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Abstract

In this paper, we present SwiftLearn, a data-efficient approach to accelerate training
of deep learning models using a subset of data samples selected during the warm-up
stages of training. This subset is selected based on an importance criteria measured
over the entire dataset during warm-up stages, aiming to preserve the model
performance with fewer examples during the rest of training. The importance
measure we propose could be updated during training every once in a while, to
make sure that all of the data samples have a chance to return to the training
loop if they show a higher importance. The model architecture is unchanged but
since the number of data samples controls the number of forward and backward
passes during training, we can reduce the training time by reducing the number of
training samples used in each epoch of training. Experimental results on a variety
of CV and NLP models during both pretraining and finetuning show that the model
performance could be preserved while achieving a significant speed-up during
training. More specifically, BERT finetuning on GLUE benchmark shows that
almost 90% of the data can be dropped achieving an end-to-end average speedup
of 3.36× while keeping the average accuracy drop less than 0.92% .

1 Introduction

Over the past few years, deep learning models have undergone a significant increase in size, boasting
millions, or even billions, of trainable parameters (Li et al., 2021; Radford et al., 2018). The training
of such immense models requires substantial memory resources and computational power (Brown
et al., 2020; OpenAI, 2023; Touvron et al., 2023). Furthermore, they demand extensive training on
large datasets, resulting in prolonged training durations. These challenges impose restrictions on
deploying these models on edge devices with limited computational capabilities, thereby limiting
their applicability across numerous scenarios.

To tackle these issues, three distinct categories of methods have been introduced to accelerate the
training either by Structural Efficiency, Data Efficiency, or Hardware Efficiency. Structural efficiency
improvements involve modifications to the model’s architecture to enhance computational efficiency,
essentially reducing its computational or memory demands. Some notable examples of such methods
encompass network pruning (Sun et al., 2023), low-rank decomposition (Hu et al., 2021), and weight
quantization (Dettmers et al., 2023), among others. Hardware-efficient training, on the other hand,
focuses on achieving high model performance while minimizing the hardware requirements (Dao
et al., 2022), which can be crucial for practical deployment in resource-constrained environments,
such as edge devices, mobile phones, and embedded systems.

In contrast, data-efficient training approaches do not change the model’s architecture. Instead, they
focus on expediting the training process by excluding less crucial data samples from the training
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dataset (Okanovic et al., 2023). In fact, since the number of data samples directly influences
the number of forward and backward passes during training, reducing the number of training
samples used in each training epoch can substantially reduce the overall training time. This paper
primarily concentrates on this category of techniques. The key advantage of this approach lies in its
independence from the model’s structure or the specific task at hand. Consequently, any successful
data-efficient method can be employed concurrently with other techniques aimed at expediting the
training process, providing a synergistic boost to overall training speed.

Data-efficient training methods can be classified into three main categories: Dataset Condensation,
Dataset Pruning, and Curriculum Learning. Each of these categories aims to optimize the use of
training data in deep learning models. Dataset Condensation involves the synthesis of a new, smaller
dataset that captures the essential distributional characteristics of the original dataset. This new
dataset may not necessarily contain the same data samples as the original one, but its distribution
closely aligns with that of the complete dataset. Techniques used for dataset condensation include
optimizing Kernel ridge-regression with respect to input data samples (Xu et al., 2023), employing
generator functions (Zhao et al., 2021), utilizing auxiliary small unlabeled samples (Sattler et al.,
2021), and learning soft labels on a reduced dataset (Vyas et al., 2020).

Dataset Pruning on the other hand focuses on reducing the size of the original dataset by removing
less important and less representative data samples. Unlike dataset condensation, the resulting dataset
in this case is a subset of the original data. Recent approaches have introduced novel metrics, such as
gradient norms, to determine the importance of each data sample (Ahn et al., 2023). Alternatively,
a scaled-down model can be trained to serve as a proxy for selecting important data samples based
on predefined metrics (Coleman et al., 2020). Other metrics include the number of times a model
misclassifies a sample and the high variance of gradients, indicating example difficulty (Dadalto et al.,
2023). Prediction depth, the layer at which a k-NN classifier can successfully classify an example,
can also serve as a measure of computational difficulty (Ma and Karaman, 2018).

