
SortedNet, a Place for Every Network and Every
Network in its Place

Mojtaba Valipour1,2, Mehdi Rezagholizadeh2, Hossein Rajabzadeh1,2,
Marzieh Tahaei2, Boxing Chen2, Ali Ghodsi1

1University of Waterloo
2Huawei Noah’s Ark Lab

{mojtaba.valipour, hossein.rajabzadeh, ali.ghodsi}@uwaterloo.ca,
{mehdi.rezagholizadeh, marzieh.tahaei, boxing.chen}@huawei.com

Abstract

As the size of deep learning models continues to grow, finding optimal models
under memory and computation constraints becomes increasingly more impor-
tant. Although the architecture and constituent building blocks of neural networks
usually allow them to be used modularly (i.e., using the sub-networks of a given
network after training), their training process is unaware of this modularity. Con-
sequently, conventional neural network training lacks the flexibility to adapt the
computational load of the model during inference. This paper proposes SortedNet,
a generalized and scalable solution to harness the inherent modularity of deep
neural networks across various dimensions (e.g. width, depth, blocks) for efficient
dynamic inference. Our training considers a nested architecture for the sub-models
with shared parameters and trains all models simultaneously to obtain many-in-one
sorted models. We utilize a novel updating scheme during training that combines
a random sub-model sampling with gradient accumulation to improve training
efficiency. Furthermore, the sorted nature of our training leads to a search-free
sub-model selection at inference time; and the nested architecture of the resulting
sub-models leads to minimal storage requirement and efficient switching between
sub-models at inference. Our general dynamic training approach is demonstrated
across various architectures and tasks, including BERT on language understand-
ing and ResNet on image classification. Experimental results show the efficacy
of the proposed method in achieving efficient sub-models while outperforming
state-of-the-art dynamic training approaches.

1 Introduction

There has been a remarkable growth in the size of deep neural networks. Nevertheless, the computa-
tion/memory resources allocated to a model at inference depend on the specific hardware availability
and applications’ accuracy/time requirements, whether deployed in the cloud or on edge devices.

In particular, the computational burden from concurrent processes and battery limitations can signifi-
cantly impact the resources allocated to a neural network. Moreover, in the era of gigantic pre-trained
models, the computational demand can vary from task to task. Therefore, a growing demand exists
for models that can adapt to such dynamic conditions. Unfortunately, with its fixed architecture,
conventional neural network training falls short in adaptive adjusting of the computational load at
inference time.

On the other hand, deep neural networks demonstrate modular architectures along various dimensions,
like layers and blocks across depth, and neurons and channels and attention heads along the width.
This inherent modularity enables the extraction of sub-networks with the same shape as the original

37th Conference on Neural Information Processing Systems - ENLSP (NeurIPS 2023).

So
rt

ed
N

et
Ordinary Training

Iteration 2:

Iteration 1:

Iteration i:

.

.

.

?

?

?

Figure 1: SortedNet: The overall diagram of our proposed method. During training, in each iteration,
we sample from a pre-defined random distribution, which will help us to optimize the sub-models as
well as the original model.

model. However, the current training methods fail to effectively leverage this modularity, resulting
in the final product’s limited practical advantages of sub-networks. Consequently, the performance
of these sub-networks falls short compared to the main model, making their deployment during
inference impractical.

Hence, the challenge lies in harnessing the full potential of modularity in deep neural networks,
allowing for the efficient utilization of sub-networks to enhance performance and enable practical
deployment in real-world scenarios.

Recent works have proposed a variety of approaches for training dynamic models. These approaches
While effective often use a sophisticated training process combined with knowledge distillation Hou
et al. [2020], require architecture modification Nunez et al. [2023], and involve redundant subnetwork
optimization Fan et al. [2019]. Although not explicitly mentioned, an important ingredient shared
by all these methods is the attempt to implicitly sort sub-networks along a specific dimension with
respect to computation/accuracy. Limiting dynamicity to one or two dimensions while leaving other
dimensions intact can lead to suboptimal sub-networks. Inspired by these works (Valipour et al. [2023],
Rippel et al. [2014]), in this paper, we explore how sorting generalized to all dimensions can provide
many in one efficient dynamic models. Our solution takes advantage of intrinsic nested sub-networks,
which are sorted monotonically from bottom to top. This sorted configuration with shared parameters
enforces a regular order and consistency in the knowledge learned by sub-networks. In the resulting
nested architecture with shared parameters in a sorted manner, each smaller (shallower/narrower)
model is a sub-network of a larger (deeper/wider) model. This will lead to models with sorted
accuracy, latency and importance. Sorting these sub-networks based on their computation/accuracy
characteristics presents the most optimal solution. By organizing the model this way, extracting
the desired sub-network becomes a search-free process. Using a predefined sorting order ensures
that each targeted sub-network possesses a unique computation overhead, effectively removing the
optimization of redundant sub-networks from training.

