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Abstract

Transformer models are deployed in a wide range of settings, from multi-
accelerator clusters to standalone mobile phones. The diverse inference con-
straints in these scenarios necessitate practitioners to train foundation models such
as PaLM 2 & Llama as a series of models of varying sizes. Due to significant train-
ing costs, only a select few model sizes are trained and supported, limiting more
fine-grained control over relevant tradeoffs (latency, cost, accuracy). We introduce
MatFormer2, a nested Transformer architecture designed to offer elasticity in a
variety of deployment constraints. Each Feed Forward Network (FFN) block of a
MatFormer model is jointly optimized with a few nested smaller FFN blocks. This
allows for the Mix’n’Match of model granularities across layers – i.e., a trained
universal MatFormer model enables extraction of hundreds of accurate smaller
models which were never explicitly optimized. We empirically demonstrate Mat-
Former’s effectiveness for decoder only language modeling and find that a 2.6B
decoder-only MatFormer language model (MatLM) allows us to extract smaller
models spanning from 1.5B to 2.6B, each exhibiting comparable validation loss
and one-shot downstream evaluations to their independently trained counterparts.
Finally, we showcase that speculative decoding with the accurate and consistent
submodels extracted from MatFormer can further reduce inference latency.

1 Introduction
Large Foundation models [1, 26, 8] are deployed in a variety of settings like real-time response on
mobile phones or in batch setting on multi-cluster GPUs for web-scale serving. To handle such
varied settings, it is infeasible to train highly accurate models tailored to each deployment scenario.
To this end, we propose MatFormer, a natively elastic Transformer [33] architecture that allows for
training one universal model which can be used to extract hundreds of smaller submodels without
any additional training for adaptive deployment across diverse setups and constraints (Figure 1).

MatFormer follows the principle of matryoshka representation learning [16], to introduce nested
substructure inside the standard Transformer block. Formally, MatFormer defines Transformer
blocks Ti, such that, T1 ⊂ T2 ⊂ · · · ⊂ Tg , where g is the number of nested transformer blocks, and
Ti ⊂ Ti+1 relation indicates that the parameters of Ti are contained in those of Ti+1.

MatFormer can induce such sub-structure for any trainable weights in a Transformer model (see
Figure 1). Consider a FFN block that has dff neurons in the hidden layer. Then, MatFormer induces

∗Equal technical contribution. +Aditya Kusupati and Prateek Jain led the project.
Correspondence: devvrit@cs.utexas.edu,snehakudugunta@google.com,
kusupati@cs.washington.edu, prajain@google.com
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Figure 1: MatFormer introduces nested structure into the Transformer’s FFN block & jointly trains
all the submodels, enabling free extraction of hundreds of accurate submodels for elastic inference.

matryoshka structure on these neurons, where Ti contains the first mi neurons and 1 ≤ m1 ≤
m2 · · · ≤ mg = dff represent the number of neurons for each granularity or sub-model. Intuitively,
this implies that the first m1 neurons are “most significant” as they belong to all the blocks followed
by the next m2 −m1, and so on. We can form a similar sub-structure on attention heads, with the
heads organized from “most” to “least” significant, where the more significant heads are shared by
more sub-models. We can even introduce this sub-structure in the token embedding (dmodel) supplied
to each Transformer block. Given that in most Transformer LMs, the FFN block accounts for more
than 60% non-embedding parameters and is responsible for the largest chunk of latency during
inference, we focus on inducing the MatFormer’s nested sub-structure in the FFN block. We then
stack the individual blocks (for l layers) to form g nested models (M1...g) with shared parameters
i.e.,Mi ⊂Mi+1. Finally, we jointly train these g models by combining the every model’s loss.

This leads to a natural question: can one extract more than g models after inducing the MatFormer
structure? Yes, in fact, it is possible to extract exponentially many models. Using the trained Mat-
Former blocks T1, . . . , Tg at each layer, one can form new models by Mix’n’Match, i.e., by taking
an arbitrary combination of these blocks across layers. For example, in the first layer, one can se-
lect Tg , the largest block, choose T2 in the second layer, and so on, forming gl different models.
As we explicitly optimized only for g models, instead of the exponentially many models, are the
extracted models accurate? Surprisingly, we observe that the extracted models indeed are accurate,
with accuracy scaling with the size of the extracted model.

We conduct an extensive evaluation of Matformer-based decoder-only Language Models (MatLM)
and report these key findings:
1. MatLMs explicitly trained with g logarithmically spaced granularities (4 in this work) almost

match validation loss and one-shot downstream evals of respective g baseline models trained
independently from scratch.

2. Employing Mix’n’Match of granularities across layers in a universal MatFormer model yields
hundreds of accurate and consistent submodels without any additional training cost (Section 2).

3. MatFormer generalizes effectively to decoder-only language models (MatLM), while enabling
significantly faster autoregressive generation (Section 3).

2 MatFormer
The FFN block in Transformer has a single hidden layer with dff neurons with input and outputs in
Rdmodel 3. MatFormer introduces the matryoshka nested structure with g granularities on the hidden
representation dff of the FFN block. A nested sub-block of the Transformer Ti contains the first mi

neurons of the FFN. So, depending on the chosen granularity, the FFN operation of Ti i.e., T FFN
i on

an input x ∈ Rdmodel is:

T FFN
i (x) = σ(x ·W1[0 : mi]

⊤) ·W2[0 : mi], (1)

where the weight matrices of FFN are W1,W2 ∈ Rdff×dmodel and bias terms are omitted for simplic-
ity. W1[0 : k] denotes the submatrix with the first k rows of W1, and σ is a non-linearity [10, 31].

