
FineQuant: Unlocking Efficiency with Fine-Grained
Weight-Only Quantization for LLMs

Young Jin Kim∗

Microsoft
youki@microsoft.com

Rawn Henry∗
NVIDIA

rhenry@nvidia.com

Raffy Fahim
Microsoft

raffybekheit@microsoft.com

Hany Hassan Awadalla
Microsoft

hanyh@microsoft.com

Abstract

Large Language Models (LLMs) have achieved state-of-the-art performance across
various language tasks but pose challenges for practical deployment due to their
substantial memory requirements. Furthermore, the latest generative models suffer
from high inference costs caused by the memory bandwidth bottleneck in the
auto-regressive decoding process. To address these issues, we propose an efficient
weight-only quantization method that reduces memory consumption and accel-
erates inference for LLMs. To ensure minimal quality degradation, we introduce
a simple and effective heuristic approach that quantizes only the model weights
of a pre-trained model with finer granularity. This approach is applicable to both
Mixture-of-Experts (MoE) and dense models without requiring additional fine-
tuning. Furthermore, we implement highly efficient GPU GEMMs that perform
on-the-fly matrix multiplication and dequantization, supporting the multiplication
of fp16 or bf16 activations with int8 or int4 weights. We evaluate our approach
on large-scale open source models such as OPT-175B and internal MoE mod-
els, showcasing minimal accuracy loss while achieving up to 3.65 times higher
throughput on the same number of GPUs.

1 Introduction

Large Language Models (LLMs) have proven their efficacy in various language tasks by increasing
the number of trainable parameters and pre-training models on large-scale data to be used in different
downstream tasks (Devlin et al., 2018; Radford et al., 2018; Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2022). However, deploying such large models comes with a significant cost which
increases proportionally with the model size. Model size growth has increased several orders of
magnitude over the last few years (1,588 times larger from BERT large - 340 million to PaLM 540
billion)(Devlin et al., 2018; Chowdhery et al., 2022).

Quantization is a well-known compression technique and numerous studies have demonstrated the
effectiveness of quantization in accelerating neural network model inference, particularly in natural
language processing domain (Kim et al., 2019; Aji and Heafield, 2020; Kim and Awadalla, 2020; Fan
et al., 2021; Park et al., 2022; Kim et al., 2022). However, it is still under-explored how weight-only
quantization can be effectively utilized in the context of large language models. Also, the existing
methods introduce complex and costly procedures such as additional Quantization Aware Training
(QAT) and/or calibration on additional data. To more effectively solve the challenge, we focus on

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

simple weight-only quantization method that requires no additional training in this study because it
has multiple advantages - (i) the accuracy could be maintained well because its underlying numerical
computation is done in floating-point precision which is more accurate. As a result, we can effectively
push the precision to very low bit-ranges. (ii) it could be used for various hardware and GPU
architectures without needing specific hardware instructions dealing with low-bit multiplications. (iii)
it can avoid expensive additional training steps.

In this paper, we make the following contributions:

1. Empirical Analyses of Quantization Behaviors and Fine-Grained Quantization Algorithm: We
provide comprehensive analyses of the quantization behaviors on Language Model Models (LLMs).
We investigate the impact of applying low-bit quantization (down to 3-bits) on LLM accuracy. Then,
we propose a fine-grained quantization algorithm that incorporates group-wise quantization and
adaptive selection of granularity. This approach helps preserve the original floating-point precision
accuracy even when there is loss due to quantization.

2. Accelerated Inference with Large-Scale Models with Highly Efficient GPU Kernels: We demon-
strate the effectiveness of the proposed method by applying it to a large-scale open-source dense
transformer model called OPT. With its 175 billion parameters and internal MoE models utilizing
optimized GPU kernels, our method enables deployment of the 175 billion parameter model on only
2 GPUs, resulting in a significant reduction of overhead and cost by 64%. Moreover, our method
achieves 3.65 times higher throughput on the same number of GPUs.

2 Designing Quantization Methods for LLMs - Adaptive Fine-grained
Quantization

Considering the design choices described in Appendix C, the granularity of quantization emerges as
the most crucial component of the quantization algorithm. For efficient computation and reduced
memory consumption, it is typical to have 1 quantization scale per tensor or 1 quantization scale for
each column in the tensor. However, to maintain a close approximation of the original numerical
values with the quantized values, it is desirable to have smaller groups of parameters sharing scales.
This is necessary because outliers in the distribution have the potential to significantly skew the data,
leading to decreased quantization precision, especially for smaller numerical values.

