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Abstract

Fine-tuning a Pre-trained Language Model (PLM) on a specific downstream task
has been a well-known paradigm in natural language processing. However, with the
growing size of PLMs, training the entire model on downstream tasks has become
significantly time-consuming and resource-hungry. Therefore, Parameter Efficient
Tuning (PET) techniques have been proposed to address the growing demand for
the efficient fine-tuning of PLMs. One popular PET technique is inserting trainable
adapters into a frozen model during fine-tuning. However, adapters have low-rank
projections, which may reduce their representation power, resulting in sub-optimal
performance. We address this problem using the Kronecker product instead of
low-rank multiplications to improve the flexibility and performance of adapters.
We introduce KronA, a Kronecker equivalent of LoRA for efficient fine-tuning
of transformer-based PLMs. We apply the proposed adapters for fine-tuning a
well-known PLM, called T5, on the GLUE benchmark to show that our method
outperforms the popular PET baselines.

1 Introduction

Large Pre-trained Language Models (PLMs) are used as a backbone in various natural language
processing tasks to achieve state-of-the-art results (Devlin et al., 2019; Radford et al., 2019). PLMs are
adapted to downstream applications either via in-context learning or fine-tuning. In-context learning
imposes substantial memory and computational overhead during inference since all training examples
should be processed for each sample (Liu et al., 2022). On the other hand, fine-tuning provides less
inference latency and improved accuracy. However, as PLMs become larger, fine-tuning the entire
model becomes challenging since more time and computation power is required. Additionally, one
must store a complete model checkpoint for each downstream application, making the deployment
inefficient.

The Third Workshop on Efficient Natural Language and Speech Processing (ENLSP-III)



To address these challenges, several works have proposed inserting a few trainable parameters while
freezing most (or even all) of the pre-trained model parameters. This significantly reduces the memory
and computation requirements for fine-tuning. Furthermore, instead of storing one copy of the entire
model, a small set of tuned parameters can be stored for each task. We refer to these methods as
Parameter Efficient Tuning (PET) methods.

Among the PET methods, soft prompts (Li and Liang, 2021; Lester et al., 2021) prepend trainable
parameters to the input of the layers and train them on downstream tasks. However, the increase in
the length of the embedding layers leads to a significant computation overhead during inference.

In another category of PET methods, trainable adapters are inserted (Houlsby et al., 2019; Mahabadi
et al., 2021; He et al., 2022) into frozen transformers (Vaswani et al., 2017). Adapters are low-rank
modules that are composed of an up projection followed by a down projection. One limitation of
these approaches is that they increase the computational overhead and the latency during the inference
which makes them inefficient for latency-critical scenarios.

Therefore, Low-Rank Adaption (LoRA) (Hu et al., 2022) was developed using extra low-rank adapters
in parallel to pre-trained weight matrices. However, once fine-tuned, the adapter parameters can
be merged with the original pre-trained weights, making the latency and energy requirements for
inference, intact. Despite fast inference and similar to other low-rank adapters, LoRA suffers from a
loss of accuracy compared to full fine-tuning. This is due to the strong assumption imposed by its
low-rank structure for task-specific updates.

Kronecker-based decomposition is another factorization method that does not rely on the low-rank
assumption. When used for model compression, this powerful decomposition method has proven to
outperform low-rank compression methods (Thakker et al., 2019; Hameed et al., 2022). It has also
been used successfully to compress transformer-based language models (Tahaei et al., 2022; Edalati
et al., 2022).

Inspired by the success of Kronecker decomposition, we replace the low-rank projections of LoRA
with the Kronecker product to develop Kronecker Adapter (KronA). This simple modification can
improve the accuracy without increasing the inference latency. Also, for applications where the
latency increase is tolerable, we propose to use KronAB. This module is a version of KronA developed
to be utilized in parallel to Feed-Forward Network (FFN) blocks and achieves notable improvements
over full fine-tuning on the General Language Understanding Evaluation (GLUE) benchmark (Wang
et al., 2018). In addition, when a proposed learnable residual connection is added to KronAB,
KronAB

res is developed to achieve even better results.

We evaluated our methods on the GLUE benchmark to study the impact of the Kronecker product on
the performance. To summarize, our contributions are:

• Proposing KronA, a Kronecker Adapter that can be inserted in parallel to the weight matrices
and is suitable for latency-critical scenarios.

• Using KronA in parallel to FFNs (KronAB) along with a learnable residual connection
(KronAB

res) to further improve the accuracy at the cost of a higher inference latency.

