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Abstract

Speaker verification has been recently gaining a lot of attention using audio-visual
fusion as faces and voices share close associations with each other. Though exist-
ing approaches based on audio-visual fusion showed improvement over unimodal
systems, the potential of audio-visual fusion for speaker verification is not fully
exploited. In this paper, we have investigated the prospect of effectively capturing
both the intra- and inter-modal relationships across audio and visual modalities
simultaneously, which can play a crucial role in significantly improving the fusion
performance over unimodal systems. Specifically, we introduce a recursive fusion
of the joint cross-attentional model, where a joint audio-visual feature representa-
tion is employed in the cross-attention framework in a recursive fashion in order to
obtain more refined feature representations that can efficiently capture the intra- and
inter-modal associations. Extensive experiments are conducted on the Voxceleb1
dataset to evaluate the proposed model. Results indicate that the proposed model is
found to be promising in improving the performance of the audio-visual system.

1 Introduction

Speaker Verification (SV) deals with the problem of verifying the identity of a person, which has
a wide range of applications in various fields such as forensics, commercial, and law enforcement
applications (1). The task of SV has been predominantly explored using faces (2) and speech (3)
signals independently. With the advancement of deep learning models, both face- and speech-
based methods have individually achieved remarkable success (3). However, relying on individual
modalities may often deteriorate the performance of the system when face or speech-based signals are
degraded by extreme background noise or intra-variations such as pose, low illumination, manner of
speaking, etc. Therefore, leveraging the fusion of both faces and voices has been gaining momentum
as multiple modalities are often expected to complement each other (4). For instance, when speech
modality is corrupted, we can rely on face to verify the identity of a person and vice-versa. Most
of the existing audio-visual (A-V) fusion approaches for SV focused on score-level fusion (5; 6) or
early feature-level fusion (7; 8). Though these methods have improved the fusion performance over
unimodal systems, they fail to leverage the rich complementary inter-modal relationships among the
audio and visual modalities.

In recent years, attention-based models have been explored to efficiently capture the complementary
inter-modal associations across faces and voices (9; 10). Most of the existing attention-based models
attempted to leverage the intra- and inter-modal relationships in a decoupled fashion. Another line
of approaches focused on dealing with noisy modalities using a weighted combination of audio and
visual modalities (4; 11). To effectively fuse audio and visual modalities it is very important to adeptly
capture both intra- and inter-modal relationships. Intra-modal relationships offer rich information
pertinent to the temporal dynamics of videos whereas inter-modal relationships provide significant
information related to the complementarity of the modalities. Contrary to the prior approaches, we
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have explored joint cross-attentional fusion in a recursive fashion to simultaneously capture both
intra and inter-modal relationships to obtain robust A-V feature representations. Recursive attention
has been previously explored successfully for emotion recognition (12) and event localization (13).
By recursively fusing the features of audio and visual modalities we are able to achieve more
refined feature representations in order to improve the performance of A-V fusion for SV. The major
contributions of the proposed approach can be summarized as follows: (1) A recursive fusion of joint
cross-attentional model is introduced to efficiently capture both intra- and inter-modal relationships
across faces and voices. (2) The joint feature representation helps to mitigate heterogeneity issues,
while simultaneously refining the feature vectors. (3) Extensive experiments are conducted on the
voxceleb1 dataset to evaluate the robustness of the proposed model.

2 Related Work

The close association between faces and voices has attained much attention for the task of the cross-
modal biometric matching system by projecting the features of individual modalities to a common
representation space (14; 15). Sari et al. (16) explored a multi-view approach by transforming the
individual feature representations into a common latent space and a shared classifier is used for both
modalities for SV. Chen et al (17) leveraged the complementary information as a means of supervision
to obtain robust A-V feature representations using a co-meta learning paradigm in a self-supervised
learning framework. Tao et al (4) also explored the complementary relationship across audio and
visual modalities to cleanse the noisy samples, where the consistency across the audio and visual
modalities is used to discriminate the easy and hard samples. Another line of approaches is to deal
with mitigating the impact of noisy modalities by leveraging complementary relationships. Shon et al
(11) proposed an attention mechanism to assign higher attention scores to the modality exhibiting
higher discrimination by leveraging the complementary nature across audio and visual modalities.
Stefan et al (10) further extended the idea of (11) by introducing feature fusion of audio and visual
modalities at intermediate layers to improve the quality of feature representations. Chen et al (7)
explored the prospect of obtaining robust feature representations by investigating various fusion
strategies at the embedding level and achieved the best performance using gating-based fusion. They
further exploited data augmentation strategy to deal with extremely corrupted or missing modalities.