2.1 Catastrophic collapse of model performance

We have noted a significant decline in performance when employing matrix-wise quantization
compared to column-wise quantization across various layers, as demonstrated in Appendix D.
However, even with column-wise quantization, we have encountered instances of catastrophic
collapse in LLM performance, particularly when certain outliers exist in the model weights. Figure
1a depicts the relationship between the Mean Squared Error (MSE) of quantized values and the
translation BLEU scores as we modify the group size of quantization (quantization granularity) in
the OPT 30B model. While increasing granularity leads to a gradual rise in MSE values, the model
quickly loses its capability in terms of task BLEU score beyond a certain point. Consequently, it is
crucial to determine the optimal granularity for each matrix to preserve the task performance while
maximizing the size of the parameter groups which share scales.

2.2 Adaptive fine-grained quantization

Upon further investigation into the catastrophic failure of a quantized model, we have discovered
that the failure could be rectified by adjusting the granularity of four specific matrices out of the 288
quantized matrices in the entire model. Merely increasing the granularity of these four matrices by a
factor of two allowed for the recovery of over 94% of the lost accuracy. Based on this observation,
we have developed a simple heuristic-based method to assign varying granularity to different model
weight matrices. In the process of quantizing a matrix, we start from the column-wise quantization and
compute the range of the values that must be quantized. We then halve the quantization group size and
compute the range of each group. If for any group, new_range

old_range > α we halve the quantization group
size again. We repeat this process until the quantization range differences between two granularities
becomes smaller than α. Figure 1b illustrates the impact of adaptive group size on BLEU scores and

2

0 2000 4000 6000
Group size

2

3

4

M
S

E
(+

)

×10−6

20

25

30

35

B
L

E
U

(X
)

(a) MSE and BLEU changes with quantization
granularity.

0.5 0.6 0.7 0.8 0.9 1.0
Threshold value α for adaptive granularity

37.0

37.5

38.0

38.5

39.0

B
L

E
U

(X
)

BLEU - fp16

BLEU - fixed group size (64)

10

20

30

40

50

60

M
od

el
si

ze
(G

B
)

(+
)

Model size (GB) - fp16

Model size (GB) - fixed group size (64)

(b) BLEU score and model size comparison with
adaptive group quantization with reference lines of
fp16 and fixed group size (64). X-axis represents

threshold value α of adaptive fine-grained quantization.

Figure 1: Impact analyses of quantization granularity on translation accuracy of OPT-30B.

model sizes in gigabytes (GB). With the adaptive fine-grained quantization approach, there is only
a marginal 0.1% difference in BLEU score, while the model size is reduced to a mere 26% of the
original FP16 model size.

3 Experiments

Our latency and throughput experiments are conducted using NVIDIA A100 SXM4 GPUs. We
benchmark various open-source dense models including GPT-2-XL (1.5B) (Radford et al., 2019),
OPT (13B and 30B) (Zhang et al., 2022), and OPT-IML (Max 30B and Max 175B) (Iyer et al., 2022)
as well as internal pre-trained MoE models (5.3B) on various natural language tasks. More details of
the models and tasks are available in Appendix B .

3.1 Accuracy

The impact of quantization on various natural language tasks using different models is presented in
Appendix E (Table 2 and Table 4). In general, 8-bit weight-only quantization does not significantly
affect the accuracy compared to fp16. This is observed across different language tasks, indicating that
the models produce similar outputs. However, 4-bit quantization with column-wise granularity leads
to some degradation in accuracy due to outliers in the weight distribution, as discussed in Section 2.
To recover the accuracy, we adopt a more fine-grained group-wise quantization strategy, which shows
similar accuracy to the original fp16.

3.2 Dense model performance results

3.2.1 Microbenchmarks

To understand how our weight-only quantization accelerates the matrix multiplies, we collect micro-
benchmarks from OPT-13B and OPT-30b and present the results in Figure 2. We find that the matrix
multiplies can be accelerated by up to 2.5X for those models when the number of tokens in the
activation is small. This is typically the case for the auto-regressive part of LLMs which tends to
dominate the overall run-time.

