
DYAD: A Descriptive Yet Abjuring Density efficient
approximation to linear neural network layers

Sarin Chandy∗ Varun Gangal ∗ Yi Yang Gabriel Maggiotti
ASAPP Inc.

{schandy,vgangal,yyang,gmaggiotti}@asapp.com

Abstract

We devise, implement and performance-asses DYAD, a layer which can serve as
a faster and more memory-efficient approximate replacement for linear layers,
(nn.Linear() in Pytorch). These layers appear in common subcomponents, such as
in the ff module of Transformers. DYAD is based on a bespoke near-sparse matrix
structure which approximates the dense "weight" matrix W that matrix-multiplies
the input in the typical realization of such a layer, a.k.a DENSE. Our alternative
near-sparse matrix structure is decomposable to a sum of 2 matrices permutable to a
block-sparse counterpart. These can be represented as 3D tensors, which in unison
allow a faster execution of matrix multiplication with the mini-batched input matrix
X compared to DENSE (O(rows(W)× cols(W)) → O(rows(W)×cols(W)

of blocks)). As
the crux of our experiments, we pretrain both DYAD and DENSE variants of 2 sizes
of the OPT arch and 1 size of the Pythia arch, including at different token scales
of the babyLM benchmark. We find DYAD to be competitive (≥ 90%) of DENSE
performance on zero-shot (e.g. BLIMP), few-shot (OPENLM) and finetuning
(GLUE) benchmarks, while being ≥7-15% faster to train on-GPU even at 125m
scale, besides surfacing larger speedups at increasing scale and model width.

1 Introduction
Riding on the back of the already pivotal decade-long rise of GPU-driven deep learning [1], Trans-
formers [2] in 2017 crescendoed the ambition, scale and task-generality of ML models. With
cross-sequence in-training parallelizability and representation power through all-pair interactions,
transformers disrupted NLP and its incumbent recurrent paradigm [3], but since became key compo-
nents in other modalities such as CV [4]. Pretrained models as base representations, limited then to
CV, emerged via LLMs like BERT [5], T5 [6] etc reaching SOTA across tasks with limited finetuning.

A natural consequence of a module’s ubiquity is that even a small improvement to one of its aspect can
have major impact on its application and research — as seen by the recent impact of e.g., quantization
[7]. A result of this is that an inefficient component (attention) sees a barrage of research (e.g.hashing
[8], softmax alternatives [9], FlashAttention [10] etc) until some other component emerges as a
bottleneck. We believe this is the case with the dense linear layers in the Transformer’s ff module.
Moreover, models have larger hidden dimension (4096 for Pythia, 8192 for Llama2), leading to
quadratic rise in compute from ff module linear layers. Thus inspired, we devise DYAD (Descriptive
Yet Abjuring Density) — an efficient linear layer approximation using block-sparsity.

2 Formulation
2.1 Linear Layer

A Linear layer is the basic building block of all neural networks, represented in pytorch by
nn.Linear(). It maps input X to output Y via a dense matrix multiplication with weight ma-

∗Equal Contribution. Sarin proposed the dyad model, modified the models in the transformers library with
the Dyad layer and wrote the formulation section. Varun proposed the evaluation frameworks, organized the
experiments and led the paper writing

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Dyad Weight Matrix [L] vs its Components [R], BLOCKDIAG & BLOCKTRANS. Green is ̸= 0.

trix W , given by the equation Y = GLinear(X) = WX+b. Here, W is a matrix of shape fout×fin
where fout and fin represent the no. of output & input features. Y , X and the bias b have shapes
fout × nbatch, fin × nbatch and fout × 1. Frameworks like pytorch pose the shape of X and Y as
nbatch × fin and nbatch × fout but here we adhere to the former convention.

2.2 DYAD : Definition and Properties

Here, we introduce a family of sparse layers named DYAD that can serve as an approximate replace-
ment for the dense linear layer. DYAD has 3 variants called DYAD-IT, DYAD-OT and DYAD-DT.
The initials stand for Input Transpose, Output Transpose and Double Transpose. They are named
such because transpose operations on either the input or output enables to compute their outputs
efficiently. We describe DYAD-IT here but defer describing the other two to the Appendix. DYAD
is a linear layer with a sparse weight matrix having shape shown in Fig 1. The output of this layer
can be calculated using GLinear. However, this won’t lead to any efficiency gain compared to the
linear layer. We can split the DYAD matrix into 2 components as shown in Fig 1. These components
share some non-zero elements but their sum’s representational power would be identical to the DYAD
matrix. We call the first component the Block Diagonal Component (BLOCKDIAG) and the second
one the Block Transposed Component (BLOCKTRANS). The ability to split DYAD into 2 components
is what inspires its name. A DYAD matrix can be defined using 3 parameters, ndyad, nin and nout.
nout × nin is the size of each submatrix in BLOCKDIAG and ndyad represents the no. of submatrixes
in each component. Thus, all the figures for DYAD shown here have ndyad = nin = nout = 4. With
the 2 components of DYAD split up, we can write its layer output as in Eq 1.

Y = W1X +W2X + b (1)

Naively implementing this as in Eq 1, will be as expensive as its dense counterpart. To exploit the
joint properties of sparsity and block structure in these 2 components, we need to transform W1X
and W2X to an equivalent sequence of 3D tensor operands and operations.

