity relative to the full precision baseline. We
emphasize that, for a fair comparison, QUIK quantizes all linear backbone layers to 4-bit here.

256 512 102
4
204
8
307
2
409
6
512
0
614
4
716
8
819
2
921
6
102
40
112
64
122
88
133
12
143
36

Matrix Dimension(M=N=K)

0

100

200

300

400

TF
LO

PS

W4A4
W8A8
FP16
FP32

Matmul Performance Comparison on RTX3090

Figure 2: Ideal speedups for different
layer sizes and compression types.

LLaMA-2 Quantization. Next, we move to state-of-
the-art LLaMA-2 models, where we ablate key parameters
of QUIK: the 8-bit down-projection as well as the outlier
count. (See Table 1 (Right) for the results.) Our main
conclusion is that keeping the down-projection layers in
8-bit is critical to achieve high accuracy, as it improves
perplexity by more than two points, across all models, and
that increasing the number of outliers brings continuous
small improvements. Adjusting the outlier count provides
fine-grained control over the accuracy/compression trade-
off. Additional details are presented in Appendix A.

Zero Outliers Setting. Next, we study the results of
keeping some of the layers with small outliers in the
"zero outliers" setting. Table 2 shows how the accuracy of
LLaMA-2 models changes when we use different thresh-
old values, extracted using a linear search, for the outliers. The results show that there isn’t any
universal threshold that optimizes both accuracy and performance across all models. For example,
70B model cannot tolerate a threshold larger than 3.0, while the large perplexity jump occurs at 8.0 in
the 13B model.

Additional evaluations. In the Appendix, we perform additional evaluations of QUIK models on
various other tasks, including: PTB [16] and C4 [20] datasets. Overall, they show similar patterns to
the WikiText results above. Also, we show at most ≈1% degradation in famous Zero-Shot tasks.

Ideal and Layer-wise Speedups. The results in Figure 2 depict “ideal” computational power for
layer-wise matrix multiplications at different precision levels, without taking into account any quanti-
zation/dequantization overheads. The results motivate our approach, as they show that significant
speedups could be achieved via lower-precision specifically for these operations. Motivated by this

4



Model T LLaMA-2
7B 13B 70B

FP16 - 5.47 4.88 3.2

QUIK-4B

0 5.84 (0) 5.28 (0) 3.74 (0)

2.0 5.91 (5) 5.33 (3) 3.75 (10)

3.0 6.09 (11) 5.34 (8) 3.85 (30)

4.0 6.13 (21) 5.36 (17) 5.15 (58)

8.0 12.93 (55) 21.85 (66) 5.92 (219)

Table 2: Study of zero outlier setting on WikiText2 using 256 outliers. We use zero outliers when the
maximum of scale is less than threshold T. For each experiment, the number of linear layers with
zero outliers is written in parentheses.

observation, we turn our attention to realizable speedups when executing Algorithm 1, which includes
the compression and decompression operations required for obtaining high practical performance.

(4096, 4096)

(11008, 4096)

(5120, 5120)

(13824, 5120)

(8192, 8192)

(28672, 8192)

Matrix size

0

1

2

3

4

Sp
ee

du
p

Baseline
QUIK-8B
QUIK-4B

Figure 3: Layer-wise speedups on a sin-
gle RTX3090 for different layer sizes
and compression types. QUIK-4B with
256 outliers, QUIK-8B without outliers.

In Figure 3, we compare layer-wise performance of quan-
tized linear layers (QUIK-4B uses 256 outliers per layer)
relative to FP16, for a full implementation of our algo-
rithm. The matrix sizes correspond to layers in LLaMA
models. We observe that QUIK-4B can achieve around
4× speedup on large layers and more than 2× on smaller
ones. Thus, the raw low-precision matmul speedups can
partially “hide” the overheads of QUIK.

End-to-end speedups. Finally, we also demonstrate the
end-to-end speedup benefits of QUIK models. For this
purpose, we integrate QUIK into the widely used Hug-
gingFace PyTorch implementations of OPT and LLaMA-
2, by replacing linear layers with 4-bit (and 8-bit) QUIK
re-implementations. For the LLaMA model, we use the
standard FlashAttention [4] implementation for all the
models (including the FP16 model). In Figure 4, we com-
pare the throughput improvements of prefill passes (for
single batches with 2048 tokens) for quantized models
with the corresponding FP16 version. The bar plot shows
throughput improvements of QUIK-4B compared to FP16, annotations to baseline represent the actual
values of the baseline througput in our experiments. For instance, OPT-66B using FP16 linear layers
occupied 8 GPUs, achieved 439 tokens/s whereas the same model inference with QUIK-4b linear
layers occupied only 2 GPUs and resulted in 1253 tokens/s. In addition to a close to 4× memory
reduction, which reduces the number of required GPUs for inference, QUIK also achieves up to 3.1×
higher throughput relative to FP16, with the biggest improvements attained on the largest models
(LLaMA2-70B), where the relative impact of overheads is lowest. We present a more advanced
kernel in [1].