3.2.2 End to End Benchmarks

Table 1 shows end to end times (constructed from Table 6 in Appendix F) and associated throughput
increases. To calculate the throughput increase, we assume the original FP16 model was sharded
across 8-GPUs within a single node and that same node is used to serve INT8 or INT4 models. We
measure the throughput per node by assuming that the model is replicated twice on the node for
INT8 and 4 times for INT4 (64) and that requests are served to the independent model instances
concurrently. We highlight that our compression technique allows serving 4 instances of OPT-175B
on a single A100 node with 8 GPUs which can result in up to 3.65X throughput increase.

3

Table 1: Shows the throughput improvement for batch 1 on a 8-GPU node for different input and output lengths.
We assume that the model is replicated twice on the node for INT8 weight-only quantization and 4 times for
INT4 (64) weight-only quantization. We show the throughput increase relative to FP16 in parentheses next to
through-puts for INT8 and INT4. The table is constructed using data from Table 6.

Input
Length

Output
Length

FP16 throughput
per 8 GPU node

(generated tokens per sec)

INT8 throughput
per 8 GPU node

(generated tokens per sec)

INT4 (64) throughput
per 8 GPU node

(generated tokens per sec)
128 32 24 49 (2.04×) 85 (3.54×)
128 128 25 52 (2.08×) 91 (3.64×)
512 32 21 41 (1.95×) 69 (3.29×)
512 128 23 47 (2.04×) 84 (3.65×)
1024 32 20 37 (1.85×) 57 (2.85×)
1024 128 23 47 (2.04×) 79 (3.43×)

1 8 32 64 128 256 2048 16384
0

1

2

Number of Rows in Activation

Sp
ee

du
p

ov
er

FP
16

INT8 INT4 INT4 (64)

1 8 32 64 128 256 2048 16384
0

1

2

Number of Rows in Activation

Sp
ee

du
p

ov
er

FP
16

INT8 INT4 INT4 (64)

Figure 2: Demonstrates the speed up over FP16 on only the matrix multiplies for OPT-13B (left) and OPT-30B
(right) on a single GPU. We measure the performance of the QKV Projection, Attention Output, FFN1 and FFN2
matrix multiplies and compare our CUTLASS FP16 x INT GEMM against cuBLAS performing FP16 x FP16
GEMM. We report the geometric mean of the speedups across those 4 GEMMs while varying the number of
rows in the activation (which represents batch_size × sequence_length). We highlight that when the number of
rows is small (such as the decoding phase of GPT), we achieve up to 2.5X GEMM speedup when doing int4
quantization with block size 64.

3.3 MoE model performance results

We evaluate the performance of our weight-only quantization method on an MoE model in Appendix
E (Table 5). Figure 3 shows the end-to-end speed improvements with various batch size with 8-bit
and 4-bit quantization.

(1,1) (1,2) (8,1) (8,2) (20,1) (20,2) (32,1) (32,2) (64,1) (64,2) (96,1) (96,2)
1

1.1

1.2

(Batch Size, Beam Width)

Sp
ee

du
p

ov
er

FP
16

INT8 INT4

Figure 3: MoE model speed-up with quantization methods.

4 Conclusions and Limitations

This paper presents a method for accelerating large language models through the use of low-bit
quantization. The proposed weight-only quantization technique demonstrates promising results in
compressing very large models with up to 175 billion parameters, while still maintaining accuracy.
To address the issue of outliers affecting the quantized weight distribution, fine-grained quantization
is employed.

Despite its strengths, the study does have a few limitations. Firstly, optimized GPU kernels are only
implemented for group size 64. However, we plan to expand support for any power of 2 group size
greater than 16. Secondly, the performance benchmarking is conducted solely on A100 GPUs, so the

4

speed improvements may vary on different GPU architectures. Lastly, the proposed method does
not leverage integer instructions even when they are available. These limitations suggest potential
directions for future research.

References
Alham Fikri Aji and Kenneth Heafield. 2020. Compressing neural machine translation models with

4-bit precision. In NGT.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. Advances in neural information processing systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Hervé Jégou, and
Armand Joulin. 2021. Training with quantization noise for extreme model compression. ArXiv,
abs/2004.07320.

William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2021. A framework for few-shot
language model evaluation.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Dániel Simig, Ping Yu, Kurt
Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. 2022. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017.