All the above-mentioned approaches fail to leverage the cross-modal interactions to effectively
capture the rich inter-modal relationships. Cross-modal attention has been successfully explored in
several applications such as weakly-supervised action localization (18), event localization (13), and
emotion recognition (19). Recently, Bogdan et al (20) also explored cross-attention (CA) based on
cross-correlation across the audio and visual modalities to effectively capture the complementary
relationships. Meng et al (21) explored cross-modal attention by deploying cross-modal boosters
in a pseudo-siamese structure to model one modality by exploiting the knowledge from another
modality. However, these approaches focus only on inter-modal relationships (20) or capture the
intra- and inter-modal relationships in a decoupled fashion (21). Praveen et al (22) explored a joint
cross-attentional framework to jointly capture the intra and inter-modal relationships and showed
better performance of SV. In this work, we further extend this approach by learning more robust A-V
feature representations in a recursive fashion.

3 Recursive Joint Cross-Attention

Notations: Given an input video sub-sequence S, we uniformly sample L non-overlapping video
segments and extract deep feature vectors from pre-trained models for audio and visual modalities. Let
Xa and Xv denote the deep feature vectors of audio and visual modalities respectively for the given
input video sub-sequence S of fixed size, which is expressed as Xa = {x1

a,x
2
a, ...,x

L
a } ∈ Rda×L

and Xv = {x1
v,x

2
v, ...,x

L
v} ∈ Rdv×L where da and dv represent the dimensions of the audio and

visual feature vectors, respectively, and xl
a and xl

v denotes the audio and visual feature vectors of the
video segments, respectively, for l = 1, 2, ..., L segments.

It has been shown that the performance of unified multimodal training may decline over that of
individual modalities due to the differences in learning dynamics, noise topologies, etc. (23).
Therefore, we have used fixed feature vectors of audio and visual modalities to train the proposed
A-V fusion model. By deploying the joint feature representation in the CA framework in a recursive
fashion, we are able to simultaneously enhance the intra- and inter-modeling of A-V relationships.
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Figure 1: Block Diagram of the Recursive Joint Cross-Attention model for A-V fusion

The block diagram of the proposed approach is shown in Figure 1. The joint representation J is
obtained by concatenating the audio and visual feature vectors as J = [Xa;Xv] ∈ Rd×L where
d = da + dv denotes the feature dimension of concatenated features. The concatenated A-V feature
representations (J ) of the given video sub-sequence (S) are now employed in the CA framework to
attend to the individual modalities. This helps to incorporate both intra- and inter-modal relationships
in obtaining the attention weights of audio and visual modalities. Now the correlation across the joint
feature representation and the individual modalities are obtained as a joint cross-correlation matrices,
which is given by

Ca = tanh

(
X⊤

a W jaJ√
d

)
and Cv = tanh

(
X⊤

vW jvJ√
d

)
(1)

where W ja ∈ Rda×d, W jv ∈ Rdv×d represents learnable weight matrices of audio and visual
modalities respectively. The joint correlation matrices Ca and Cv for audio and visual modalities
help to obtain the attention weights based on the semantic relevance of both across and within the
modalities. The higher the correlation coefficient, the higher the correlation across the corresponding
samples within the same modality as well as across the modality. Now the joint cross-correlation
matrices are used to obtain the attention maps of audio and visual modalities, which are given by

Ha = ReLU(XaW caCa) and Hv = ReLU(XvW cvCv) (2)

where W ca ∈ RL×L,W cv ∈ RL×L denote learnable matrices of audio and visual modalities
respectively. These attention maps are used to obtain the attended features of audio and visual
modalities as

Xatt,a = HaW ha +Xa and Xatt,v = HvW hv +Xv (3)

where W ha ∈ RL×L and W hv ∈ RL×L denote the learnable weight matrices for audio and visual
modalities respectively. In order to obtain more refined feature representations, the attended features
are again fed as input to the joint cross-attentional model, which is given by

X
(t)
att,a = H(t)

a W
(t)
ha +X(t−1)

a and X
(t)
att,v = H(t)

v W
(t)
hv +X(t−1)

v (4)

where W
(t)
ha ∈ RL×L and W

(t)
hv ∈ RL×L denote the learnable weight matrices of tth iteration for

audio and visual modalities respectively. Finally the attended features X(t)
att,a and X

(t)
att,v obtained

from the recursive fusion model are concatenated and fed to the attentive statistics pooling (ASP) to
obtain sub-sequence or utterance-level representations. The utterance-level A-V feature representa-
tions are used to obtain the scores, where the additive angular margin softmax (AAMSoftmax) (24)
loss function is used to optimize the parameters of the fusion model and ASP module.