3dff is a multiple of dmodel, typically dff ≥ dmodel
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With the nested MatFormer blocks T1, T2 . . . Tg , we can combine these to form a MatFormer model,
with g nested submodels M1 ⊂ M2 . . . ,⊂ Mg where Mi ← [Ti]

×l, i.e., Mi is formed by
stacking Ti for l layers. The input and output embedding matrices are shared across the models.

MatFormer relies on a simple training strategy of jointly optimizing all the g nested submodels
together. To this end, we set the MatFormer loss as a weighted average of loss of g submodels and
train for it using the standard stochastic gradient-based optimizers [30]:

LJOINT(x, y) =

g∑
i=1

λi · L(Mi(x), y), (2)

where λi > 0 is the weight of i-th granular submodel. In this paper, we set {λi}i=1...g to be uniform
i.e., 1/g but explore tuning {λi}i=1...g in Appendix D.4 to further improve MatFormer.

Mix’n’Match. At inference time, it is trivial to extract one of the g submodelsM1 ⊂ M2 . . . ,⊂
Mg by stacking the corresponding Transfomer block Ti across layers. However, by selecting differ-
ent granularity for each MatFormer layer, it is possible to generate a combinatorially large number
of accurate smaller models for free. We call this procedure Mix’n’Match and observe that these
additional model granularities – which were never explicitly optimized – are highly performant. So,
given a computational budget, we can extract a constraint-specific accurate model with Mix’n’Match
rather than using a smaller less accurate model or training a constraint-specific model (Sections 3.1).

Deployment. During deployment, we simply need to store the single universal MatFormer model
for different types of elastic inference depending on the constraints. For static workloads, where
compute resources are known beforehand and the inputs remain relatively similar in difficulty, one
can choose the most accurate static submodel for the constraints using Mix’n’Match. This eliminates
the usage of a less accurate preexisting model or training of a new one for the specific constraints.

For dynamic workloads, where the compute resources or the input hardness change on the fly, we
can use the universal MatFormer model to dynamically extract the optimal submodel for token-based
routing in LLMs akin to MoE [15, 21]. This works largely because all the extracted submodels have
high behavioral consistency with universal MatFormer model (Section 3) – minimizing the drift
across predictions from various submodels. We measure the consistency between two generative
models as the percentage of matching tokens generated for the same prefix or using the KL di-
vergence of the smaller model outputs with the larger model outputs – this accounts for potential
sampling strategies in decoding. This highly consistent nature of MatFormer results in superior in-
ference time speedups for techniques like speculative decoding [20] (Section 3.1) and can reduce
prediction drift between cross platform deployments.

3 Experiments
We train and analyze MatFormer-based 2.6B parameter decoder-only Language Models (MatLMs),
and compare them to their vanilla Transformer counterparts (LMs) [22]. The LMs broadly follow the
training pipeline and procedure outlined by Thoppilan et al. [32]. For each MatLM model with a set
dmodel, we jointly optimize for g = 4 logarithmically spaced nested granularities with nested hidden
neurons of sizes {dff

8 ,
dff

4 ,
dff

2 , dff}. We denote these submodels as MatLM – {S, M, L, XL} in
increasing order of model size and refer to MatLM-XL as the universal MatLM. For baselines, we
train vanilla Transformer models with comparable architectures. That is, for each MatLM, we train
4 separate baseline models with hidden neurons of sizes {dff

8 ,
dff

4 ,
dff

2 , dff}, denoted as Baseline –
{S, M, L, XL}. We evaluate these models on validation loss (= log perplexity) and average accuracy
on 26 English tasks similar to [4, 9, 1]. Of these 26 tasks, we group 5 tasks that require generating
multiple tokens under “GEN” and the remaining tasks that involve choosing an option from the input
text under “RANK”. Please see Appendix A for further details.

3.1 Elastic Inference with MatLM

To showcase elastic inference, we evaluate MatLM models on its ability (a) to provide models
spanning the accuracy-vs-compute curve using Mix’n’Match (Section 2) and (b) to improve post-
hoc inference optimization techniques [20] to further speed-up accurate auto-regressive generation.

Accurate MatLM submodels for every constraint with Mix’n’Match. Leveraging Mix’n’Match,
a MatLM can provide accurate models for every compute constraint (between S and XL), not just
the explicitly optimized granularities {S, M, L, XL}. We evaluate the impact of Mix’n’Match on the

3
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(b) 1-shot RANK Evals
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(c) 1-shot GEN Evals
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Figure 2: Validation loss, one-shot downstream evals, and consistency with the XL model for the
2.6B MatLM & baseline models. Mix’n’Match helps generate accurate and more consistent models
from MatLM that lie on the performance-vs-compute curve of the explicitly optimized submodels.

2.6B parameter MatLM in Figure 2 through validation loss and downstream evals and contrast them
to Baselines-{S, M, L, XL}. In Figures 2a, 2b & 2c, we show that all MatLM models all perform as
well as their corresponding baselines, with marginal improvements and drops across the scale.

In Figure 2a we see that Mix’n’Match helps obtain many models on the optimal loss-vs-compute
curve at zero cost. Moreover, downstream eval tasks on these Mix’n’Match models also mimic this
trend, as shown in Figures 2c & 2b. In a deployment setting that only has 55% of the required
compute resources needed for the MatLM-XL model, it is now possible to have a Mix’n’Match sub-
model with < 2% accuracy drop on RANK evals. Without elastic deployment due to Mix’n’Match,
we would see a > 2.5% accuracy drop due to the use of the MatLM-M model. Note that we highlight
only a few of the hundreds of accurate Mix’n’Match models along the curves.