Guolin Ke, Di He, and Tie-Yan Liu. 2021. Rethinking positional encoding in language pre-training.
ArXiv, abs/2006.15595.

Young Jin Kim and Hany Hassan Awadalla. 2020. Fastformers: Highly efficient transformer models
for natural language understanding. arXiv preprint arXiv:2010.13382.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. 2021. Scalable and
efficient moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465.

Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. 2022. Who says ele-
phants can’t run: Bringing large scale moe models into cloud scale production. arXiv preprint
arXiv:2211.10017.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From research to production and back: Ludicrously
fast neural machine translation. In Proceedings of the 3rd Workshop on Neural Generation and
Translation, pages 280–288.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard: Scaling giant models with
conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668.

Rui Liu, Young Jin Kim, Alexandre Muzio, and Hany Hassan. 2022. Gating dropout: Communication-
efficient regularization for sparsely activated transformers. In International Conference on Machine
Learning, pages 13782–13792. PMLR.

5

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
2022. nuqmm: Quantized matmul for efficient inference of large-scale generative language models.
arXiv preprint arXiv:2206.09557.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language
understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer normalization in the transformer
architecture. In ICML.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068.

6

A Quantization method formulation

Linear quantization with absolute maximum. We used linear quantization with absolute maximum
as the main method. Given a matrix A and b bits, this method encodes A as follows:

sj =
2×max(|A:,j |)

2b − 1

Q:,j = int(
A:,j

sj
)

Here, s is the scaling factor, which can be chosen per channel, as shown, or per the whole tensor. At
inference time, the quantized Q is dequantized back to A

′
with the scaling factor s as follows:

A
′
:, j = Q:, j × sj

Log-scale quantization. Another quantization method we experimented is log-scale quantization
where 1 bit is kept for the sign and (b− 1) bits are used to encode the log-scaled values. Given a
matrix A, the quantization formula is as follows:

P = sign(A)

T = clip(
|A|
s

, 1, 21−2b−1)

Q = ⌈log2(
2

3
T)⌉

where s can be chosen in two ways, either (i) the absolute maximum or (ii) the optimal value to
minimize the mean squared error (MSE) between the quantized and original values which is described
in Aji and Heafield (2020). We use the second algorithm which we observe a better accuracy with the
quantization. At inference time, the quantized weight values are dequantized based on the formula as
follows:

A
′
= P × s× 2Q

Figure 4 shows the performance comparison of two quantization methods.

B Experimental setup

Our latency and throughput experiments are conducted using NVIDIA A100 SXM4 GPUs inside a
Docker container running Ubuntu 20.04 and CUDA 11.8. All code is compiled using nvcc 11.8.89
and gcc/g++ 9.3. To carry out the experiments, we use a modified version of FasterTransformer 2

v5.3. The weight-only quantization kernels for per-column quantization are already open source.

Task and datasets. For the dense models, We utilize various open-source language tasks, including
LAMBADA, HellaSwag, PiQA, WinoGrande, OpenBookQA, RTE, COPA from the lm-evaluation
harness (Gao et al., 2021), as well as WMT machine translation task (WMT16 German and English)3.

For the MoE models, we use a multilingual machine translation task that covers 10 language
translation directions from and into English covering German (de), French (fr), Italian (it), Spanish
(es), Dutch (nl), and English (en). We use a 128,000 sub-word vocabulary, built with the sentencepiece
library4. The number of training sentences is included in Appendix E. To measure the accuracy of
the models, we utilized sacrebleu 5 on the detokenized output.

Dense model architecture. For the dense model experiments, we utilize various open-source large
language models that share a similar architecture, which consists of decoder-only with multiple
transformer layers. To evaluate the accuracy of these models, we include GPT-2-XL (1.5B) (Radford
et al., 2019), OPT (13B and 30B) (Zhang et al., 2022), and OPT-IML (Max 30B and Max 175B) (Iyer

2https://github.com/NVIDIA/FasterTransformer
3https://statmt.org/wmt16/
4https://github.com/google/sentencepiece
5https://github.com/mjpost/sacrebleu

7

https://github.com/NVIDIA/FasterTransformer
https://statmt.org/wmt16/
https://github.com/google/sentencepiece
https://github.com/mjpost/sacrebleu

et al., 2022). The number of model parameters ranges from 1.5 billion to 175 billion. The detailed
number of layers and hidden dimensions can be found in the original papers.