4 Results and Discussion

Dataset: We have evaluated the proposed model on the Voxceleb1 dataset, obtained from YouTube
videos under challenging environments. The dataset consists of 1,48,642 video clips, captured from
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Table 1: Performance (EER) of the proposed approach by comparing to the existing fusion strategies
(left) and comparison to state-of-the-art (right)

Fusion Method Validation Set
Score-level Fusion 2.521
Feature Concatenation 2.489
Self-Attention 2.412
Cross-Attention 2.387
Joint Cross-Attention 2.125
RJCA (Ours) 1.946

Fusion Method Validation Set Vox1-O Set
Visual 3.720 3.779
Audio 2.553 2.529
Tao et al (4) 2.476 2.409
Praveen et al (22) 2.125 2.214
RJCA (Ours) 1.946 2.015

1,251 speakers, out of which 55% of the speakers are male. Each video clip has a duration of 4 to 145
seconds and the speakers are chosen to cover a diverse range of ethnicities, accents, professions, and
ages. For our experiments, we have divided the voxceleb1 development set, which has 1211 speakers
into training and validation sets. The training and validation splits were randomly selected as 1150 and
61 speakers respectively and reported our results on both the validation split and Vox1-O (Voxceleb1
original) test set for performance evaluation. It is worth mentioning that the model is trained only on
the voxceleb1 dataset. Equal Error Rate (EER) is used as an evaluation metric, which refers to the
point where the False Accept Rate (FAR) is equal to the False Reject Rate (FRR). A perfect scoring
model should yield an EER of zero, so a lower EER value indicates a better performance.

Ablation Study: The results are reported based on the average of three runs for statistical stability.
To obtain the audio and visual feature vectors, we have used Resnet-18 (25) for visual modality and
ECAPA-TDNN (26) for audio modality similar to that of (22) to have a fair comparison. First, we
have implemented a simple score-level fusion, where scores obtained from individual modalities are
fused. Next, we explored feature concatenation, where the features of audio and visual modalities
are concatenated and used to obtain the final score. We can observe that the fusion performance
has been improved over simple score-level fusion. By employing a self-attention mechanism on the
concatenated features of individual modalities, the fusion performance has been further improved
by leveraging the intra-modal relationships. We also explored inter-modal relationships across the
modalities using CA and found further improvement in fusion performance as shown in Table 1
(left). Now, we explored joint cross-attention, where joint feature representation is deployed in the
CA framework to simultaneously capture both intra- and inter-modal relationships. Finally, we have
introduced the recursive fusion of the attended features of individual modalities and observed that
recursive fusion with 3 iterations helps in obtaining more refined feature representations and achieves
the best performance among all the fusion strategies.

Comparison to state-of-the-art: Most of the existing methods used the Voxceleb2 development
dataset for training the models for SV. However, we have used the Voxceleb1 dataset to validate the
proposed approach and compared it with the recent state-of-the-art methods of SV using A-V fusion.
Table 1 (right) shows the comparison of the proposed approach to recent state-of-the-art methods as
well as individual modalities on both validation split of Voxceleb1 and Vox1-O datasets. First, we
have conducted experiments with the individual modalities and found that audio performs relatively
better than visual modality. In order to have a fair comparison, we have re-implemented the approach
of (4) and (22) using the same experimental setup on the Voxceleb1 dataset. Tao et al (4) explored
the complementary relationships as supervisory information to deal with noisy samples. Praveen
et al (22) deployed the joint A-V representation in the CA framework and improved the fusion
performance. Since the proposed approach employs recursive fusion with the joint cross-attentional
framework to obtain robust feature representations, we can observe that the fusion performance has
been further improved.

5 Conclusion

In this paper, we have presented a novel approach of recursive joint cross-attentional fusion for SV
by effectively exploiting both inter- and intra-modal relationships across audio and visual modalities.
Specifically, we have explored joint feature representation in the CA framework in a recursive fashion
in order to obtain more refined A-V feature representations. The performance of the proposed
approach can be further enhanced by training with the large-scale Voxceleb2 dataset as it can improve
the generalization ability of the proposed approach.
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A Appendix

A.1 Ablation study with varying number of recursions

In order to understand the impact of the recursive fusion, we have performed experiments by varying
the number of iterations and obtained the best performance at 3 iterations as shown in Table 2. Beyond
that, we observe a decline in the fusion performance, which can be attributed to the fact that the
recursion acts as a regularizer and improves the generalization ability of the proposed model. The
results are reported based on the average of three runs for statistical stability.

Table 2: Performance (EER) of the proposed approach by varying the number of recursions

Fusion Method Validation Set
RJCA Fusion (t = 2) 2.029
RJCA Fusion (t = 3) 1.946
RJCA Fusion (t = 4) 1.995
RJCA Fusion (t = 5) 2.159
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