MatLM submodels speed up speculative decoding. Speculative decoding leverages an accurate
lightweight LM as a draft model to autoregressively generate a few tokens, followed by verifying
these drafts with a larger model through parallel decoding on the generated tokens. Based on the
extent of accurate generation, the draft model is rolled back and reset to the larger model’s output.
This results in considerable inference speed-up for the same accuracy as the large model. We point
the reader to the original paper for a more detailed explanation [20].

A draft model that is significantly more consistent with the larger verifier model would lead to less
frequent rollbacks of the draft predictions and therefore lower latency. As seen in Figure 2d the
MatLM submodels can be up to 8.5% more consistent than the baselines to their corresponding XL
model. The significant gap persists even in the KL divergence variant of consistency with the XL
model’s outputs (see Figure 3 in Appendix). This improved consistency along with the need for only
a single universal model positions MatLM favourably to improve techniques that require draft and
verifier models such as speculative decoding.

Table 1 shows the inference time speed-ups from speculative decoding using the S and
XL submodels of the 2.6B language model for drafting and verification respectively.

Table 1: Inference time speed-ups over a standard
2.6B model through speculative decoding using a
1.5B (S) draft and 2.6B (XL) verifier model.

Speculative Decoding LAMBADA TriviaQA

Baseline 1.10× 1.08×
MatLM 1.14× 1.11×
+ shared attention cache 1.16× 1.14×

Speculative decoding with independently
trained baseline LMs results in a speed-up of
up to 10% over the standard autoregressive
decoding of the 2.6B-XL model. But MatLM-
based speculative decoding is up to 6% faster
than traditional speculative decoding. This
additional speed-up can be primarily attributed
to the more consistent nature of MatLM-based
drafter and verifier models and is further
boosted by the ability to share attention cache
across models from MatLM which is infeasible for the baselines (see Appendix B.2). Finally,
MatLM further reduces the memory overhead for inference by removing the need to have two
models during resource-constrained deployment.

4 Conclusions

We presented MatFormer, a natively elastic Transformer architecture that allows training a single
universal model which can be used to extract 100s of smaller accurate submodels at zero additional
cost. We find that MatLMs match the perplexity & 1-shot accuracy of independently trained models.
Finally, MatFormer submodels enable diverse inference time speedups like faster autoregressive
generation with speculative decoding.
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A Implementation Details

A.1 Architecture and Training

For our experiments, we train a range of MatLMs varying from size 78M to 2.6B for 10B-160B
tokens – we scale model size equally with the number of training tokens [11]. For each MatLM
granularity, we also train a corresponding baseline vanilla Transformer model. That is, for each
model size we train Baseline-XL, L, M, S with dff = 4 ∗ dmodel, 2 ∗ dmodel, dmodel, dmodel/2.
All models have 16 layers, 16 attention heads, and a dmodel : dff ratio of 1 : 4. We train a 256k
vocabulary using the SentencePiece library [14], use a maximum context length of 1024 tokens, and
a batch size of 1M tokens. We pretrained the 2.6B on 256 v3 TPU chips. We provide further details
on these models in Table 2. For further details on training data, we point the reader to [32].

Table 2: Model details for the models scales used to conduct the experiments described in Section ??,
with a breakdown of total parameter counts, non-embedding parameter counts and FFN parameter
counts for each model granularity.

Parameter Count (full / spliced) Non-Embedding Params (full / spliced) FFN Params (full) dmodel N(tokens)

78M (74M / 72M / 71M) 12.6M (8.4M/6.3M/ 5.3M) 8.4M 256 10B
180M (164M / 157M / 152M) 50M (33.7M/25.3M/21.1M) 33.6M 512 20B
310M (272M / 253M / 244M) 113M (75M/56M/47M) 75.6M 768 30B
463M (397M / 363M / 346M) 201M (134M/100M/84M) 134M 1024 40B
850M (696M / 620M / 582M) 453M (302M/227M/189M) 302M 1536 80B

1.3B (1B / 927M / 860M) 805M (537M/403M/335M) 537M 2048 120B
2.6B (2B / 1.7B / 1.54B) 1.8B (1.2B/0.9B/0.7B) 1.2B 3072 160B

A.2 Downstream Evaluation

We evaluate all the LM models trained on set of 26 English tasks similar to [4, 9, 5, 1], including:

1. Open-Domain Closed-Book Question Answering tasks: TriviaQA [12], Natural Ques-
tions [17], and WebQuestions [2].

2. Cloze and completion tasks: LAMBADA [27], HellaSwag [36], and StoryCloze [24].

3. Winograd-style tasks: Winograd [19] and WinoGrande [29].

4. Reading comprehension: SQuAD v2 [28] and RACE [18].

5. Common sense reasoning: PIQA [3], ARC [6], and OpenBookQA [23].

6. SuperGLUE [34]

7. Natural language inference: Adversarial NLI [25].

Among all the downstream datasets, we classify LAMBADA, Natural Questions, SQuAD v2, We-
bQuestions, and TriviaQA under “GEN” tasks as these require generating a few tokens, and the
remaining tasks under “RANK” tasks as they consist of choosing an option among the choices given
along with the input. For all the granularities corresponding to each model, we present evaluation
numbers along with development set log perplexity loss on all the 26 tasks in Tables 8 to 14. We
also perform evaluation on 2.6B Mix’n’Match models and provide it in Table 15.