To achieve this sorted architecture, during training, we propose a novel updating scheme that combines
random sampling of sub-networks with gradient accumulation to reduce the cost of training further.
Our proposed method can yield multiple models with different capacities with one training.

Our general dynamic training approach is applicable to any architecture without necessitating any
modifications to the original model. The proposed nested architecture offers several benefits, including
minimal storage requirements and efficient switching between various computation budgets during
inference.

1.1 SortedNet: Towards a Generalized Solution for Training Many-in-One Networks

While many of deep neural network architectures are modular in design (using similar layers such as
in Transformers Vaswani et al. [2017] or blocks such as in MobileNet Sandler et al. [2018]), this

2

modularity is not preserved during training. In this subsection, we present SortedNet, a generalized
and scalable method for training many-in-one neural networks. In order to train many-in-one networks,
we need to specify a few design choices: first, how to form the sub-networks and their configurations;
second, what are the target architectures; and third, how to train the sub-networks along with the
main model.

Designing the Sub-networks SortedNet imposes an inductive bias on the training based on the
assumption that the parameters of sub-networks across each dimension have a concentric (or onion
shape) architecture with shared parameters in a sorted manner. This sorted configuration with shared
parameters enforces a regular order and consistency in the knowledge learned by sub-networks (see
Fig. 1).

Let’s consider a many-in-one neural network f(x; θ(n)) with the parameters θ(n) and the input x
which is comprised of n sub-networks f(x; θ(i))|n−1

i=0 , where θ(i) represents the weights of the ith sub-
model. We define a universal set which contains all unique sub-models: Θ = {θ(0), θ(1), ..., θ(n)}.

Setting up an order Suppose that we would like to target D = {Dim1, Dim2, ..., DimK} many-
in-one dimensions in our model. Then, let’s start with Θ = ∅ and build the sub-models iteratively. In
this regard, at each iteration t during training, we have sampling and truncation procedures along any
of the targeted dimensions:

θ∗t = ∩|D|
j=1θDimj↓btj (n)

where btj ∼ PBj

IF θ∗t /∈ Θ : Θ← Θ ∪ {θ∗t }

(1)

where Dimj ↓ btj indicates that we have truncated θ(n) along the Dimj dimension up to the index btj
at the iteration t. btj is sampled from a distribution PBj with the support set of Bj = {1, 2, ..., dj} to
form the ith sub-model. dj refers to the maximum index of the jth dimension. This iterative process
will be done during training and the set of n unique sub-models Θ will be built.

To illustrate the process better, let’s see a simple case such as BERTbase where we want to make
a many-in-one network across the width and depth dimensions, D = {Depth,Width}. In this
case, we have 12 layers and a hidden dimension size of 768. Suppose that Depth corresponds
to j = 1 and Width corresponds to j = 2 in Eq. 1. For simplicity, let’s use a discrete uniform
distribution for sampling indices across these two dimensions. To create the first sub-network
(i = 1), we need to sample b11 uniformly from the set of natural numbers in the range of 1 to 12:
B1 = {1, 2, ..., 12}; and we need to sample b12 from the range of 1 to 768: B2 = {1, 2, 3, ..., 768}.
Bear in mind that we can even choose a subset of B1 and B2 as the support set for sampling probability
distribution. After these two samplings, we will have two truncated sets of parameters: θDepth↓b11
and θWidth↓b12 . The intersection of these two truncated parameters will give us the first sub-network:
θ1 = θDepth↓b11 ∩ θWidth↓b12 .

Training Paradigm Regular training of neural networks concerns improving the performance of
the whole model and usually this training is not aware of the performance of the sub-networks. In
fact, in this scenario, if we extract and deploy the sub-models of the trained large model on a target
task, we would experience a significant drop in the performance of these sub-networks compared
with the main model. However in SortedNet, we propose a training method that allows for training
sub-networks together with the main model in a stochastic way. The SortedNet paradigm leads to the
following benefits:

• Search-free sub-model extraction: after training, by importance sorting of sub-models the
best sub-model for a given budget can be selected without the need for search.