MoE model architecture. For our MoE model experiments, we utilize internal pre-trained MoE
models (5.3B) with a few modifications to the transformer model architecture (Vaswani et al., 2017).
These modifications encompass the following: (i) a deep encoder consisting of 24 transformer layers
and a shallow decoder comprising 12 transformer layers, (ii) adoption of Transformer with Untied
Positional Encoding (TUPE) proposed in Ke et al. (2021) instead of the conventional sinusoidal
positional embedding, and (iii) implementation of pre-layer normalization from Xiong et al. (2020).
For the MoE models, we employ top-1 learned gating from Fedus et al. (2021) and an MoE layer
with 32 experts at every other layer, specifically the even-numbered layers, as utilized in Lepikhin
et al. (2020); Fedus et al. (2021); Kim et al. (2021). Additionally, we apply jittering noise, balancing
loss (ratio of 0.01) (Lepikhin et al., 2020; Fedus et al., 2021) to more uniformly distribute expert
utilization and gating dropout (0.2) (Liu et al., 2022) to prevent overfitting and improve regularization.

GPU kernel implementations. We utilized the kernel implementations developed by Kim et al.
(2022), which rely on CUTLASS to create efficient kernels for fused dequantization and matrix
multiplication. These kernels can process either FP16 or BF16 activations, a vector of scales of the
same data type as the activation, and int8 or int4 weights. The kernels dequantize the weights to
match the data type of the activation and perform floating-point tensor core math. The final output of
the kernel is also of the same data type as the input activation. These kernels are available as open
source code in FasterTransformer. To support multiple scaling factors for each column, we extended
these kernels to process a matrix of scales, enabling us to implement int4 block quantization kernels.
We set the block size to 64 for all performance analyses below, since it matches the K tile size of our
fused gemm + dequantize kernels.

In compute-bound cases such as an encoder or the context creation phase of GPT, the conversions
from integer to float bottlenecks our kernels, rather than tensor core math. As a result, our weight-only
quantization GEMMs slower than equivalent FP16xFP16 GEMMs in compute bound cases but offer
significant speedup in memory bound cases as seen in Figure 2. We argue that this kernel is useful
because:

1. Large language models (LLMs) usually spend a lot more time in the memory-bound decoding
phase than in the compute-bound context creation phase, especially when the output sequence length
is long.

2. LLMs are typically served with small batch sizes in most practical cases, which puts significant
pressure on the memory system during matrix multiplication as the weights need to be read from
the GPU’s HBM. However, our kernel utilizes int4 compression, which reduces the number of bytes
needed to load the weights by up to 4X. The overhead of loading the scales is small, even for block
quantization with block size 64 as shown in Figure 2.

Quantization Method. All quantization experiments have one scaling factor for each column of the
weight matrix, unless a block size B is specified. In that case, each contiguous block of B elements
in a given column has its own scaling factor. This means we have multiple scaling factors per column.

C Quantization methodology: basic settings

Uniformity of quantization

We conducted experiments involving two quantization techniques that focus on the uniformity of the
quantized range. Firstly, we employed linear quantization, which uniformly maps quantized integer
values to their corresponding original float values. Secondly, we explored log-based quantization,
inspired by Aji and Heafield (2020), where both integer and float ranges are mapped in a logarithmic
scale. In both cases, we applied column-wise quantization to assess the impact of quantization
uniformity on model accuracy. Detailed formulations for those two techniques are described in
Appendix A.

Figure 4 illustrates the performance comparison between two quantization techniques applied to FFN
layers using low bits. For 3 and 4 bits, both techniques exhibit similar performance. However, with
2-bit quantization, log-scale quantization shows a significant decrease in accuracy. Considering these

8

observations and the computational simplicity, we opt to use uniform quantization for all subsequent
experiments.

2 3 4 5 6 7 8
Quantization bits

0
5

10
15
20
25
30
35
40

B
L

E
U

(D
E

-E
N

) Linear

Log-scale

Figure 4: A comparison of how the quality of the model, as measured by BLEU, changes when quantizing with
different precisions using different quantization methods.