Hereforth, we ease representing 3D tensors in our equations by overloading pytorch tensor operators.

2.2.1 Efficient Computation of BLOCKDIAG

Let Y1 = W1X be the output of BLOCKDIAG. From Fig 1, we can see that for any Y1[i × nout :
(i+ 1)× nout, :] only depends on X[i× nin : (i+ 1)× nin, :] where i ∈ [0,ndyad). This shows that
each pair of Y1[i×nout : (i+1)×nout, :],X1[i×nin : (i+1)×nin, :] can be calculated individually
using a matrix multiplication. The weights needed for this are W1[i×nout : (i+1)×nout, i×nin :
(i + 1) × nin]. We can store the weights needed for all these pairs of outputs and inputs as a 3D
tensor,W

′

1 of shape (ndyad,nout,nin) as per Eq 2.

W
′
1 [i, j, k] = W1[i ∗ nout + j, i ∗ nin + k] (2)

This is a factor of ndyad times smaller when compared to W1 since it has the shape (ndyad×nout ,
ndyad×nin). Thus, the whole output of the layer can be computed together with a single batched
matrix multiplication as shown in Eq 4 after the input has been also converted to a 3D tensor as
shown in Eq 3.

X
′
1 = X.reshape(ndyad, nin, nbatch) (3)

Y1 = W
′
1 .bmm(X

′
1).reshape(ndyad × nout, nbatch) (4)

The value of Y1 here is the same as W1X but cost of computing it will be O(ndyad × nout × nin)
instead of O(n2

dyad × nout × nin) which is O(ndyad) times faster.

2

2.2.2 Efficient Computation of BLOCKTRANS

The matrix multiplication for BLOCKTRANS, i.e. W2X can be converted to a form similar to
BLOCKDIAG by permuting the columns of W2. A permutation matrix, P is a square matrix which
has exactly one element along each row and each column as one and the rest have a value of zero. Pre-
multiplying by a permutation matrix (PA), permutes the rows of matrix A, while post-multiplying
(AP), permutes the columns of matrix A. So if we post multiply, W2 by an appropriate permutation
matrix which has the form as shown in Eq 5, we will end up with a matrix similar to BLOCKDIAG.

P (i, j) = δj=ndyad∗(i%nin)+i//nin
(5)

Figure 2: Permutation Matrix for
BLOCKTRANS

For Dyad with ndyad = nin = nout = 4, this permutation ma-
trix is shown in Fig 2. As Permutation matrices are orthonormal,
P−1 = PT where PT is another Permutation matrix [11].

Y2 = W2X = W2(PPT)X = (W2P)(PTX) (6)

Using the othonormal property of permutation matrixes we can
write W2X as shown in Eq 6. Here, Y2 is the output of BLOCK-
TRANS. Let WP

2 = W2P and XP
2 = PTX . Since, WP

2 has
the same structure as the weight matrix for BLOCKDIAG, we
can also store it as a 3D tensor,W

′

2, of shape ndyad×nout×nin.
Hence, as in the case before this leads to a reduction in memory
size of O(ndyad) when compared to W2.

Calculating PTX naively in order to get XP
2 will be as expen-

sive as the linear layer. However, the specific pattern of the
permutation allows us to calculate XP

2 by simplying transposing
a 3D view of X and the layer output can be calculated as shown in Eqs 7 and 8.

X
′

2 = X.reshape(nin, ndyad, nbatch).transpose(0, 1) (7)

Y2 = W
′

2.bmm(X
′

2).reshape(ndyad × nout, nbatch) (8)

In the interest of brevity, the details of how we arrived at Eqs 7 and 8 is described in detail in Appendix
§5.1. Eq 7 only requires changing some meta data of the tensor. The cost of computation here is thus,
the same as that of the previous case with complexity O(ndyad ×nout ×nin) and is faster by a factor
of O(ndyad) when compared with multiplying with W2. The Dyad layer can be written relatively
efficiently in pytorch, as shown in Appendix §5.2. In Appendix §5.3.3, we discuss some thoughts
about the representational power of DYAD.

3 Experimental Setup: Architectures, Benchmarks and Metrics
3.1 Choice of Pretraining Corpus

Since our experiments need multiple pretraining runs to create different pretrained variants of the
same architectures, each with the linear layers of the ff module replaced by our DYAD variants, in
addition to the baseline DENSE, it would be infeasible to pretrain manyfold on full corpora, especially
for a new method that can show on-the-fly challenges. Since TinyStories [12], there has been an
emerging class of lean pretraining corpora (others being [13], [14]) carefully curated to forsake on
superficial aspects of scale (e.g. internet-scale vocab), while being linguistically rich enough. They
present a reasonable Goldilocks choice, being small enough to pretrain many runs on, while being
large enough to learn emergent LLMesque skills. Hence, we choose BABYLM [14], which comes
in two scales - 100M and 10M tokens respectively. The authors also provide an easy-to-use and
“hackable" setup, with repos that support a) pretraining b) evaluating on BLIMP/GLUE.