We emphasize that the speedups in these end-to-end experiments are exclusively through QUIK
accelerated linear layers, as all other overheads are precisely the same. We observe that overheads
from attention, softmax, or layernorm operations become significant once a large fraction of the
computation occurs in 4-bit, which could be optimized further in our implementation.

4 Conclusion and Future Work

We have presented a new hybrid quantization scheme called QUIK, which allows us to execute the vast
majority of inference computation using weights and activations quantized to 4 bits. QUIK minimizes
accuracy loss by keeping the hard-to-quantize outlier layers in higher precision. Importantly, QUIK
can be efficiently supported on GPU hardware, presenting significant speedup potential, especially
for inferencing on large models.

5



6.7B 13B 30B 66B
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p 1 GPU

1 GPU

2 GPU

2 GPU

1 2 3 8 

34
91

 tk
ns

/s

20
65

 tk
ns

/s

95
6 

tk
ns

/s

43
9 

tk
ns

/s

Baseline
QUIK-4B

(a) OPT Performance.

7B 13B 70B
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

1 GPU
1 GPU

3 GPU

1 2 7 

42
07

 tk
ns

/s

24
09

 tk
ns

/s

48
0 

tk
ns

/s

Baseline
QUIK-4B

(b) LLaMA-2 performance.

Figure 4: End-to-end inference speedups for QUIK-4B with 256 outliers relative to the FP16 baseline,
on NVIDIA RTX 3090 GPUs. Notes over the bars state the minimal number of GPUs required to run
the inference.

Acknowledgement

This project received EuroHPC-JU funding under grant MAELSTROM, No. 955513 and the Ur-
banTwin project, a project in the strategic area Energy, Climate and Environmental Sustainability.
We thank the Swiss National Supercomputing Center (CSCS) for providing computing resources.

References
[1] Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten

Hoefler, and Dan Alistarh. Quik: Towards end-to-end 4-bit inference on generative large
language models. arXiv preprint arXiv:2310.09259, 2023.

[2] Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, An-
drew McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei,
et al. A systematic classification of knowledge, reasoning, and context within the ARC dataset.
arXiv preprint arXiv:1806.00358, 2018.

[3] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized
neural networks. arXiv preprint arXiv:1805.06085, 2018.

[4] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with io-awareness. arXiv preprint arXiv:2205.14135, 2022.

[5] Tim Dettmers. 8-bit approximations for parallelism in deep learning. International Conference
on Learning Representations (ICLR), 2016.

[6] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, 2022.

[7] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized
representation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078,
2023.

[8] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

[9] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[10] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

6



[11] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

[12] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

[13] Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
learned from activation outliers for weight quantization in large language models. arXiv preprint
arXiv:2306.02272, 2023.

[14] Qingyuan Li, Yifan Zhang, Liang Li, Peng Yao, Bo Zhang, Xiangxiang Chu, Yerui Sun, Li Du,
and Yuchen Xie. Fptq: Fine-grained post-training quantization for large language models. arXiv
preprint arXiv:2308.15987, 2023.

[15] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

[16] Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate
argument structure. In Human Language Technology: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994, 1994.

[17] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[21] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[22] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-
tion for large language models, 2023.

[23] Sandeep Tata and Jignesh M Patel. PiQA: An algebra for querying protein data sets. In
International Conference on Scientific and Statistical Database Management, 2003.

[24] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[25] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[26] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[27] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

[28] Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu
Sun, Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization
for large language models. arXiv preprint arXiv:2304.01089, 2023.

7



[29] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[30] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

8



A Full Accuracy Results

In this section, we present the detailed accuracy results for OPT and LLaMA-2 families across
different tasks and parameters.

Table 3 shows the perplexity results of OPT models. We use symmetric quantization for the weights
in all our experiments. The results suggest that in a 4-bit setting, considering outlier features is crucial
to preserve the accuracy even in small models (like OPT-1.3b).