B Training and Inference Costs

We currently make minimal changes and optimizations to the training scripts of vanilla Transformer
architecture. In other words, we use the same code for both Baselime and MatFormer, except us-
ing different sized splices of FFN block for each forward pass. Note that this implementation is
suboptimal, as it involves added communication costs of FFN weight matrices when using model
parallel training (discussed in more details in Appendix B.1). Though using a suboptimal implemen-
tation, we achieve the wall-clock time for MatLM training∼ 15% less to sum of wall-clock times to
train all the 4 granulatities baseline counterparts. We give exact FLOP count, wall-clock time, and
forward pass time (inference cost) of each baseline and MatLM 2.6B model (or its corresponding
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Table 3: 2.6B MatLM and Baseline training time per step, GFLOPs per step, and forward pass
latencies. Each model is trained on 256 v3 TPU chips. Note that MatLM Fwd pass latency for any
granularity will be same as corresponding Baseline granularity latency.

Model Time (s) / step GFLOPs / step Fwd pass latency (s)

MatLM 2.326 470841 -
Baseline-XL 0.728 186884 0.234
Baseline-L 0.670 147317 0.215
Baseline-M 0.652 125517 0.198
Baseline-S 0.630 117556 0.190

smaller granularities) in Table 3. During serving, we observe the 2.6B model FFN latency to atten-
tion latency ratio = 56 : 44. We emphasize that though we trained one MatFormer and compare its
training time with Baselines combined, we get many more model than the 4 model granularities we
explicitly trained for.

B.1 Improving MatFormer Training Efficiency

While MatFormer training uses asymptotically 2× FLOPs compared to a regular Transformer, op-
timizations are necessary to also realize a 2× runtime training performance. We discuss a few
strategies here, leaving exact experimental testing to future work.

Delayed gradient synchronization via local accumulation. Since multiple forward and backward
passes are made for each mini-batch in common implementations of data parallelism, this induces a
gradient synchronization across all device for each backward pass with additional gradient accumu-
lation. As such, for MatFormers a minimum of 2× the parameters worth of gradients are exchanged
for the MLP layers, thus increasing the communication overhead. Additionally, for some frame-
works, such as PyTorch, gradients of the full-weight matrix size need to be exchanged, leading to
4× more communication for our default experimental setup. A more efficient way to communicate
gradients is to keep a local gradient accumulation buffer, which is used to accumulate all gradient
from all subnetworks into the main, full-sized weight gradient. After all forward-backward passes
have been completed, synchronization of gradients – with additional overall of computation and
communication – can ensue. This saves 2× communication overhead, reducing communication
overhead to the same cost as a regular Transformer.

Fused MatFormer kernels. Depending on the accelerator (GPU/TPU), the smallest MatFormer
forward and backward pass can be inefficient in that the matrices are too small to fully utilize the
accelerator. To improve utilization at the cost of additional memory for activations, it is possible
to run the following computational fusion strategy for MatFormer computation: (a) duplicate mini-
batch 4×, (b) do the forward/backward pass for each layer for all MatFormer stages at the same
time, (c) in doing so, load the tile for the weight matrix once, and reuse it for all relevant MatFormer
stages. This strategy is similar to tiling strategies in FlashAttention [7] or convolution [13] which
increase the arithmetic intensity for small weights by reusing of matrix multiplication tiles written
to SRAM.

B.2 Speculative Decoding Attention Sharing

An additional benefit of MatLM is that the attention cache is shared between the draft and verifier
model. When the XL model verifies S model’s draft, it overwrites the attention cache with its richer
latent representation compared to the one generated by the drafter model. Note that 1) this does
not involve extra computation since MatLM has a single universal model including both draft and
verifier model; 2) attention sharing isn’t possible in Baseline since they are not explicitly trained
together. Hence, latent representation of one model is quite meaningless to the other model. Thus,
attention sharing gives further improvement over vanilla speculative decoding as shown in Table 1.
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C Scaling Laws for Language Decoders

We provide results split by granularities for validation loss, average score on RANK tasks, average
score on GEN tasks, and consistency in Figures 4, 5, 6, and 7 respectively. We observe that while
the gap in validation loss between MatLMs and Baselines appears to be constant, the gap for down-
stream evaluations reduces with scale - in fact, granularities L, M and S have better downstream
performance for models larger than 1B. For consistency, the gap appears to reduce with scale, but
one would need to scale the models by many orders of magnitude beyond what’s possible today for
baselines to have comparable consistency with MatLMs.

C.1 Scaling laws of MatFormers vs Transformers.

Scaling laws are essential tools to estimate optimality under as the cost of training or inference is
increased. Scaling laws can take diverse viewpoints such as overall training cost in FLOPS, training
data and parameter efficiency, and inference mean FLOPS utilization vs latency for deployments.

The scaling relationship of MatFormers versus Transformers is both simple and complex. Simple,
because MatFormers scaling curves for pretraining are only slightly offset from Transformers – thus
MatFormers only require a fixed relative amount of additional compute and the same hyperparame-
ters that work for Transformers are effective for MatFormers. For the setting where we use the same
hyperparameters as Transformers, MatFormers need at most 10−20% more training tokens to reach
the same loss as a regular Transformer. Initial experiments where we tune hyperparameters for the
individual forward/backward passes and by performing more careful initialization of the subslices
the gap appears to shrink. While we do not have enough data to make definite statements, it appears
MatFormer scaling can be improved to be close to Transformers scaling needing less than 0 − 5%
additional training tokens.