• Providing evaluation of the proposed methods in comparison to the well-known baselines in
terms of the GLUE score, training time, and inference latency.

2 Related work

(Ben Zaken et al., 2022) proposed freezing the weights and tuning only biases or a subset of biases of
PLMs for fine-tuning on downstream tasks. This technique, called BitFit, is parameter-efficient and
fast, but it usually cannot perform well compared to state-of-the-art methods.

(Houlsby et al., 2019) introduced adapters as a PET method, where all parameters of a PLM are frozen
and some trainable modules are inserted after the FFN or attention blocks. Proposed adapters in
(Houlsby et al., 2019) have a down projection, a non-linear function, an up projection, and a residual
connection. We use "Adapter" to refer to these modules. (He et al., 2022) developed another version
of adapters called Parallel-Adapter (PA). PAs are inserted parallel to the pre-trained blocks and have
a scaling factor (Figure 1.c). (He et al., 2022) also introduced a unified view on PET methods and
combined some techniques such as prefix tuning (Li and Liang, 2021) and PA.
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Figure 1: This figure shows the structure of the proposed Kronecker-based adapters and their low-rank
counterparts. For simplicity, the scaling factor at the output of the modules is not depicted. Figure d
shows KronAB

res. The residual connection is depicted by a dotted-line to remind that this connection
can simply be removed to have KronAB.

In (Mahabadi et al., 2021), a modified version of the adapters is used for PET, named Compacter. In
Compacter, the Kronecker product of multiple pairs of Kronecker factors is summed to reconstruct the
module’s weight matrix (WCompacter =

∑n
i=1 Ai ⊗Bi). To further reduce the trainable parameters,

Ai matrices are shared across all layers and Bi matrices are decomposed as the matrix multiplication
of two low-rank subfactors. Although Compacter achieves good results, it is notably slow in the
training and inference phases.

(He et al., 2023) developed Kronecker-based adapters that have a similar structure to Compacter
adapters for Vision Transformers (Dosovitskiy et al., 2021). However, (He et al., 2023) applied
the adapters in parallel to weight matrices which enables merging the adapters into the model after
training to avoid increasing the latency and parameters at the inference stage. Also, (Edalati et al.,
2023) developed adapters applicable to both convolutional and linear layers that use summation of
the Kronecker product of a sequence of factors for PET of computer vision models.

Proposed adapters in our work have a simpler structure compared to (Mahabadi et al., 2021), (He
et al., 2023), and (Edalati et al., 2023) adapters by removing the parameter sharing, decomposition
to low-rank subfactors, and summation to develop a faster method at the cost of lower parameter
reduction.

(Hu et al., 2022) inserted adapters made from a downward projection and an upward projection
parallel to the PLM weight matrices to introduce LoRA. During the training, the pre-trained weights
are frozen, and only the LoRA adapters are tuned. During inference, the LoRA adapters are merged
with the original weight matrices of PLMs. Therefore, unlike Adapter, PA, and Compacter, LoRA
does not increase the inference time.

3 Methodology

3.1 Kronecker Product

Equation 1 shows how the elements of A are multiplied by B to generate the Kronecker product of
A ∈ Rm1×n1 and B ∈ Rm2×n2 (Henderson et al., 1983).

W = A⊗B =

 a1,1B · · · a1,n1
B

...
. . .

...
am1,1B · · · am1,n1

B

 (1)

The Kronecker product has some interesting features that make it suitable for PET. First, unlike the
low-rank down-projections used in other techniques, Kronecker-based decomposition maintains the
rank of the input matrix. Second, to reduce the required FLOPS, Equation 2 can be used to obtain
(A⊗B)x without the computation of A⊗B, where ηm×n(·) reshapes a vector into a matrix of size
m× n and γ(·) flattens a matrix into a vector.