Curriculum learning methods revolve around identifying the optimal order of data samples to
accelerate model convergence. Unlike dataset pruning, these methods do not remove data samples
but emphasize the importance of the order in which data samples are presented during training.
Curriculum learning methods define metrics to quantify the importance of each data sample, and
the order of learning is determined based on these scores. These metrics can be crafted manually
or generated automatically (Zhang and Pfister, 2021; de Mathelin et al., 2022). While handcrafted
metrics may be task-specific, they often outperform automated metrics. Nevertheless, both types of
metrics remain valuable for various tasks. It is worth noting that most dataset reduction techniques
have primarily been explored in image classification tasks, with limited exploration in text-based
tasks.

In this paper, we propose SwiftLearn, a technique that could be considered as a combination of dataset
pruning and curiculum learning. The proposed algorithm is described in the following sections.

2 Proposed Algorithm

The proposed method is applied in two steps: Warm-up and Sampling:

2.1 Warm-up

In the warm-up step, which happens during the first 2 epochs of each training phase, all data samples
in the dataset are fed to the model. During this step, the model logits are recorded in order to be used
later for calculating the importance metric. The Mean Squared Error (MSE) between the logits of the
model in two consecutive epochs is calculated for each data sample xi as follows:

MSE(xi) = ||P s
i − P s−1

i ||2 (1)

where P s
i is the logits of the model for data sample xi at epoch s and P s−1

i is the logits of the model
for the same sample in the previous epoch s− 1. This metric shows how the logits of the model are
changing between consecutive epochs of training. This measure is then normalized using a softmax
function in order to make it a probability distribution:

Pr(xi) =
e(σ×MSE(xi))

Σje(σ×MSE(xj )) (2)
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where σ is a controllable temperature factor. This probability is used in the next stage as a measure
of importance, based on which the data samples are chosen as a subset for training. Note that the
warm-up stage is applied during the training of the model (not before that) and no data sample is
removed in this stage. We give all the samples a chance to contribute to the training but with different
probability of being chosen.

Figure 1: The proposed data efficient sampling technique

2.2 Sampling

After the sampling metric is calculated/updated in the previous step, this measure is used to sample
from the dataset using a ratio r defined by the user. This speed-up is controlled by two factors: ratio
r and Metric Re-evaluation Interval. The ratio r controls the number of samples fed through the
network(s). The lower the ratio, the less number of data samples are chosen from dataset. If N is the
total number of data samples in the dataset, the number of data samples that will be fed during each
epoch will be N × r where 0 ≤ r ≤ 1. By feeding only a portion of data-set, the number of forward
and backward passes decreases which leads to faster training.

On the other hand, the metric that we find during the warm-up stage may change during training, if
the network’s status is affected by that. To get the maximum speed up, we need to stick to the metric
that we find or we can update that during each epoch for only those samples which have been chosen.
This partial or lack of update causes degradation in performance. We can sacrifice the speed-up
to perform better by re-evaluating the metric frequently for the whole data-set. By doing that, the
forward pass needs to be done for all samples frequently. The length of this re-evaluation interval
controls the save in time that our algorithm provides.

The entire data efficient sampling process is depicted in Fig. 1. In this figure, K represents the
frequency by which we update the importance metric. At the 0th epoch, all of the samples from the
original model are used (ratio r = 1). Every Kth epoch, the importance function Pr is calculated
using the softmax equation and MSE function. In our experiments, we set K to be the total number
of training epochs so the importance metric is set only once for simplicity. Then, the top r number of
samples from the dataset are chosen according to the importance metric. This process is repeated
until the model is fully trained.

3 Experimental Results

Comparisons with baselines. Here, we evaluate SwiftLearn over pretraining and finetuning tasks on
a variety of large deep learning models as shown in table 1. Across the models we studied, the SwinT
(Liu et al., 2021), Conformer (Gulati et al., 2020), and RoBERTa (Liu et al., 2019) models showed
the best speedup-accuracy tradeoff. We pretrained SwinT on the ImageNet dataset (Deng et al., 2009)
for 300 epochs with a drop ratio of 0.2 and we achieved an end-to-end (E2E) speedup of 13.6% with
no loss in the final validation accuracy. We also pretrained Conformer on the LibriSpeech (Panayotov
et al., 2015) dataset for 50 epochs with a drop ratio of 0.3 achieving a 33.8% E2E speedup with only a
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Model Task Dataset Drop Ratio Speed-up Performance
Data-weighting Baseline Metric ∆ Acc