3.2 Models, Architecture, Hyperparameters & Compute

We seek a setting which allows direct comparison between DENSE vs DYAD, with preferably simple
loss function and minimally randomized training. We avoid encoder-only and encoder-decoder
architectures for this reason. To compare with BABYLM baselines, we pick the sole decoder-only
architecture they evaluate, i.e. OPT-125m [15], as the architecture to try our variants with. We
lay greater emphasis on exhaustive experiments at 10M data scale, though we also perform a core
subset at the 100M scale. To show generalization to higher architecture size, we also repeat some
experiments with OPT 350-m. We also present promising results at 10M with Pythia 160-M in

3

Ti
m
e

Ta
ke

n
By

 F
F

M
od

ul
es

 (
O
PT

-1
25

m
)

0

1

2

3

4

5

Forward PassBackward PassTotal

Dense Dyad-DT Dyad-OT Dyad-IT Dyad-IT-8

Ti
m
e

Ta
ke

n
By

 F
F

M
od

ul
es

 (
O
PT

-3
50

m
)

0

2

4

6

8

Forward PassBackward PassTotal

Dense Dyad-IT Dyad-IT-8

Figure 3: Mean traintime per minibatch by FF modules of OPT-125m/OPT-350m training spent on forward, backward passes and total
(Times in ms). DYAD variants are faster, and ↑ ndyad (DYAD-IT-8) improves this.

M
em

or
y

Fo
ot

p
ri

n
t

(O
P

T-
1

2
5

m
 &

 3
5

0
m

)

0

200

400

600

800

1000

1200

1400

Checkpoint Size (MB)Non-Embed Params (millions)

Dense Dyad-IT Dyad-OT Dyad-DT Dense-350 Dyad-IT-350

In-Train GPU Mem Used (MB)

Dense

Dyad-IT

Dyad-OT

Dyad-DT

Dyad-IT-8

0 2500 5000 7500

In-Train GPU Mem Used(MB)

Figure 4: Memory and parameter footprint of OPT-125m/OPT-350m training as per various static estimates on the left and dynamic GPU
mem usage on the right.

Benchmark Task DENSE DENSE-EXT DYAD-IT DYAD-OT DYAD-DT DYAD-IT-8

GLUE+ Mean
GLUE+ 68.82 63.38 67.33 68.46 68.59 67.70

GLUE+-QA 66.37 63.67 66.27 66.27 63.69 64.02
GLUE+-NLI 68.27 59.78 65.64 68.27 68.67 67.65

BLIMP Mean BLIMP 59.16 60.31 60.47 62.55 60.86 58.88

OPENLLM Means OPENLLM 30.27 30.39 30.61 30.74 30.58 30.65

Table 1: Performance on GLUE+ (finetuning), BLIMP (0-shot), OPENLLM (few-shot) benchmarks for DENSE
baselines vs 3 DYAD variants with ndyad = 4 and a sparser version of the 1st (DYAD-IT-8). Numbers
which exceed DENSE/DENSE-EXT are bolded/underlined respectively. All DYAD variants are ≥ 0.95 ×
max(DENSE, DENSE-EXT). We present aggregates for brevity and defer individual values to Appendix Table 2

Appendix §5.6.4. We refer to the pretrained DENSE checkpoint shared from BABYLM as DENSE-
EXT, DENSE being our replication of it keeping pretraining details same for DYAD. DYAD variants
have ndyad = 4 unless mentioned (−8 i.e. ndyad = 8). All experiments are on 1 GPU. More compute
details are noted in Appendix§5.5

3.3 Benchmarks & Metrics

Zero-Shot: BLIMP Benchmark of Linguistic Minimal Pairs (BLIMP) [16] consists of pairs of
grammatical-ungrammatical sentences grouped into 12 phenomena e.g. anaphora. A good LLM
ought to assign higher probability to the grammatical member.

Few-Shot: OPENLLM The OPENLLM leaderboard [17] has become a prevalent way to benchmark
LLMs based 4 few-shot openbook MCQesque benchmarks. Internally, it uses LMEvalHarness [18],
which we replicate to compute numbers for our models as well as BabyLm’s pretrained checkpoints.

Finetuned:GLUE+ General Lang. Understanding Eval (GLUE) [19], is a set of 7 NLU tasks, each
evaluated post-finetuning. Also, we compute results on WSC and BOOLQ. We christen this GLUE+.

Training Time We report both total and FF-only (time spent just on ff modules) time per minibatch.

Memory & Parameter Footprint By storing the dense subset of W as 3D tensor form, DYAD has
lesser space complexity. To gauge real space saved, we measure various notions of memory and
parameter size — i) Non-Embedding Parameters: As in Pythia [20], we report total Non-Embedding
Parameters. ii) Model Checkpoint Size: On-disk size of the model checkpoint. iii) In-Training
GPU Memory Usage: During training, models may use memory well beyond parameters, e.g.
optimizer state, cached activations etc. In-Training GPU Memory Usage as a metric incorporates this.

3.4 Results

Through Table 1 (and Appendix Tables 3, 8 & 11), we see that DYAD variants are well competitive
(≤ 5%) of the best DENSE baseline. In addition, through Figure 3 (and Appendix Tables 4,5,6,9,10
and Figure 7), we see that all DYAD variants can translate the better complexity to actual speedups.

4

4 Future Work
In the future, we aim to explore i) using a heterogeneous mix of DYAD variants to approximate
different ff layers ii) Replicating our experiments other minified corpora such as Minipile [13].

5

References
[1] Krizhevsky, A., I. Sutskever, G. E. Hinton. Imagenet classification with deep convolutional

neural networks. Advances in neural information processing systems, 25, 2012.
[2] Vaswani, A., N. Shazeer, N. Parmar, et al. Attention is all you need. Advances in neural

information processing systems, 30, 2017.
[3] Sutskever, I., O. Vinyals, Q. V. Le. Sequence to sequence learning with neural networks.