Symmetricity - numerical distribution of model weights

In order to determine the most appropriate quantization approach, we have conducted further analysis
on the weight parameter distribution across various layers. Figure 5 presents example distributions of
model weights, which generally exhibit a normal distribution centered around zero. However, in some
cases, outliers can distort the weight distribution, potentially leading to an inaccurate quantization
range. Based on our observations and considering implementation efficiency, we choose to employ
symmetric quantization around zero.

(a) Example expert weight distribution
(layer 6, FFN 2, expert 15)

(b) Example FFN weight distribution
(layer 7, FFN 2)

Figure 5: A comparison of example weight distributions from MoE and dense FFN layers.

D Channel-wise vs matrix-wise quantization

Scaling factors are calculated by the quantization algorithm and stored in half precision floating-point
(fp16) numbers to dequantize the matrices with. These factors can be chosen on the channel scale or
the whole matrix scale. As shown in figure 6, channel-wise quantization gives quite higher scores
than tensor-wise especially for low precision. Additional parameters to store channel-wise scaling
factors is small, because only one value is needed for a channel and less than 1% of total parameters
in a matrix. Therefore, we use channel-wise quantization for all the quantization experiments.

2 3 4 5 6 7 8
Quantization bits

33
34
35
36
37
38
39
40
41

B
L

E
U

(D
E

-E
N

)

Channel-wise quantization

Matrix-wise quantization

Figure 6: Linear quantization of expert FFNs with channel-wise and matrix-wise scaling factors.

E Dense and MoE model quantized accuracy

9

Table 2: Accuracy of various models with low-bit weight only quantization on different natural language tasks.
We also include the perplexity on the wikitext dataset for each model. We note that with int4 per-column
for OPT-30B actually performs worse than FP16 for OPT-13B. Using block quantization (with block size 64)
improves the accuracy by 2.3 % over just using per-column

Model type Precision LAMBADA HellaSwag PiQA WinoGrande OBQA RTE COPA Average ↑ Wikitext ↓

GPT2-XL

fp16 51.1% 40.0% 70.7% 58.2% 22.4% 52.3% 73.0% 52.5% 20.4
int8 51.1% 40.0% 70.7% 58.3% 22.6% 52.7% 73.0% 52.6% 20.4

int4 (64) 49.3% 39.6% 70.7% 58.4% 20.6% 50.9% 74.0% 51.9% 20.9
int4 47.5% 37.4% 69.4% 57.1% 19.4% 51.9% 73.0 % 50.8% 21.7

OPT-13B

fp16 68.6% 52.5% 75.9% 65.0% 26.6% 58.1% 86.0% 61.8% 11.5
int8 68.5% 52.4% 76.0% 65.4% 27.%2 57.0% 86.0% 61.8% 11.5

int4 (64) 67.4% 50.7% 75.6% 65.4% 25.8% 59.2% 84.0% 61.2% 12.0
int4 65.5% 50.2% 75.5% 64.8% 26.4% 56.0% 85.0% 60.5% 12.8

OPT-30B

fp16 71.5% 54.3% 77.6% 68.2% 30.2% 57.4% 82.0% 63.0% 10.7
int8 71.4% 54.3% 77.6% 67.9% 30.2% 58.1% 82.0% 63.0% 10.7

int4 (64) 69.9% 53.4% 77.5% 67.3% 30.0% 56.0% 83.0% 62.4% 11.1
int4 69.5% 51.9% 75.8% 66.3% 26.8% 54.9% 79.0% 60.1% 11.6

Table 3: Perplexity using LM Eval Harness and FasterTransformer. OPT 66B suffers from catastrophic collapse
with INT4 per column quantization, but recovers with block quantization with a size of 64.

Dataset OPT 66B OPT 175B
FP16 INT8 per col INT4 per col INT4 (64) FP16 INT8 per col INT4 per col INT4 (64)

Wikitext 10.15 10.15 143.16 10.66 9.08 9.08 11.08 9.84

Table 4: Accuracy of OPT-IML models (30B and 175B) with various weight only quantization settings on
machine translation tasks. The BLEU score is used as a metric and higher number represent a better result. The
group size for the group-wise quantization is specified together with quantization bits.