The complex scaling relationship comes from the fact that MatFormers allow the training of multiple
models with a single training run which is a qualitative different from Transformers and difficult to
factor into scaling equations. Essentially, in terms of efficiency, if we compare the training FLOPs
equivalent of all the extractable models from MatFormers, then MatFormer training alone has a
clear advantage in any case where all parameters used to train standard Transformer models on the
same dataset exceed 2.58P , where P is the number of parameters of the MatFormer and the largest
Transformer model. This is so because MatFormers use 2.58 times more FLOPs per token for a
training run than a Transformers: 4× more FLOPs for attention layers parameters and {1 + 1/2 +
1/4 + 1/8 = 1.875}× more FLOPs for MLP layers.

D Further Analysis on Language Decoders

D.1 KL Divergence Between S, M, L and XL Models

Figure 3 showcases the smoother consistency calculation between two generative models measured
with KL-divergence of the smaller model’s outputs with the larger model outputs. Similar to the
exact match style hard consistency metric used in the main paper, there is a significant gap between
the consistency of MatLM’s submodels with the MatLM-XL model and between that of the corre-
sponding baseline models. This points to how sampling strategies based on the output probabilities
do not change the behavioral consistency between two models and that it still follows the trend of
generating the token with the highest probability. This smoother notion of consistency argues for
the metric-space preservation given that the output classifier/embedding matrix is shared across all
the submodels of MatLM.

D.2 Ablations on Training Method

We experiment with several aspects of our training method on a 850M parameter MatLM. Our
training procedure is unique compared to others (further discussed in Section ??) in 2 ways: (a)
we learn all granularities in the same weight space and (b) we use joint optimization as described
in Section 2. To assess the effect of these differences on performance, first we train a Transformer
model with independent FFN modules with {S, M, L, XL} granularites using joint optimization
(Independent modules). Next, we train a MatLM model with the only difference being that at each
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Figure 3: The smoother variant of consistency measures the KL divergence between the smaller
models and the corresponding XL model. This metric, unlike the exact match accuracy variant,
also accounts for different sampling strategies on the output distribution during deployment. In this
figure, we plot KL divergence of S, M, L granularities with respect to XL for the 2.6B parameter
model.

step, we optimize for a single granularity chosen uniformly at random (Subsampling). We find that
joint optimizing a MatLM performs significantly better than these baselines, implying efficacy of
both aspects of our training method.

Table 4: We compared the validation loss of models from Joint Optimization to training MatLMs
with independent MLP modules for each granularity (Independent modules) and sampling a single
granularity to optimize for at each step (Subsampling) for 850M parameter models. We find that
Joint Optimization performs significantly better than both these methods.

Model Training Strategy XL L M S

Baseline - 2.840 2.910 2.9710 3.017

MatFormer

Joint Optimization 2.874 2.928 2.980 3.030
Independent MLP modules 2.894 2.942 2.985 3.030

Subsampling 2.929 2.946 2.999 3.049

We discuss additional ablations such as re-weighting losses to improve the performance of the XL
model in Appendix D.4, and additionally studied scaling trends for these ablations. We found the
reweighting loss trick to be especially powerful, bringing the performance on downstream evals
within 0.1% for the XL model. This also nudges us towards finding better hyperparameters and
weight initializations for reliable scaling of MatLMs [35].

D.3 Changing Embedding Size

Because of the ubiquity of 64k vocabs size [4] we additionally train models upto 201M non-
embedding parameters similar to those described in Appendix A, except that the embedding size
is 64k (the largest model corresponds to the 463M parameter model). We plot the scaling trends in
Figure 8. Though 4 models is not enough to extrapolate a trend, we observe that the scaling trend
for validation loss appears to be similar.

D.4 Reweighting Strategies

We additionally experiment with reweighting the losses for the individual granularities in order to
boost the performance of the largest granularity while minimally impacting the performance of the
smaller granularities. We present the relative weights used in Table 5 as λ4 : λ3 : λ2 : λ1, and find
that in general, upweighting the largest granularity greatly improves quality. Another interesting
related direction for improving MatFormer performance further is granularity appropriate initializa-
tion [35].
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Table 5: For 850M model, we experiment with modifying LJOINT to use a weighted average as
opposed to an unweighted average, and report the results across all granularities. We find that all
strategies that upweight the loss for the largest granularity perform well, with modest degradation
on the M and S granularties.

Model Relative Weights XL L M S

Baseline N/A 2.840 2.910 2.971 3.017

MatFormer

1:1:1:1 2.874 2.928 2.980 3.030
2 : 1.5 : 1.25 : 1 2.867 2.927 2.986 3.051
1 : 1.25 : 1.5 : 2 2.883 2.936 2.982 3.026

2 : 1 : 1 : 1 2.863 2.929 2.985 3.043√
8 :
√
4 :
√
2 : 1 2.862 2.924 2.990 3.063

D.5 Scaling Laws for Reweighted Strategy

We conduct scaling experiments similar to those described in Section ?? for the reweighed models,
specifically for models with the ratio 2 : 1.5 : 1.25 : 1, and plot the results in Figure 9. We note that
the scaling trend is similar to the MatLM with a 1 : 1 : 1 : 1 relative weighting (a = 19.889, b =
−0.130, c = 1.374), but with a slightly better validation loss .