Advances in neural information processing systems, 27, 2014.
[4] Srinivas, A., T.-Y. Lin, N. Parmar, et al. Bottleneck transformers for visual recognition. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
16519–16529. 2021.

[5] Devlin, J., M.-W. Chang, K. Lee, et al. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Raffel, C., N. Shazeer, A. Roberts, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[7] Dettmers, T., A. Pagnoni, A. Holtzman, et al. Qlora: Efficient finetuning of quantized llms.
arXiv preprint arXiv:2305.14314, 2023.

[8] Kitaev, N., Ł. Kaiser, A. Levskaya. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

[9] Qin, Z., W. Sun, H. Deng, et al. cosformer: Rethinking softmax in attention. arXiv preprint
arXiv:2202.08791, 2022.

[10] Dao, T., D. Fu, S. Ermon, et al. Flashattention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359, 2022.

[11] Wikipedia, W. contributing authors. Permutation matrix: Properties. https://en.wikipedia.
org/wiki/Permutation_matrix#Properties, 2023.

[12] Eldan, R., Y. Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

[13] Kaddour, J. The minipile challenge for data-efficient language models. arXiv preprint
arXiv:2304.08442, 2023.

[14] Warstadt, A., L. Choshen, A. Mueller, et al. Call for papers–the babylm challenge: Sample-
efficient pretraining on a developmentally plausible corpus. arXiv preprint arXiv:2301.11796,
2023.

[15] Zhang, S., S. Roller, N. Goyal, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[16] Warstadt, A., A. Parrish, H. Liu, et al. Blimp: The benchmark of linguistic minimal pairs for
english. Transactions of the Association for Computational Linguistics, 8:377–392, 2020.

[17] Beeching, E., C. Fourrier, N. Habib, et al. Open llm leaderboard. https://huggingface.
co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

[18] Gao, L., J. Tow, S. Biderman, et al. A framework for few-shot language model evaluation, 2021.
[19] Wang, A., A. Singh, J. Michael, et al. Glue: A multi-task benchmark and analysis platform for

natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 353–355. 2018.

[20] Biderman, S., H. Schoelkopf, Q. G. Anthony, et al. Pythia: A suite for analyzing large language
models across training and scaling. In International Conference on Machine Learning, pages
2397–2430. PMLR, 2023.

[21] Biderman, S., K. Bicheno, L. Gao. Datasheet for the pile. arXiv preprint arXiv:2201.07311,
2022.

6

https://en.wikipedia.org/wiki/Permutation_matrix#Properties
https://en.wikipedia.org/wiki/Permutation_matrix#Properties
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

5 Appendix
5.1 Final Details of BLOCKTRANS

As we mentioned in the Formulation, we explained some of the leading intuition and operations for
computing BLOCKTRANS. Now, we describe here how multiplying by the permutation matrix, P ,
introduced there can be achieved by transposing a 3D view of the input X .

We can see from Eq 5 that within a multiple of nin for every increment of i, j increases by ndyad

while for every i+ nin increment j only increases by 1. Thus, i can be thought of as the 1D index of
a flattened 2D matrix of shape ndyad × nin with stride (1, ndyad). Hence, permuting and inverting
the permutation can be done by just transposing this 2D matrix i.e. going from shape ndyad × nin to
nin × ndyad and from stride (1, ndyad) to stride (ndyad, 1) and vice versa. Calculating XP

2 this way
from X is shown in Eq 9.

XP
2 = X.reshape(nin, ndyad,−1).transpose(0, 1).reshape(−1, nbatch) (9)

X
′
2 = XP

2 .reshape(ndyad, nin, nbatch) (10)

X
′
2 = X.reshape(nin, ndyad, nbatch).transpose(0, 1) (11)

Now as in the case of BLOCKDIAG we need the activations as a 3D tensor to do the calculations
efficiently. So we need to reshape XP

2 as shown in Eq 10 to get X
′

2. X
′

2 is the actual activation input
for the batched matrix multiplication. We can combine Eq 9 and 10 to cancel the reshape as shown
in 11. Eq 11 is basically free and involves just changing some metadata related to the strides of the
dimensions. The actual data of the tensor need not be touched here.

Y2 = W
′

2.bmm(X
′

2).reshape(ndyad × nout, nbatch) (12)
Finally, the output of BLOCKTRANS can be computed as shown in Eq 12

5.2 DYAD implementation in pytorch

Here we present an implementation of DYAD, more specifically the exemplary DYAD-IT. Note that,
in the code, we use dim instead of n to denote dimension.