• Anytime: Each smaller sub-model is a subset of a larger one which makes switching between
different sub-models efficient. This leads to an important feature of our SortedNet which
is so-called anytime that is a network which can produce its output at any stage of its
computation.

• Memory efficient: we train a many-in-one network where sub-models are all part of a single
checkpoint, which minimizes storage requirement.

3

1.2 SortedNet Algorithm

In this subsection, we describe our proposed training algorithm. For training a SortedNet with n
sub-models, at each iteration during training, a random index needs to be sampled from a pre-defined
distribution: bij ∼ PBj

. After finding the target sub-model θ∗t at each iteration, we can use one of the
following objectives to update the parameters of the selected sub-model:

• (Stochastic Loss) Only train the selected sub-model f(x, θ∗t) :
min
θ∗
t

L ≜ L(y, f(x, θ∗t)) where L is the loss function for training the model on a given task

(e.g. L can be a regular cross entropy loss) and y refers to the ground-truth labels.

• (Stochastic Summation) Train the sub-model f(x, θ∗t) and all its targeted sub-models along
each dimension. Let’s assume that Θ⊥(θ∗t) is the universal set for all targeted sub-networks
of θ∗t . Then the loss function can be defined as:
min

Θ⊥(θ∗
t)
L ≜

∑
θ∈Θ⊥(θ∗

t)
L(y, f(x, θ))

This way, one sub-model or a subset of sub-models are updated in each iteration. Alternatively, one
can choose to train all the sub-models at each iteration which is costly in the large scale.

Experiments In this section, we discuss a set of experiments that we conducted to show the
effectiveness and importance of sorting information and fixing a nested property.

Network Width FLOPs NS-IN LCS-p-IN SortedNet-IN NS-BN LCS-p-BN (aka US) SortedNet-BN

cpreresnet20 He et al. [2015] (CIFAR10)

100% 301M 88.67 87.61 89.14 79.84 65.87 85.24
75% 209M 87.86 85.73 88.46 78.59 85.67 85.29
50% 97M 84.46 81.54 85.51 69.44 65.58 70.98
25% 59M 75.42 76.17 75.10 10.96 15.78 12.59

avg. - - 84.10 82.76 84.55 59.70 58.22 63.52

Table 1: Comparing the performance of state-of- the-art methods with Sorted-Net over CIFAR10 in
terms of test accuracies.

As shown in table 1, we wanted to show our stochastic approach can outperform the state-of-the-art
methods such as LCS (shown as LCSp in table) Nunez et al. [2023], Slimmable Neural Network
(NS) Yu et al. [2018], and Universally Slimmable Networks (US) Yu and Huang [2019]. To make
the comparisons fair, we equalized the number of gradient updates for all models. We also tried to
remove the impact of architecture design such as the choice of the normalization layers. Therefore, we
tried to compare methods by different layer normalization techniques such as BatchNorm Ioffe and
Szegedy [2015] and InstanceNorm Ulyanov et al. [2016]. In addition, we ensure that complementary
methods such as Knowledge Distillation will not impact the results as these methods can be applied
and improve the results independent of the method. As shown in the table, SortedNet demonstrates
superior average performance compared to other methods, indicating its generalization across various
settings such as different norms.

Acc. F1 Acc. Acc. Matthews Corr. Spearman Corr. F1 Acc.
Model Flops Weights MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE avg.

Pre-trained Baselines
BERTBASE(3LB) 22.36 G WB 84.22 ± 0.32 87.37 ± 0.08 91.47 ± 0.21 92.61 ± 0.15 54.90 ± 0.79 88.08 ± 0.49 86.91 ± 0.82 62.96 ± 2.36 81.07 ± 14.08
BERTLARGE(3LL) 78.96 G WL 86.32 ± 0.09 88.36 ± 0.07 92.01 ± 0.29 93.21 ± 0.42 59.39 ± 1.45 88.65 ± 0.33 88.67 ± 0.75 68.23 ± 1.59 83.11 ± 12.33

Extracted Networks
BERTLARGE

BASE (3LB) 22.36 G WB 77.43 ± 0.08 84.88 ± 0.15 84.74 ± 0.34 84.98 ± 0.47 12.17 ± 1.62 78.33 ± 4.11 79.44 ± 0.93 55.23 ± 1.08 69.65 ± 25.18
Proposed Methods