Model type Attention (group) Others (group) WMT 2016 German to English Model Footprint (GB)
fp16 fp16 38.20 55.21

int8 (7,168) int8 (7,168) 38.20 27.66
int4 (16) int4 (16) 38.10 17.32
int4 (64) int4 (64) 37.96 14.73

OPT-IML Max 30B
int4 (7,168) int4 (7,168) 16.86 13.88

int4 (adaptive) int4 (adaptive) 38.12 14.62
int3 (64) int4 (64) 37.75 13.87
int4 (64) int3 (64) 37.06 12.15
int3 (16) int3 (16) 37.57 13.87
int3 (64) int3 (64) 36.95 11.29

int3 (7,168) int3 (7,168) 0.00 (degenerate) 10.43
fp16 fp16 41.14 324.16

int8 (12,288) int8 (12,288) 41.18 162.18

OPT-IML Max 175B int4 (64) int4 (64) 40.86 86.23
int4 (12,288) int4 (12,288) 0.00 (degenerate) 81.19

int3 (64) int4 (64) 40.93 81.16
int4 (64) int3 (64) 37.02 71.04

Table 5: Accuracy of MoE models with quantization. Speed-up comparison is presented in Figure 3. The
optimized kernels are implemented for 8-bit and 4-bit precisions.

Model type Precision BLEU (∆ BLEU compared to fp16) Size (X times compared to fp16)

MoE 5.3B

fp16 46.35 (0.0) 1.00X
int8 46.34 (-0.01) 0.55X
int4 46.18 (-0.17) 0.32X
int3 46.01 (-0.34) 0.26X

10

Table 6: We show the time taken to construct the context and the time per decoder step for OPT-175B on 8, 4 and
2 GPUs using our different weight-only quantization schemes. The numbers for int4 per-column quantization
are similar to int4 (64) so they are omitted. The compute bound context creation phase is up to 3.5X slower
when using INT4 block quantization, but running on 4x fewer GPUs. For INT8, it is up to 1.9X slower but
runs on 2X fewer GPUs. In addition, the time per decoder step is typically within 20% of FP16 despite using
2X for 4X fewer GPUs with weight-only quantization. End to end times for different numbers of generated
tokens can be estimated from this table by identifying the batch size and input length of interest and computing:
context_time + num_generated_tokens * time_per_decoder_step. The batch sizes and sequence lengths shown
are the maximum sizes that could fit in GPU memory.

Batch
Size

Input
length

FP16 (8 GPUs) INT8 (4 GPUs) INT4 (64) (2 GPUs)

Context
time (ms)

Avg time
per decoder
step (ms)

Context
time (ms)

Avg time
per decoder
step (ms)

Context
time (ms)

Avg time
per decoder
step (ms)

1 128 60 40 76 38 121 43
2 128 82 41 134 38 226 42
4 128 148 41 283 38 431 43
8 128 272 41 468 40 835 45
12 128 372 42 743 41 1173 48
16 128 491 42 890 42 1627 49
32 128 935 44 1776 47 3261 58
1 512 148 42 280 40 427 44
2 512 273 43 470 40 838 45
4 512 493 43 892 41 1637 46
8 512 939 43 1784 43 3291 49
1 1024 271 41 465 39 829 44
2 1024 498 42 899 39 1648 46
4 1024 945 42 1795 42 3307 50

F OPT-175B Speed measurements with various input matrix sizes

We construct Table 6 as a reference to compute end to end times for different input and output lengths
for OPT-175B on 8, 4 and 2 GPUs. Our table shows that the context phase slows done which is
primarily due to running on fewer GPUs. Additionally, our weight-only quantization kernels have
some slowdown for compute bound cases. However, we show that the time per decoder step is
typically within 20 % of FP16 despite using 2X or 4x fewer GPUs. The per-token latency does not
scale with the number of GPUs since fewer GPUs need to communicate and our kernels provide
significant acceleration (as shown in Table 2) in the decoder phase.

11

	Introduction
	Designing Quantization Methods for LLMs - Adaptive Fine-grained Quantization
	Catastrophic collapse of model performance
	Adaptive fine-grained quantization

	Experiments
	Accuracy
	Dense model performance results
	Microbenchmarks
	End to End Benchmarks

	MoE model performance results

	Conclusions and Limitations
	Quantization method formulation
	Experimental setup
	Quantization methodology: basic settings
	Channel-wise vs matrix-wise quantization
	Dense and MoE model quantized accuracy
	OPT-175B Speed measurements with various input matrix sizes