class Dyad(torch.nn.Module):
def __init__(self,shape,bias=True):

super().__init__()
self.dyad_dim, self.dim_in, self.dim_out = shape
self.has_bias = bias
k = 1.0/float(np.sqrt(dim_in*dyad_dim))
self.wu = torch.nn.Parameter(torch.empty((dyad_dim,dim_out,dim_in)))
torch.nn.init.uniform_(self.wu,-k,k)
self.wl = torch.nn.Parameter(torch.empty((dyad_dim,dim_out,dim_in)))
torch.nn.init.uniform_(self.wl,-k,k)
if self.has_bias:

self.bias = torch.nn.Parameter(torch.empty((dyad_dim*dim_out,1)))
torch.nn.init.uniform_(self.bias,-k,k)

def forward(self,x):
The shape of x is (dyad_dim x dim_in, batch_size)
x1 = x.reshape(self.dyad_dim,self.dim_in,-1)
The shape of x1, which is a view of x, is now (dyad_dim, dim_in,

batch_size)
x2 = x.reshape(self.dim_in,self.dyad_dim,-1).transpose(0,1)
out =

(self.wl.bmm(x1)+self.wu.bmm(x2)).reshape(self.dyad_dim*self.dim_out,-1)
if self.has_bias:

out+= self.bias
return out

5.3 Dyad Variants

In this section we will describe the other two variants of Dyad, Dyad-OT and Dyad-DT. Both of these
variants can be split into two components. As in the case of Dyad-IT, the first component is a block

7

Figure 5: Dyad Output Transposed

Figure 6: Dyad Double Transposed

diagonal matrix and the second component can be converted back into a block diagonal by means of
transposes.

5.3.1 Dyad-OT

The weight matrix and the two split components of Dyad-OT is shown in Fig 5. The first component
can be calculated exactly the same way as in Dyad-IT. The output of the second component can be
calculated as shown in Eq 13. Here, Y2 is the output of the second component, W2 is the weight
matrix and X is the activation.

Y2 = W2X (13)

Similar to the case of Dyad-IT, we can see that if we permute the second component along the rows
we can get back a block diagonal matrix. Let the permutation matrix which achieves this be P . Since,
we are permuting the rows here this permutation matrix needs to be pre multiplied i.e WP

2 = PW2

where WP
2 is the resultant block diagonal matrix. We can convert W2X to use this form as shown

below.

Y2 = (PTP)W2X (14)

Y2 = PT (PW2)X (15)

Y2 = PTWP
2 X (16)

Here, we can calculate WP
2 X similar to the first component and then the permutation by per-

multiplying PT can be achieved by transposing the output similar to how it was done for Dyad-IT.
Thus, similar to Dyad-IT we will have a compute complexity of O(ndyad × nout × nin).

5.3.2 Dyad-DT

Fig 6 shows the weight matrix and the components of Dyad-DT. The important thing to note is
that the second component can be converted into a block diagonal matrix through a combination
of transposing the cloumns as well as transposing the rows. So, in other words it’s basically a
combination of Dyad-IT and Dyad-OT. We have to transpose the input before we multiply by the
block diagonal weight matrix and then we have to transpose the output to get the final output of the
layer.

8

Y2 = (PT
2 P2)W2(P1P

T
1)X (17)

Y2 = PT
2 (P2W2P1)(P

T
1 X) (18)

Y2 = PT
2 WP

2 X
′

(19)

The above equations show this. X
′
= PT

1 X is the result of transposing the input while WP
2 is the

equivalent block diagonal matrix obtained by permuting both the columns and rows (P2W2P1). As in
the case with the other two variants, this variant also achieves a complexity of O(ndyad×nout×nin).

5.3.3 Representational power of Dyad

Consider a network with two square Dyad layers i.e. nin = nout sequentially applied one after the
other to the input. Let the weight matrixes for the layers be, W d

1 and W d
2 and the input be X . The

output Y can be calculated as Y = W d
2W

d
1X .

Consider an input dimension i of X and an output dimension j of Y . If i//nin = j//nin i.e.
they fall in the same block of the Block Diagonal Component then there exists O(nin) connections
between them through the middle layer. If i//nin ̸= j//nin then only through the Block Diagonal
Component there wouldn’t be any interactions between this pair of input and output. However, the
Block Transposed Component interacts with outputs that are spaced uniformly apart at a stride of
ndyad. On average O(nin/ndyad) fall in the same block as that of the output dimension j, i.e. if the
middle dimension was k then k//nin = j//nin. Each of these middle dimensions will have a direct
connection to j. Thus, in this second case the input dimension i will have O(nin/ndyad) connections
to output dimension j. This is summarized in Eq 20.

No. of connections in Dyad =

{
O(nin), if j//nin = i//nin

O(nin/ndyad), otherwise
(20)

In the case of a sequence of two dense linear layers with the same shape, the number of connections
would be O(nin × ndyad) between each input and output. Thus, the ratio of connections between
dense and linear are as shown in Eq 21.

Ratio of connections in Linear to Dyad =

{
O(ndyad), if j//nin = i//nin

O(ndyad
2), otherwise

(21)

Hence, Dyad layer has the ability to mix dimensions that are both near by and far away but the ability
to mix information in nearby dimensions falls linearly with sparsity but far away dimensions fall
quadratically. This means that Dyad will have a bias for pushing information that needs to interact
with each other a lot close by and thus more efficiently using it’s parameter space when compared to
linear layers. Also the inter connections between the input and output dimensions fall gradually with
ndyad and thus provides a way to tradeoff between representational power and computational cost.