E Further Analysis on Vision Encoders

E.1 Decoupling Effect of MatFormer on Pretraining and Finetuning

Table 6 investigates the effect of MatFormer on pretaining and finetuning phases of ViT-L/16 model.
ViT-L/16 is typically pretrained on ImageNet-21K and then finetuned on ImageNet-1K for the final
evaluation. Table 6 shows that having a MatFormer during pretraining generates a better model for
downstream finetuning compared to regular ViT pertaining. At the same time, finetuning a vanilla
pretrained ViT with MatFormer results in flexibility being induced into the model. Despite being
up to 2% less accurate than its counterparts at some granularities, a fine-tuned MatViT learned to
reallocate the information to provide strong nested models. Considering that this is insignificant
compared to pretaining costs, possible to take the largest pretrained ViT model and finetune with
MatFormer to obtain a deployable MatViT variant.

Table 6: 2 × 2 grid of pairs to evaluate the effects of MatFormer and standard training on the pretrain-
ing (PT) on ImageNet-21K and finetuning (FT) on ImageNet-1K using a L/16 architecture. Using a
MatFormer during pretraining helps bring more accurate, and elastic encoders for downstream uses.

PT↓ / FT→ # Params (M) ViT MatViT

ViT

306 85.26 85.57
206 85.12 84.27
156 85.02 82.79
131 84.42 82.1

MatViT

306 85.58 85.61
206 – 85.40
156 – 85.02
131 – 84.41

E.2 Traditional Image Retrieval Evaluation

Table 7 showcases traditional image retrieval evaluation on ImageNet-1K where the query and the
document encoders are the same for nearest neighbor retrieval. The 1-nearest neighbor (NN) based
evaluation closely follows one-vs-all classification results shown in Figure ??. Both MatViT variants
B/16 and L/16 have submodels that have as good or better retrieval performance compared to their
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independently trained counterparts. Concretely, MatViT-based retrieval can be up to 0.5% more
accurate than the baselines while a 200M parameter MatViT submodel can be more accurate than
the 300M parameter ViT baseline.

Table 7: Image retrieval 1-NN accuracy (%) when the query and document encoders are the same
model. Similar to the image classification results, MatViT variants either match or outperform the
corresponding standard ViT counterparts. Note that all the smaller models of a given model in
MatViT are extracted for free while the baselines have to be explicitly trained for the constraints.

Encoder # Params (M) ViT MatViT

B/16

85 77.46 77.38
57 76.58 76.41
43 74.90 74.49
36 71.44 71.72

L/16

300 83.17 83.67
200 82.92 83.23
150 82.81 82.89
125 82.22 82.14
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(e) Loss for all granularities - XL, L, M, S.
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(f) Consistency with the XL-models

Figure 4: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B pa-
rameters and observe the scaling trends for each model granularity on validation loss. We observe
that the gap between MatLM and the baseline appears to be constant at each granularity. The con-
sistency between the submodels of granularities and the XL models shows the effect of MatFormer
joint training on natively ensuring similar behavior across submodels.
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(a) XL-model Average Score on GEN tasks
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(b) L-model Average Score on GEN tasks
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(c) M-model Average Score on GEN tasks
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(d) S-model Average Score on GEN tasks
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(e) Average Score on GEN tasks for all granulari-
ties - XL, L, M, S.

Figure 5: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each model granularity for the average score on GEN
tasks 1-shot evaluation. We observe that the gap between MatLM and the baseline reduces with
scale, outperforming the baselines for S, M, L granularities for the largest models.
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(a) XL-model Average Score on RANK Evals
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(b) L-model Average Score on RANK Evals
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(c) M-model Average Score on RANK Evals
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(d) S-model Average Score on RANK Evals
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(e) Average Score on RANK Evals for all granu-
larities - XL, L, M, S

Figure 6: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each model granularity for the average score on RANK
1-shot evaluation. We observe that the gap between MatLM and the baseline reduces with scale,
outperforming the baselines for S, M, L granularities for the largest models.
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(a) Consistency of L-model with XL-model
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(b) Consistency of L-model with XL-model
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(c) Consistency of L-model with XL-model
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(d) Consistency of all model granularities with
XL-model - L, M, S

Figure 7: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each submodel S, M, L for the consistency with the
XL model. We observe that the gap between MatLM and the baseline reduces with scale, but one
would need to scale the baseline by many orders of magnitude to have consistency comparable to
that of MatLMs.
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(c) M-model Loss
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(d) S-model Loss
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Figure 8: We train various decoder-only MatLM models at a range of sizes from 29M to 267M
parameters with an embedding size of 64k and observe the scaling trends for each model granularity
on validation loss. We observe that the gap between MatLM and the baseline appears to be constant
at each granularity, similar to what is observed in Figure 4.
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Figure 9: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters with a reweighing ratio of 2 : 1.5 : 1.25 : 1 and observe the scaling trends for each
model granularity on validation loss. We observe that the gap between MatLM and the baseline
appears to be constant at each granularity, similar to what is observed in Figure 4.
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Table 8: Downstream Eval numbers and development set log perplexity loss on 78M model size
granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 0.14 0.16 0.19 0.25 0.14 0.3 0.19 0.28
NaturalQuestions (EM) 0.06 0.03 0.03 0.06 0.03 0.03 0.03 0.03

WebQuestions (EM) 0.1 0.2 0.15 0.2 0.2 0.3 0.3 0.3
LAMBADA 0.06 0.02 0.02 0 0.02 0 0 0
HellaSwag 25.42 26.28 26 25.87 25.95 25.9 25.95 25.94
StoryCloze 52.81 53.39 53.13 53.34 54.46 53.5 54.46 54.36