(A⊗B)x = γ(Bηm×n(x)A
⊤) (2)
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Method Params CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg
Fine-tuning 100 63.37 74.82 92.73 93.58 90.07 86.16 92.77 91.74 85.65

BitFit 0.12 58.19 68.34 92.58 94.61 90.69 85.73 92.91 90.33 84.17
Adapter 0.07 64.66 71.94 91.27 94.84 90.49 85.91 92.97 90.35 85.30
LoRA 0.07 64.76 74.10 92.10 93.92 91.21 86.08 92.97 90.68 85.73
Compacter 0.07 64.42 76.26 91.52 93.92 91.04 86.14 92.93 90.36 85.82
PA 0.06 64.80 74.10 93.20 94.04 91.10 86.24 93.12 90.30 85.86

KronA 0.07 63.27 77.70 92.52 94.26 91.30 86.34 93.15 90.57 86.14
KronAB 0.07∗ 65.74 75.54 92.78 94.72 91.41 86.22 93.19 90.68 86.28
KronAB

res 0.07∗ 66.73 76.98 93.15 94.38 91.35 86.20 93.21 90.57 86.57

Table 1: This table shows the performance of the methods on GLUE. ∗ shows that the number of
parameters might be slightly different depending on the choice of one or two biases in the module.

Method Fine-tuning LoRA KronA BitFit Adapter PA Compacter KronAB KronAB
res

Inference Latency(%) 100 100 100 100 146 113 181 127 136

Training Time(%) 100 72 75 64 73 71 79 74 81

Table 2: The first row shows the normalized latency of the methods in the inference phase while the
second row lists the average normalized training time of the methods on the GLUE tasks.

3.2 KronA

Figure 1.a shows the structure of a LoRA adapter where A and B are the projection weight matrices
of the down and up projection, respectively. To modify this module into KronA, the Kronecker
product replaces the matrix multiplication. Also, the LoRA projections are replaced by Kronecker
factors (see Figure 1.b and Appendix A). Equation 3 shows how the output is generated when KronA
is applied. Ak and Bk are the Kronecker factors that replaced the LoRA projections. Similar to
LoRA, KronA has a fixed scaling factor, s, which is a hyperparameter.

Y = XW + sX[Ak ⊗Bk] (3)

KronA modules are applied in parallel to the weight matrices of PLMs during the tuning phase. Once
fine-tuned, the Kronecker factors are multiplied, then scaled and merged into the original weight
matrices (Equation 4). Therefore, similar to LoRA, KronA does not increase the inference time.

Wtuned = W + s[Ak ⊗Bk] (4)

3.3 KronAB and KronAB
res

Inspired by the promising performance of PA, we also investigate KronA when used in parallel to the
FNN blocks and call it KronAB. The B superscript in the name means that this module is applied to
the pre-trained blocks, as opposed to KronA which is applied to pre-trained weight matrices. Similar
to PA, the non-linearity in the FFN blocks does not allow our proposed adapters to be merged into the
pre-trained blocks after fine-tuning. This imposes an increase in the inference time and computations.
Equation 5 shows how KronAB works in parallel to an FFN block.

Y = FFN(X) + sX[Ak ⊗Bk] (5)

To further improve the representation power, we incorporate a scaled residual connection inside the
KronAB module to develop KronAB

res. The scale of the residual connection (sres) is initialized with
one and tuned during the fine-tuning. Equation 6 shows how KronAB

res works in parallel to an FFN.
Also, Figure 1.c and 1.d show the structure of a PA and our KronAB

res module, respectively.

Y = FFN(X) + sX[AK ⊗BK ] + sresX (6)
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4 Results and discussion

Table 1 shows1 the GLUE score of our proposed methods compared to other baselines when applied
to T5 (Raffel et al., 2020). As the results show, KronA and KronAB outperform LoRA and PA as their
low-rank counterparts, respectively. Also, all of our proposed modules outperform other baselines on
average and most of the GLUE tasks. Furthermore, KronAB

res, which benefits from an extra learnable
residual connection, achieves remarkably better results.

Table 2 shows the normalized inference delay for the discussed methods. KronA, LoRA, Fine-tuning,
and Bitfit do not increase the inference latency since these techniques do not add additional parameters
or computations to the model during the inference phase. Although KronAB is significantly faster
than Compacter and Adapter, it is slower than PA, as we expected; computation of the Kronecker
product is generally slower than the normal matrix multiplication. Also, adding the learnable residual
connection increases the latency.

The normalized training time averaged over the GLUE tasks for each technique is shown in Table
2. Based on these results, the significant improvement in the accuracy of the proposed KronA and
its variants is at the expense of a slight increase in the training time compared to the low-rank
counterparts like LoRA, PA, and Adapter. However, the training time increase is not remarkable, and
KronA modules are still significantly faster than fine-tuning.