5.4 Important Additional Caveats About Formulation & Implementation

1. Constraints on Rectangular W dimensions: Since ndyad denotes the number of equi-sized
blocks (with W’s dimensions being factorable out at nin × ndyad and nout × ndyad, for a
non-trivial sparse reduction, the dimensions of W woud need to be both divisible by some
ndyad > 1 — one cannot divide a 7× 6 matrix into 4× 4 blocks. However, we can see that
for practical usage this aspect is somewhat pedantic , one can always pad up the dimensions
with zeroes to different extents such that ndyad, i.e., the desired level of sparsity is attained -
e.g, in the 7× 6 case, zero-padding up the number of rows by 1, our dimensions will now
have a common factor 2,

2. Additional Kernel Launches in Implementation: The code for DYAD-IT described in the
Formulation section does have some overhead in terms of additional kernel launches but for
larger sized models this overhead will amortize away.

9

Benchmark Task DENSE DENSE-EXT DYAD-IT DYAD-OT DYAD-DT DYAD-IT-8

GLUE+

CoLA 68.50 64.60 68.20 68.11 67.32 67.42
SST-2 86.42 81.90 86.61 85.83 85.04 85.24

MPRC (F1) 76.56 72.50 77.44 76.98 78.49 73.56
QQP (F1) 80.50 60.40 79.79 80.26 80.91 80.85

MNLI 70.77 57.60 71.12 71.32 70.89 70.82
MNLI-mm 71.80 60.00 72.06 72.52 72.57 70.99

QNLI 69.90 61.50 70.91 76.73 74.67 70.21
RTE 60.61 60.00 48.49 52.53 56.57 58.59

BoolQ 66.25 63.30 64.32 63.90 63.62 64.18
MultiRC 56.30 55.20 57.07 57.94 48.96 54.33

WSC 49.40 60.20 44.58 46.99 55.42 48.19

GLUE+ Means
GLUE+ 68.82 63.38 67.33 68.46 68.59 67.70

GLUE+-QA 66.37 63.67 66.27 66.27 63.69 64.02
GLUE+-NLI 68.27 59.78 65.64 68.27 68.67 67.65

BLIMP

Anaphor Agr. 49.49 63.80 67.33 64.88 73.93 59.25
Agr. Structure 68.10 70.60 71.34 68.47 68.65 67.82

Binding 68.67 67.10 65.95 65.18 63.60 68.94
Control/Raising 66.64 66.50 63.52 64.27 63.83 62.73

D-N Agr. 74.20 78.50 81.05 81.25 80.15 74.25
Ellipsis 57.33 62.00 61.09 57.51 54.22 55.08

Filler-Gap 65.36 63.80 64.58 65.64 66.67 65.95
Irregular Forms 77.66 67.50 82.75 75.88 81.78 66.62
Island Effects 44.02 48.60 54.75 49.89 47.35 48.28
NPI Licensing 41.19 46.70 47.46 42.96 49.59 39.31

Quantifiers 61.57 59.60 53.66 71.46 44.87 67.13
Subject-Verb Agreement 54.62 56.90 55.77 61.12 56.95 63.88

Hypernym 49.19 50.00 48.72 46.74 49.30 50.70
QA Congruence (Easy) 57.81 54.70 59.38 60.94 54.69 57.81

QA Congruence (Tricky) 32.73 31.50 35.758 47.88 39.39 39.39
Subject Auxiliary Inversion 73.92 80.30 56.01 70.77 72.92 73.506

Turn Taking 63.21 57.10 58.93 68.57 66.79 55.00
Means BLIMP 59.16 60.31 60.47 62.55 60.86 58.88

OPENLLM

ArcChallenge-25 22.78 23.72 22.87 25.26 23.29 23.293
Hellaswag-10 25.81 25.11 25.16 24.77 24.80 25.43

TruthfulQA-MC-0 49.39 49.72 51.12 48.83 49.84 49.68
MMLU-5 23.11 23.01 23.30 24.10 24.40 24.20

Means OPENLLM 30.27 30.39 30.61 30.74 30.58 30.65

Table 2: Performance on GLUE+ (post-finetuning), BLIMP (zero-shot), OPENLLM (few-shot)
benchmarks for the DENSE and DENSE-EXT baselines and all 3 Dyad variants as well as a doubly
sparser version of the 1st variant. These results are with OPT-125m when pretrained at the 10M scale,
a summary of which is presented in the results - the rows corresponding to Benchmark aggregate
means from this table were presented in Table 1 of the main paper.

5.5 Hyperparameter Choices & Compute Details

For simplicity, we avoid mixed precision training (use fp32 throughout), gradient checkpointing or
quantization. Since BABYLM’s training setup required using earlier versions of Pytorch than would
be compatible don’t use FlashAttention. These techniques are in either case not intertwined directly
to our method. All our OPT-125m experiments for both the STRICT and STRSMA scales were done
on a NVIDIA V100. For OPT-350m experiments, we use a A10G.

5.6 Additional Results

5.6.1 Complete Benchmark Result Tables

5.6.2 Complete Timing Results

5.6.3 Complete Memory Results

5.6.4 Promising Results With Pythia

The Pythia suite [20] of models by EleutherAI, trained based on a permissively licensed collected
dataset named The Pile [21].

The results we get by pretraining Pythia on the 10M scale of BABYLM are shared in Table 8. We
also see that, just as we did for OPT 125-m, the promised time complexity improvements translate
into speedups considering both FF-only time (as we can see in Table 10) and overall time (as we can
see in Table 9)

5.6.5 Profiling Experiments At Wider Architectural Scales

Since DYAD is primarily applied herein to ff module, assessing its benefits at higher relative width
would give us important additional insight on its salience and generalizability in terms of benefit.