Model OPT-1.3b OPT-6.7b OPT-13b OPT-30b OPT-66b

Task WIKI PT C4 WIKI PT C4 WIKI PT C4 WIKI PT C4 WIKI PT C4

Baseline 14.63 16.96 14.72 10.86 13.09 11.74 10.13 12.34 11.20 9.56 11.84 10.69 9.34 11.36 10.28

GPTQ-4B 15.89 18.83 15.90 11.43 13.81 12.21 10.38 12.65 11.41 9.60 12.02 10.83 9.65 11.63 10.56

0 Outliers 15k 9k 10k 10k 9k 9k 9k 12k 9k 12k 13k 17k 12k 13k 10k
64 Outliers 26.259 27.143 22.981 11.473 13.888 12.348 11.031 13.305 11.971 10.283 12.557 11.267 9.851 11.965 10.742

128 Outliers 17.638 19.709 16.799 11.671 13.809 12.314 10.964 13.241 11.894 10.339 12.564 11.279 9.805 11.842 10.653
256 Outliers 17.358 19.525 16.607 11.184 13.811 12.262 10.779 13.175 11.847 10.078 12.465 11.226 9.662 11.793 10.635

Table 3: Perplexity scores of QUIK-4B over various OPT models with different outliers on three
datasets: WikiText2 (WIKI), Pen Treebank (PT), and C4.

Table 4 shows the perplexity of QUIK on LLAMA-2 models. We provide a list of tricks to improve
the quality of the model without too much overhead. We found that keeping the down-proj layer in 8
bits can improve the perplexity by about 3 points. Also, we found weight clipping as a cheap and
efficient trick for improving the accuracy of QUIK-4B.

LLaMA-2 Down-Proj Clipping 7B 13B 70B

FP16 W16A16 - 5.47 4.88 3.2

GPTQ-4B W4A16 - 6.24 5.25 3.68

QUIK-4B W4A4 - 8.78 7.78 6.91

QUIK-4B W4A16 - 6.09 5.49 3.98

QUIK-4B W4A8 - 6.11 5.5 4.0

QUIK-4B W8A8 - 5.98 5.37 3.87

QUIK-4B W8A8 ✓ 5.84 5.28 3.74

Table 4: LLaMA-2 perplexity results on WikiText2 using 256 outliers. We apply clipping only during
the weight quantization.

B INT-8 Accuracy Results

In this section, we compare applying QUIK-8B against SmoothQuant, which is the SoTA INT-8
quantization, on the WikiText2 dataset. Table 5 shows our results. We use per-token/per-channel
quantization for activations/weights in SmoothQuant and only apply the quantization on the linear
layers (which is the case for QUIK also).

Model OPT LLaMA-2
1.3b 6.7B 13B 30B 66B 7B 13B 70B

FP16 14.63 10.84 10.13 9.56 9.34 5.47 4.88 3.20

SmoothQuant 14.70 10.89 10.37 9.59 9.80 5.58 4.94 3.48

QUIK-8B 14.62 10.84 10.13 9.51 9.29 5.48 4.89 3.33
Table 5: Accuracy results for 8bit models on WikiText2. We use 256 outliers in QUIK experiments.
Following the SmoothQuant paper, we use α = 0.8 hyperparameter for LLaMA-2 models.

9



C ZeroShot Evaluation

In this section, we evaluate QUIK-4B on five zero-shot tasks: PIQA [23], WinoGrande [21], Hel-
laSwag [29], and Arc (Easy and Challenge) [2]. We use LM Evaluation Harness [11] for all our
experiments.

Model Bits Arc Challenge Arc Easy HellaSwag PIQA WinoGrande Avg. Score

OPT-30B FP16 38.05 65.36 72.28 78.13 68.43 64.45
QUIK-4B 36.69 64.39 70.84 77.75 67.01 63.34

OPT-66B FP16 40.02 67.26 74.87 79.82 68.82 66.16
QUIK-4B 38.82 64.73 73.68 79.43 68.82 65.10

LLaMA2-13B FP16 48.98 77.44 79.38 80.52 72.22 71.70
QUIK-4B 48.04 74.92 78.36 79.22 71.90 70.49

LLaMA2-70B FP16 57.34 80.98 83.81 82.75 77.98 76.57
QUIK-4B 56.14 79.00 81.57 81.56 76.56 74.97

Table 6: LM eval harness results of QUIK on OPT, LLaMA-2, using 256 outliers.

10


	Introduction
	Method
	Accurate Quantization via QUIK
	GPU Kernel Support for QUIK

	Experimental Validation
	Conclusion and Future Work
	Full Accuracy Results
	INT-8 Accuracy Results
	ZeroShot Evaluation