5 Conclusion

In this work, we developed Kronecker-based adapters by replacing the low-rank projections from
well-known PET methods with the Kronecker product. In addition to comparing the training and
inference time, we evaluated our proposed adapter for fine-tuning T5 on the GLUE benchmark to
show its superiority over popular baselines.
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A Kronecker Factors vs Down and Up Projections

Table 3 shows the details about the Kronecker factors that replaced the projections in the LoRA
modules.

B Ablation Study

B.1 KronA Initialization

Our empirical results show that the initialization of the Kronecker factors affects the performance of
KronA. Table 4 shows the performance of two investigated strategies for the initialization. We observe
that by initializing one of the Kronecker factors from a Kaiming-uniform (a =

√
5) distribution and

the other one with zero, KronA adapters perform significantly better than initializing both of the
factors from a Normal (µ = 0, σ = 1√

dh
, where dh is the embedding dimension) distribution.

Module Name Factor Name Symbol Shape Parameters Module Parameters Constraint

KronA Kronecker Factor Ak m× n m1n1 m1n1 +m2n2 m1m2 = n1n2 = dhKronecker Factor Bk i× j m2n2

LoRA Down Projection A dh × r dhr 2dhr r < dh

2Up Projection B r × dh dhr

Table 3: This table compares some details of the Kronecker factors with the LoRA projections.
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Init Method CoLA RTE MRPC SST2 STSB MNLI QNLI QQP Avg
AK ,BK ∼ Normal 63.36 66.91 91.69 91.97 90.46 86.03 92.33 90.19 84.12
AK ∼ KU ,BK=0 63.27 77.70 92.52 94.04 91.26 86.03 93.13 90.57 86.06

Table 4: This table shows the performance of KronA on GLUE using different initialization options
for the Kronecker factors.

Modification CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg
Sequential 15.26 53.28 86.39 87.38 83.78 74.70 84.29 86.63 71.46

Parallel 58.17 69.78 91.58 93.81 90.86 85.68 93.35 90.14 84.17
Parallel+Scale (PS) 62.27 70.50 91.58 94.04 91.01 86.16 93.39 90.61 84.94

PS+SiLU 62.74 69.78 91.89 94.15 90.97 85.98 93.30 90.15 84.87
PS only on FFN 63.74 72.66 92.20 94.72 90.98 85.98 93.12 90.68 85.51

Table 5: This table shows the performance of KronAB after implementing step by step modifications
on GLUE.

nonlinear function Mish ReLU GELU GELUnew SiLU
QNLI Performance 93.21 93.28 93.13 93.26 93.30

Table 6: This table shows the performance of KronAB on QNLI using Mish (Misra, 2020), ReLU
(Agarap, 2018), GELU (Hendrycks and Gimpel, 2016), GELUnew, and SiLU (Elfwing et al., 2018a)
as different non-linear functions.

B.2 Step by Step Improvement of KronAB

At first, KronAB was initialized like a normal adapter. It was sequentially inserted after both FFN
and attention blocks and it did not have a scaling factor. We modified our module based on (He et al.,
2022) to improve its performance.

Table 5 shows the results of our experiments. We observed that inserting KronAB modules in parallel
to the PLM modules, rather than sequentially inserting them, significantly improves the performance.
Additionally, adding a scaling factor to our module further increases the GLUE score. Furthermore,
adding two modules to each FFN instead of adding to both the FFN and the attention blocks resulted
in a higher score.

In addition, motivated by the presence of a non-linear function in PA and Adapter, we tested different
non-linear functions between the two multiplications (by AT

k and Bk) in Equation 2. As Table 6
shows, SiLU (Elfwing et al., 2018b) is the best option among others, but according to Table 5, adding
SiLU decreases the GLUE score of KronAB. Therefore, we removed the nonlinearity from our
module.

B.3 Learnable Residual Connection

In the KronAB
res module, a residual connection multiplied by a learnable scale is added to the output

of KronAB. Also, we studied another scenario in which the learnable scale is passed through a
sigmoid function and then multiplied by the residual connection. This module is called KronAB

sigres.
We wanted to answer the question "Is it better to limit the residual scale between 0 and 1?". Our
empirical results (Table 7) show that by adding the sigmoid function, the performance of the module
drops and the latency increases. Therefore, the sigmoid function was removed from our module.

C Details of Measuring Training and Inference Time

To measure the inference latency, a random dummy input with a batch size equal to one and a
sequence length equal to ten is generated. Then, the dummy input is given to the model for 150
iterations to warm up the GPU. Finally, the dummy input is fed to the model for 200 iterations and the
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Method Avg Score Traning Time

KronAB
res 86.57 1

KronAB
sigres 86.42 1.18

Table 7: This table shows the effect of adding a sigmoid function to the KronAB
res module. "Avg

Score" is the averaged score on the GLUE tasks and "Traning Time" represents the relative training
time.