Sorted BERTBASE(∼ 1.5LB + 1.5LL) 22.36 G WL
B 76.20 ± 0.02 83.58 ± 0.16 83.91 ± 0.18 83.26 ± 0.69 0.08 ± 0.18 70.75 ± 9.25 80.75 ± 1.29 52.85 ± 2.53 66.42 ± 28.76

Sorted BERTLARGE(∼ 1.5LB + 1.5LL) 78.96 G WL
L 85.93 ± 0.33 87.28 ± 0.14 91.58 v 0.33 93.17 ± 0.26 57.08 ± 1.91 88.18 ± 0.68 87.06 ± 1.02 65.56 ± 1.41 81.98 ± 13.17

Sorted BERTBASE(∼ 3LB + 3LL) 22.36 G WL
B 77.48 85.16 ± 0.02 84.96 ± 0.23 86.01 ± 0.62 12.58 ± 2.04 79.29 ± 2.80 78.96 ± 0.44 55.81 ± 1.37 70.03 ± 25.16

Sorted BERTLARGE(∼ 3LB + 3LL) 78.96 G WL
L 86.12 88.26 ± 0.01 92.18 ± 0.28 93.49 ± 0.21 59.84 ± 1.35 88.85 ± 0.44 88.88 ± 1.10 68.45 ± 2.11 83.26 ± 12.24

Table 2: The performance of BERT-base and Bert-large in the GLUE Benchmark over 5 runs for
SortedNet (sharing weights across both models), pre-trained berts and different initialization.

We also investigate whether SortedNet is applicable to more complex dimensions other than width.
For example, can we utilize the SortedNet for sorting the Attention Heads Vaswani et al. [2017]?
To achieve this, we conducted an experiment over BERT-large Devlin et al. [2019] in which we
tried to sort the information across multiple dimensions simultaneously, including the number of
layers, hidden dimension, and attention heads. In other words, we tried to sort information over
Bert-large and Bert-base as Bert-base can be a subset of the Bert-large. As shown in table 2, we
extracted a Bert-base from a Bert-large model, and reported the performance. Additionally, we

4

highlighted the number of training updates with respect to each objective function in front of each
model. For example, in the last row (Sorted BERTLARGE), we approximately trained our Sorted
model half of the times (∼ 3Epochs) over the objective function of Bert-base (LB) and the other
half of the times over the objective function of Bert-large (LL) in an iterative random manner as
introduced in the previous section. The learned Bert-base performance with these methods is still
around 10% behind the pre-trained base, but we argue that this might be the value of pre-training.
To investigate the impact, one should apply the SortedNet during pre-training, which we will leave
for future research. However, the performance of the learned Bert-large is on par with an individual
Bert-large, which suggests sharing the weights does not necessarily harm learning. It seems, however,
that the secret sauce to achieve a similar performance is that we should keep the number of updates
for each objective the same as the individual training of Bert-large and Bert-base.

2 Conclusion

In summary, this paper proposes a new approach for training dynamic neural networks that leverages
the modularity of deep neural networks to switch between sub-networks during inference efficiently.
Our method sorts sub-networks based on their computation/accuracy and train them using an efficient
updating scheme that randomly samples sub-networks while accumulating gradients. The stochastic
nature of our proposed method is helping our algorithm to generalize better and avoid greedy choices
to optimize many networks at once robustly. We demonstrate through experiments that our method
outperforms previous dynamic training methods and yields more accurate sub-networks across
various architectures and tasks. The sorted architecture of the dynamic model proposed in this work
aligns with sample-efficient inference by allowing easier samples to exit the inference process at
intermediate layers. Exploring this direction could be an interesting area for future work.

References
Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic

bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Elvis Nunez, Maxwell Horton, Anish Prabhu, Anurag Ranjan, Ali Farhadi, and Mohammad Rastegari.
Lcs: Learning compressible subspaces for efficient, adaptive, real-time network compression at
inference time. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 3818–3827, January 2023.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. DyLoRA: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pages 3274–3287, Dubrovnik, Croatia, May 2023. Association for Computational
Linguistics. URL https://aclanthology.org/2023.eacl-main.239.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pages 1746–1754. PMLR, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

5

https://aclanthology.org/2023.eacl-main.239

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 1803–1811,
2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448–456.
pmlr, 2015.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

6

	Introduction
	SortedNet: Towards a Generalized Solution for Training Many-in-One Networks
	SortedNet Algorithm

	Conclusion