T5 Finetuning wmt16/en-ro 0.3 1.08× 18.44 18.46 Bleu -0.02

RoBERTa Finetuning SST-2 0.3 1.35× 94.00 94.00 Acc % 0.00

ViT Pretraining ImageNet 0.1 1.05× 69.89 70.01 Acc % -0.12

SwinT Pretraining ImageNet 0.2 1.136× 81.00 81.00 Acc % 0.00

Conformer Pretraining LibriSpeech 0.3 1.338× 95.07 95.32 Acc % -0.25

BERT-Large Pretraining Chinese-wiki 0.2 1.245× 70.68 71.43 Acc % -0.75

Table 1: Comparison between the accuracy and speed-up of data-weighting and the vanilla training
baseline across multiple tasks and models.

−0.25% drop in the validation accuracy. We finetuned RoBERTa on the SST-2 dataset for 10 epochs
with a drop ratio of 0.3 achieving a 35% E2E speedup with no loss in the final validation accuracy.
This confirms our hypothesis that not all training samples contribute equally to the model’s learning
and that with a careful selection of important samples, only a smaller subset will be sufficient.

Although finetuning BERT-Large (Devlin et al., 2019) on the Chinese-wiki (Xu and Lapata, 2019)
dataset achieved a 24.5% E2E speedup with a drop ratio of 0.2, it suffered from a relatively higher
drop in the validation accuracy of −0.75%. This is because Chinese-wiki is a small Pretraining
dataset with only 1.2M samples and is trained using only 3 epochs Since the first two epochs are used
during the warm-up stage, it may need more epochs during the sampling step to result in a higher
accuracy.

Finetuning the T5 (Raffel et al., 2020) model on the WMT 2016 (Bojar et al., 2016) dataset for 3
epochs using a drop ratio of 0.3 achieved an 8% E2E speedup with a slight decrease in the Bleu score
of 0.02.

Effect of drop ratio on speed up and accuracy. Table 2 shows how sweeping on the drop ratio affects
the E2E speedup and accuracy of finetuning BERT on different tasks from the GLUE benchmark
(Wang et al., 2019). All studied tasks showed significant improvement in the E2E speedup up to
3.52×. CoLA, SST-2, and QNLI tasks showed an increase in the validation accuracy with drop ratios
of 0.9 and 0.7 relative to the baseline of 0.9-4%, and 1.4-4.1%, respectively. SST-2 with a drop
ratio of 0.7 showed the highest accuracy improvement with 4.1% increase in the validation accuracy
relative to the baseline. Only for MRPC that we saw a significant drop in the validation accuracy of
10.2% and 10.5% for a drop ratio of 0.9 and 0.7, respectively. This can be attributed to MRPC being
a relatively more difficult task that requires a much lower drop ratio to maintain the baseline accuracy.
However, in general, BERT finetuning on GLUE benchmark shows that almost 90% of the data can
be dropped while keeping the average accuracy drop less than 0.92% .

Datasets RTE MRPC CoLA SST-2 QNLI

Drop Ratio 0.00 0.70 0.90 0.00 0.70 0.90 0.00 0.70 0.90 0.00 0.70 0.90 0.00 0.70 0.90
Speed Up (×) 1.00 2.09 3.42 1.00 2.00 3.00 1.00 2.29 3.52 1.00 2.20 3.35 1.00 2.22 3.53
Accuracy (%) 65.7 65.9 65.3 99.9 89.4 89.7 80.7 82.9 81.6 87.5 91.6 91.5 88.5 89.9 89.4

Table 2: Studying the effect of drop ratio on BERT finetuning on the GLUE benchmark.

4 Conclusion

The computation and time requirements of pretraining and finetuning large deep learning models are
ever-increasing. In this paper, we presented SwiftLearn, a dataset sampling technique that weighs
samples dynamically during training based on how much they contribute to the model’s learning
enabling selection of only the important samples that matter. This results in significant computation
and time savings. For example, BERT finetuning on GLUE benchmark can be done with less than
0.92% drop in average accuracy while almost 90% of the data is dropped. SwiftLearn opens a
lot of doors for future data-efficient training. Instead of fixing the drop ratio throughout the whole
training process, it can dynamically change based on the model’s learning. In addition, more advanced
techniques to weight the dataset samples can be used to further improve the model’s training efficiency.
Due to the time and space constraints, we leave those ideas for future work.
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