Method CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg
Fine-tuning 1 1 1 1 1 1 1 1 1

BitFit 0.58 0.64 0.65 0.66 0.66 0.65 0.64 0.62 0.64
Adapter 0.82 0.71 0.72 0.78 0.76 0.72 0.69 0.69 0.73
LoRA 0.79 0.69 0.7 0.76 0.72 0.7 0.68 0.68 0.72
KronA 0.8 0.72 0.75 0.81 0.77 0.74 0.73 0.73 0.75
Compacter 0.88 0.74 0.78 0.86 0.81 0.75 0.74 0.76 0.79
PA 0.7 0.78 0.81 0.73 0.7 0.67 0.66 0.65 0.71
KronAB 0.84 0.7 0.72 0.79 0.75 0.72 0.7 0.71 0.74
KronAB

res 0.91 0.85 0.81 0.91 0.76 0.78 0.73 0.74 0.81

Table 8: This table shows the normalized training time of methods on the GLUE tasks.

Shape of Ak MNLI (Accuracy)

(48, 16) 86.50
(32, 24) 86.31
(3, 256) 86.16
(24, 32) 86.40
(2, 384) 86.63
(192, 4) 86.46
(12, 64) 86.56

Table 9: This table shows the performance of the tested options for Ak in KronA on MNLI. Note
that for each option, the shape of the corresponding Bk is in the reversed order of Ak.

required time to generate the output is measured, averaged, and recorded. This experiment is repeated
three times and the average latency is reported. Finally, the reported latencies are normalized and
shown in Table 2.

Table 8 shows the normalized training time for each technique on the GLUE tasks. All the experiments
are done with the same number of epochs, batch size, number of GPUs, and gradient accumulation
step.

D Experimental Setups and Hyperparameters

D.1 Datasets

We used the GLUE (Wang et al., 2018) benchmark to evaluate our methods compared to the baselines.
This benchmark covers a variety of tasks including natural language inference (MNLI, RTE, QNLI),
linguistic acceptability (CoLA), similarity and paraphrasing (MRPC, QQP), and sentiment classifica-
tion (SST-2)]. The original GLUE test labels are not published, so similar to (Mahabadi et al., 2021;
Zhang et al., 2023), we generated our test sets from the evaluation and the training data. For the small
datasets (CoLA, RTE, MRPC, and STSB), we used half of the task dev set for evaluation and the
other half as the test set. For the rest of the GLUE tasks with larger datasets, we took 1K samples
out of the train set and used it as our test set. The reported evaluation metric for CoLA, MRPC, and
STS-B, is the Matthew correlation coefficient, F1, and the average of Pearson/Spearman correlations,
respectively. Accuracy is used for the other tasks.
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Fine-tuning hyperparameters
Task learning rate batch size warmup steps source sentence length epoch

GLUE 3e-4 100 500 128 20

Table 10: This table shows the hyperparameters used for fine-tuning experiments on the GLUE tasks.

BitFit hyperparameters
Task learning rate batch size warmup steps source sentence length epoch

GLUE 3e-4 100 500 128 20

Table 11: This table shows the hyperparameters used for BitFit experiments on the GLUE tasks.

D.2 Experimental Setup

All experiments were performed on one NVIDIA Tesla V100. We used PyTorch and Hugging Face
Transformers library (Wolf et al., 2020) for our experiments. To re-implement LoRA2 and PA3,
we used their publicly available code. For the experiments on Compacter, BitFit, Fine-tuning, and
Adapter, we used the Compacter’s4 official code. The Backbone model for this work is T5base (Raffel
et al., 2020).

The size of the trainable parameters for all of the methods is set roughly equal to have a fair
comparison. However, for BitFit tuning, we could not match the trainable parameters since all of the
biases are trainable.

Given the number of trainable parameters, we have several choices for the shape of the Kronecker
factors. For KronA, We tested some of the options and selected the option with the best results.

KronAB and KronAB
res modules can have one or two biases. We selected the number of biases that

maximized the score on each task.

D.3 Hyperparameters

Since we wanted to ignore the effect of the scaling factor when comparing LoRA and KronA, the
scaling factor for these two modules is set to one in all of the experiments.