10

Benchmark Task DENSE DYAD-IT

GLUE+

CoLA 70.069 69.48
SST-2 85.039 85.039

MPRC (F1) 80.435 79.715
QQP (F1) 81.125 81.356

MNLI 71.853 70.908
MNLI-mm 73.297 71.929

QNLI 80.315 76.859
RTE 53.535 43.434

BoolQ 64.73 64.315
MultiRC 49.726 50.383

WSC 53.012 59.036

Means
GLUE+ 69.376 72.220

GLUE+-QA 64.964 64.804
GLUE+-NLI 69.750 73.232

BLIMP

Anaphor Agr. 62.168 60.685
Agr. Structure 69.241 67.083

Binding 72.069 66.014
Control/Raising 67.852 61.6

D-N Agr. 87.019 84.633
Ellipsis 62.875 63.279

Filler-Gap 68.830 68.659
Irregular Forms 84.173 73.232
Island Effects 46.375 52.242
NPI Licensing 57.060 46.083

Quantifiers 68.959 66.718
Subject Verb Agreement 67.66 59.422

Hypernym 44.651 50
QA Congruence (Easy) 54.688 50

QA Congruence (Tricky) 47.879 50.303
Subject Auxiliary Inversion 78.970 64.089

Turn Taking 64.286 61.071
Means BLIMP 64.98 61.47

OPENLLM

ArcChallenge-25 23.379 24.500
Hellaswag-10 25.085 25.035

TruthfulQA-MC-0 48.661 50.291
MMLU-5 23.190 22.910

Means OPENLLM 30.078 30.680

Table 3: Benchmark numbers for OPT-350m pretrained at the 10M scale comparing DENSE with
DYAD-IT. Instances where DYAD-IT exceeds DENSE are marked in bold, while instances where
DYAD-IT falls below 0.95* DENSE are marked in Red. We can see this happens only for four
zero-shot tasks and none of the few-shot tasks.

Model Forward Pass Backward Pass Total Total speedup ratio
DENSE 1.458818136 2.843522568 4.302340703 1
DYAD-IT-4 1.037282137 2.864683089 3.901965226 1.102608674
DYAD-OT-4 1.005873492 2.833987413 3.839860905 1.12044181
DYAD-DT-4 1.048527787 2.955974824 4.004502611 1.074375802
DYAD-IT-8 0.7726907735 1.836098994 2.608789767 1.649171105

Table 4: Mean time taken per minibatch by the ff transformer modules of OPT-125m training on
account of forward, backward passes and in total. All times are in milliseconds. Speedup ratio is
computed w.r.t. DENSE

Model Forward Pass Backward Pass Total Total speedup ratio
DENSE 96.57443477 218.1589193 315.6306277 1

DYAD-IT-4 83.38802419 208.3585416 292.6851179 1.078396572
DYAD-OT-4 82.48964827 207.7835725 291.2115524 1.083853388
DYAD-DT-4 83.34073742 210.0591608 294.3693217 1.072226636
DYAD-IT-8 78.16424509 194.1724526 273.3341317 1.154742826

Table 5: Mean time taken per minibatch by all modules of OPT-125m training on account of forward,
backward passes and in total. All times are in milliseconds. Speedup ratio is computed w.r.t. DENSE

To do this, we take the OPT-1.3B model’s architecture but cap its depth down to 6 layers so that the
model continue to fit within our computational constraints at levels of width all the way upto 4096.

5.6.6 Results on 100M Scale

11

Model Forward Pass Backward Pass Total Total speedup ratio
DENSE 2.548222502 4.971815463 7.520037964 1
DYAD-IT-4 1.744403627 3.747922349 5.492325977 1.369190029
DYAD-IT-8 1.111917225 3.026367151 4.138284376 1.817187337

Table 6: Mean time taken per minibatch by the ff transformer modules of OPT-350m training on
account of forward, backward passes and in total. All times are in milliseconds. Speedup ratio is
computed w.r.t. DENSE

Model Checkpoint Size (MB) # Params In-Train GPU Mem. Used(MB) % Drop In GPU Mem vs Dense
DENSE 478 86.63 9838 0
DYAD-IT-4 370 58.32 9666 1.74832283
DYAD-OT-4 370 58.32 9666 1.74832283
DYAD-DT-4 370 58.32 9666 1.74832283
DYAD-IT-8 316 44.16 9540 3.029070949

Table 7: Mem./Param. Usage Metrics Across DENSE and other Dyad variants for OPT-125m

Benchmark Task DENSE DYAD-IT

GLUE+

CoLA 68.4 68.597
SST-2 85.236 84.843

MPRC (F1) 78.873 78.261
QQP (F1) 80.336 80.54

MNLI 70.451 69.918
MNLI-mm 70.321 70.974

QNLI 55.118 73.447
RTE 48.485 44.444

BoolQ 66.113 65.422
MultiRC 55.75 51.698

WSC 42.169 53.012

Means
GLUE+ 73.86818182 73.71942857

GLUE+-QA 69.875 72.7185
GLUE+-NLI 73.188 77.2675

BLIMP

Anaphor Agr. 56.851 55.419
Agr. Structure 68.671 68.708

Binding 67.854 64.619
Control/Raising 58.948 59.677

D-N Agr. 75.55 75.961
Ellipsis 62.356 60.624

Filler-Gap 59.835 61.656
Irregular Forms 56.132 57.303
Island Effects 51.345 53.812
NPI Licensing 48.558 55.421