WSC 52.98 51.93 53.68 50.88 55.79 54.04 52.28 52.63
WinoGrande 48.46 51.54 51.54 47.99 50.99 48.46 48.86 49.41
Winograd 53.11 52.75 52.38 53.85 55.31 55.31 52.75 55.68

SQuAD v2 (EM) 11.19 36.71 33.14 33.77 20.08 29.17 22.78 30.97
RACE-H 25.53 25.84 24.73 25.44 26.07 25.9 25.96 25.84
RACE-M 29.18 30.15 28.83 29.94 28.83 30.43 29.74 31.48

PIQA 55.77 55.22 54.62 55.28 54.52 54.79 56.86 54.08
ARC-C 21.5 20.9 21.08 21.67 21.59 21.33 22.35 22.1
ARC-E 34.55 35.48 34.3 35.73 34.89 36.11 34.55 35.98
OpenBookQA 25.4 28.6 27.6 28 28.2 28 29.8 29

BoolQ 48.72 44.89 51.87 47.37 51.28 46.85 52.11 45.87
COPA 62 64 62 61 63 63 60 60
RTE 53.79 52.35 52.35 51.99 51.26 54.51 51.99 52.71
WiC 49.53 47.34 49.06 47.34 47.34 47.34 47.65 47.34
MultiRC (F1) 53.17 51.72 53.42 53.28 56.86 53.82 55.46 53.42
ReCoRD 39.52 39.22 40.03 39.95 40.55 40.42 40.8 40.83
CB 41.07 42.86 44.64 39.29 44.64 41.07 42.86 44.64

ANLI-R1 30.9 32 32.3 31.9 32.5 32.3 32.5 31.7
ANLI-R2 31.1 30.9 31.1 30.1 30.7 30.8 30.6 30.3
ANLI-R3 31.75 30.75 30.58 30.25 30.33 29.67 30 30.17

Average 33.76 34.82 34.95 34.41 34.83 34.74 34.65 34.81

Avg over GEN Taks 2.31 7.42 6.7 6.85 4.09 5.96 4.66 6.31

Avg over RANK Tasks 41.25 41.34 41.68 40.97 42.15 41.6 41.79 41.59

Dev set log pplx 4.010 4.012 3.97 3.96 3.905 3.908 3.83 3.868

Table 9: Downstream Eval numbers and development set log perplexity loss on 180M model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 1.04 0.9 0.98 1.26 1.16 1.89 1.86 2.00
NaturalQuestions (EM) 0.08 0.11 0.14 0.08 0.3 0.11 0.28 0.11

WebQuestions (EM) 0.59 0.94 0.44 0.98 1.28 0.89 1.33 0.79
LAMBADA 0.16 0.68 0.43 1.16 1.51 0.95 0.49 0.99
HellaSwag 27.77 27.3 27.45 27.61 27.58 27.84 28.86 28.56
StoryCloze 56.33 56.07 57.03 56.87 57.3 57.78 58.63 58.52

WSC 55.44 55.44 56.49 60.35 58.25 58.6 57.54 58.6
WinoGrande 52.01 50.12 50.28 49.17 51.22 50.43 51.54 49.09
Winograd 54.21 55.68 56.78 57.51 61.54 58.61 60.44 61.17

SQuAD v2 (EM) 22.13 17.28 20.05 18.02 26.42 11.42 25.76 16.53
RACE-H 27.93 27.9 27.5 28.53 28.7 28.82 28.73 28.73
RACE-M 33.29 34.47 34.19 34.05 34.54 33.91 33.29 34.19

PIQA 57.13 58.05 56.91 57.94 57.94 58.00 59.52 58.92
ARC-C 22.53 22.61 23.63 22.27 24.06 22.1 24.66 23.55
ARC-E 40.24 39.39 40.19 40.49 41.71 40.74 41.62 41.16
OpenBookQA 30.60 31.00 30.80 31.80 31.00 32.80 34.00 32.6

BoolQ 54.13 52.23 52.45 52.05 55.63 52.17 55.9 48.44
COPA 62 61 61 61 61 64 64 65
RTE 52.71 53.07 52.35 53.43 50.54 52.71 52.71 52.71
WiC 47.34 51.41 47.34 49.37 47.96 47.81 47.65 47.34
MultiRC (F1) 54.34 53.34 45.65 56.12 47.47 52.62 47.62
ReCoRD 48.58 49.4 48.99 50.13 50.56 51.25 52.82 52.51
CB 42.86 44.64 42.86 44.64 39.29 44.64 42.86 42.86

ANLI-R1 31.8 32.6 31.8 32.4 32.4 32.8 32.2 32.1
ANLI-R2 30.5 29.8 31.1 29.8 32.00 30.5 30.5 30.1
ANLI-R3 30.08 30.25 30.5 32.00 33.5 31.42 30.67 30.42

Average 35.99 35.51 35.96 36.1 37.06 36.14 37.33 36.33

GPT3-GEN 4.8 3.98 4.41 4.3 6.14 3.05 5.94 4.08

GPT3-RANK 43.42 43.02 43.48 43.67 44.42 44.02 44.8 44.01

Dev set log pplx 3.55 3.55 3.512 3.505 3.456 3.458 3.354 3.40
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Table 10: Downstream Eval numbers and development set log perplexity loss on 310M model size granulari-
ties.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 2.09 2.4 2.2 3.17 2.84 2.73 5.18 3.12
NaturalQuestions (EM) 0.11 0.28 0.28 0.5 0.58 0.3 0.91 0.61