For Fine-tuning, BitFit, Compacter, and Adapter experiments, we used the hyperparameters that are
mentioned in (Mahabadi et al., 2021). However, we changed the learning rate and the rank of the
modules to match the desired number of trainable parameters in the Adapter experiments.

The rank of LoRA and PA is set to one and two, respectively. For the KronA modules, the shape of
the Kronecker factors is selected based on the best dev results among different options for the shapes.
Due to time and resource limitations, we did not tune the shape of the Kronecker factors for KronAB

and KronAB
res.

All of the other hyperparameters are set based on (Mahabadi et al., 2021), except for the learning rate
and scaling factor which are tuned based on the best dev results. All of the methods are trained for 20
epochs and the checkpoint that achieves the best performance on the dev set is reported as the final
model. Tables 10, 11, 12, 13, 14, 15, 16, 17 and 18 show the tuned hyperparameters for each method
on the GLUE tasks.

2See https://github.com/microsoft/LoRA.
3See https://github.com/jxhe/unify-parameter-efficient-tuning.
4See https://github.com/rabeehk/compacter.
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Adapter hyperparameters
Task learning rate batch size task reduction factor epoch

GLUE 3e-3 100 32 20

Table 12: This table shows the hyperparameters used for Adapter experiments on the GLUE tasks.

Compacter hyperparameters
Task learning rate batch size hypercomplex division task reduction factor epoch

GLUE 3e-3 100 4 32 20

Table 13: This table shows the hyperparameters used for Compacter experiments on the GLUE tasks.

LoRA hyperparameters
Task learning rate batch size rank s epoch

GLUE 1e-3 100 1 1 20

Table 14: This table shows the hyperparameters used for LoRA experiments on the GLUE tasks.

PA hyperparameters
Task learning rate batch size rank s epoch

CoLA 3e-3 100 2 16 20

RTE 5e-3 100 2 16 20

MRPC 5e-3 100 2 16 20

SST-2 1e-3 100 2 16 20

STS-B 1e-3 100 2 16 20

MNLI 1e-3 100 2 16 20

QNLI 1e-3 100 2 16 20

QQP 1e-3 100 2 16 20

Table 15: This table shows the hyperparameters used for PA experiments on the GLUE tasks.

KronA hyperparameters
Task learning rate batch size Ak Bk s epoch

CoLA 1e-3 100 (32,24) (24,32) 1 20

RTE 2e-3 100 (32,24) (24,32) 1 20

MRPC 1e-3 100 (32,24) (24,32) 1 20

SST-2 1e-3 100 (24,32) (32,24) 1 20

STS-B 1e-3 100 (2,384) (384,2) 1 20

MNLI 1e-3 100 (2,384) (384,2) 1 20

QNLI 1e-3 100 (3,256) (256,3) 1 20

QQP 1e-3 100 (24,32) (32,24) 1 20

Table 16: This table shows the hyperparameters used for KronA experiments on the GLUE tasks.
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KronAB hyperparameters
Task learning rate batch size Ak Bk s module bias epoch

CoLA 1e-3 100 (32,24) (24,32) 16 2 20

RTE 5e-3 100 (32,24) (24,32) 16 1 20

MRPC 5e-3 100 (32,24) (24,32) 16 1 20

SST-2 1e-3 100 (32,24) (24,32) 4 1 20

STS-B 1e-3 100 (32,24) (32,24) 16 1 20

MNLI 1e-3 100 (32,24) (24,32) 4 2 20

QNLI 1e-3 100 (32,24) (24,32) 4 1 20

QQP 1e-3 100 (32,24) (24,32) 4 1 20

Table 17: This table shows the hyperparameters used for KronAB experiments on the GLUE tasks.

KronAB
res hyperparameters

Task learning rate batch size Ak Bk s module bias epoch

CoLA 1e-3 100 (32,24) (24,32) 16 2 20

RTE 5e-3 100 (32,24) (24,32) 16 2 20

MRPC 5e-3 100 (32,24) (24,32) 16 2 20

SST-2 1e-3 100 (32,24) (24,32) 16 1 20

STS-B 9e-4 100 (32,24) (32,24) 16 1 20

MNLI 1e-3 100 (32,24) (24,32) 16 1 20

QNLI 1e-3 100 (32,24) (24,32) 4 2 20

QQP 1e-3 100 (32,24) (24,32) 16 1 20

Table 18: This table shows the hyperparameters used for KronAB
res experiments on the GLUE tasks.
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