Quantifiers 60.768 58.733
Subject Verb Agreement 58.229 53.64

Hypernym 49.07 52.791
QA Congruence (Easy) 53.125 57.812

QA Congruence (Tricky) 39.394 51.515
Subject Auxiliary Inversion 68.139 61.308

Turn Taking 66.071 58.571
Means BLIMP 58.87623529 59.26882353

OPENLLM

ArcChallenge-25 23.549 22.696
Hellaswag-10 26.260 25.423

TruthfulQA-MC-0 46.972 48.618
MMLU-5 23.218 23.498

Means OPENLLM 29.9997 30.05875

Table 8: Benchmark numbers for Pythia-160m pretrained at the 10M scale comparing DENSE with
DYAD-IT. Instances where DYAD-IT exceeds DENSE are marked in bold, while instances where
DYAD-IT falls below 0.95* DENSE are marked in Red. DYAD-IT falls below the 0.95% mark w.r.t.
DENSE on only 3 zero-shot and 2 GLUE+ tasks, falling above the mark on all GLUE+ aggregate
tasks and OPENLLM

Model Forward Pass Backward Pass Total Total speedup ratio
DENSE 101.89 220.16 332.64 1

DYAD-IT 89.40 229.86 310.62 1.071
Table 9: Mean time taken per minibatch by all modules of Pythia-160m training on account of
forward, backward passes and in total. All times are in milliseconds. Speedup ratio is computed w.r.t.
DENSE

12

Model Forward Pass Backward Pass Total Total speedup ratio
DENSE 1.414 2.826 4.240 1

DYAD-IT 1.070 2.879 3.949 1.074
DYAD-IT-8 0.795 1.843 2.637 1.607

Table 10: Mean time taken per minibatch by the ff (feedforward) modules of Pythia-160m training
on account of forward, backward passes and in total. All times are in milliseconds. Speedup ratio is
computed w.r.t. DENSE

Model Width (h)

T(
D

en
se

)/T
(D

ya
d)

 [S
pe

ed
up

]

1.0

1.2

1.4

1.6

1.8

768 1024 1536 2048

Speedup of Dyad to Dense vs. Model Width

Figure 7: Dyad vs Dense Speedup At Different Model Widths

13

Benchmark Task DENSE DENSE-EXT DYAD-IT

GLUE+

CoLA 76.742 73.7 74.877
SST-2 87.992 86.6 89.567
MPRC (F1) 82.129 82.1 80.292
QQP (F1) 83.993 77.8 82.151
MNLI 77.339 70.1 76.623
MNLI-mm 78.326 71.9 77.912
QNLI 83.552 80.1 84.208
RTE 53.535 67.7 63.366
BoolQ 65.284 66.0 65.145
MultiRC 62.212 61.1 64.294
WSC 61.446 59.0 59.036

Means
GLUE+ 73.5808 72.24 74.2594
GLUE+-
QA

69.875 69.7333 69.91033

GLUE+-
NLI

73.188 72.45 75.52725

BLIMP

Anaphor
Agr.

97.90 94.9 90.03

Agr. Struc-
ture

77.885 73.8 78.48

Binding 72.306 73.8 73.89
Control/Raising 74.105 72.2 72.67
D-N Agr. 93.039 93.1 91.46
Ellipsis 81.062 80.5 81.64
Filler-Gap 74.214 73.6 74.167
Irregular
Forms

89.924 80.8 85.55

Island Ef-
fects

62.780 57.8 57.81

NPI Licens-
ing

61.160 51.6 50.42

Quantifiers 71.303 74.5 67.46
Subject
Verb Agree-
ment

82.240 77.3 78.64

Hypernym 47.791 46.3 47.56
QA Congru-
ence (Easy)

70.312 76.5 76.56

QA Con-
gruence
(Tricky)

52.121 47.9 50.91

Subject
Auxiliary
Inversion

85.045 85.3 83.85

Turn Taking 79.643 82.9 79.28
Means BLIMP 74.8723 73.1058 72.9633

OPENLLM

ArcChallenge-
25

25.256 23.293 24.659

Hellaswag-
10

25.234 25.055 25.473

TruthfulQA-
MC-0

48.868 48.448 49.332

MMLU-5 23.567 23.181 23.080
Means OPENLLM 30.73 29.99 30.636

Table 11: Benchmark numbers for OPT-125m pretrained on STR (100M) comparing internal and
external DENSE baselines with Layer Variant

14

	Introduction
	Formulation
	Linear Layer
	Dyad : Definition and Properties
	Efficient Computation of BlockDiag
	Efficient Computation of BlockTrans

	Experimental Setup: Architectures, Benchmarks and Metrics
	Choice of Pretraining Corpus
	Models, Architecture, Hyperparameters & Compute
	Benchmarks & Metrics
	Results

	Future Work
	Appendix
	Final Details of BlockTrans
	Dyad implementation in pytorch
	Dyad Variants
	Dyad-OT
	Dyad-DT
	Representational power of Dyad

	Important Additional Caveats About Formulation & Implementation
	Hyperparameter Choices & Compute Details
	Additional Results
	Complete Benchmark Result Tables
	Complete Timing Results
	Complete Memory Results
	Promising Results With Pythia
	Profiling Experiments At Wider Architectural Scales
	Results on 100M Scale