WebQuestions (EM) 2.12 1.38 1.08 1.67 1.67 1.43 2.41 1.57
LAMBADA 0.29 1.79 0.66 1.92 1.9 2.46 2.76 2.64
HellaSwag 29.89 29.69 30.05 30.02 31.18 30.63 32.52 31.58
StoryCloze 59.17 58.85 59.54 60.13 60.24 60.5 61.68 61.36

WSC 61.05 59.65 59.3 58.6 61.75 56.84 58.95 57.19
WinoGrande 51.46 52.88 49.57 50.91 52.41 50.75 50.91 52.01
Winograd 55.68 56.04 57.88 59.71 63 59.71 61.17 60.07

SQuAD v2 (EM) 22.38 22.79 13.38 17.83 20.03 18.66 22.03 21.81
RACE-H 29.45 28.33 28.9 28.67 29.22 29.07 29.67 28.79
RACE-M 35.31 36.14 36.14 36.91 36.42 36.14 37.6 36.07

PIQA 58.98 59.9 59.58 59.85 59.79 60.45 62.19 60.61
ARC-C 23.38 20.82 23.21 21.33 23.81 23.21 25 22.95
ARC-E 42.3 42.34 44.11 43.52 44.53 44.44 46.8 45.62
OpenBookQA 32.8 35.2 34.6 36.4 35.2 35.8 36.8 36.6

BoolQ 53.43 59.05 55.32 58.72 52.87 57.22 54.22 55.6
COPA 61 61 61 66 64 63 60 66
RTE 52.71 54.51 53.43 51.62 51.62 53.07 54.15 49.46
WiC 47.18 48.43 47.65 49.22 47.65 50.16 47.34 51.25
MultiRC (F1) 53.07 51.69 53.5 51.36 48.46 47.14 45.72 46.23
ReCoRD 54.34 53.86 55.18 55.33 56.75 56.79 58.39 58.07
CB 42.86 46.43 42.86 46.43 42.86 46.43 50 51.79

ANLI-R1 32 31.3 32 32.2 32.5 32.3 32.2 32.8
ANLI-R2 32.6 30.2 30.9 29.8 30.6 31.2 29.8 30.9
ANLI-R3 32.08 29.25 30.75 30.08 32.17 31.25 31.5 32.17

Average 37.22 37.47 37.04 37.77 37.85 37.76 38.46 38.34

Avg over GEN Taks 5.4 5.73 3.52 5.02 5.41 5.12 6.66 5.95

Avg over RANK Tasks 44.8 45.03 45.02 45.56 45.57 45.53 46.03 46.05

Dev set log pplx 3.31 3.33 3.30 3.285 3.224 3.235 3.15 3.18

Table 11: Downstream Eval numbers and development set log perplexity loss on 463M model size granulari-
ties.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 4.63 3.87 4.87 4.55 6.11 5.63 8.09 6.48
NaturalQuestions (EM) 0.61 0.58 0.8 0.89 0.94 1.16 1.66 1.25

WebQuestions (EM) 2.31 1.62 2.26 2.02 2.85 2.31 2.85 2.56
LAMBADA 2.1 1.65 2.6 2.1 3.94 2.93 3.49 3.49
HellaSwag 32.12 31.57 32.83 32.16 33.8 33.48 36.21 35.08
StoryCloze 61.25 60.98 61.36 61.46 63.66 62.21 64.24 64.08

WSC 57.54 64.91 61.4 62.11 66.32 62.11 61.05 63.16
WinoGrande 52.33 51.38 49.09 50.99 52.64 50.36 53.12 52.64
Winograd 60.07 63.74 60.07 62.27 67.4 61.54 68.5 63.74

SQuAD v2 (EM) 21.7 21.85 25.8 19.71 24.69 21.85 23.08 18.28
RACE-H 29.85 29.45 29.47 29.79 30.56 29.79 30.7 30.02
RACE-M 37.53 37.6 37.33 38.93 40.39 39.62 40.95 39.21

PIQA 61.26 61.53 61.48 62.08 60.99 63.22 63.17 63.71
ARC-C 23.04 22.7 24.06 22.35 24.49 22.18 23.72 23.63
ARC-E 45.83 44.44 46.3 45.62 47.73 47.85 51.73 49.12
OpenBookQA 37.2 36.4 37 37.8 36.4 39.2 41 38.4

BoolQ 52.39 52.69 56.12 52.05 50.28 51.28 54.98 47.95
COPA 67 62 73 63 71 63 67 66
RTE 52.35 53.07 53.43 52.71 52.35 52.71 52.35 51.99
WiC 47.34 47.34 47.34 47.34 47.34 47.34 47.34 47.34
MultiRC (F1) 45.63 46.02 54.4 46.38 52.79 49.28 52.34 41.71
ReCoRD 57.58 58.65 59.31 59.71 60.87 61 63.42 61.77
CB 42.86 42.86 44.64 42.86 44.64 42.86 42.86 42.86

ANLI-R1 32.6 32.5 31.7 33.1 31.4 32.3 32.5 32.6
ANLI-R2 30.7 30.7 28.4 30.5 30.4 30.6 31.2 31.8
ANLI-R3 30.83 30.67 30.08 30.75 30.83 30.67 30.92 30.75

Average 38.02 38.11 39.04 38.2 39.8 38.71 40.33 38.83

Avg over GEN Taks 6.27 5.91 7.27 5.85 7.71 6.78 7.84 6.41

Avg over RANK Tasks 45.59 45.77 46.61 45.9 47.44 46.31 48.06 46.55

Dev set log pplx 3.205 3.217 3.16 3.16 3.096 3.11 3.023 3.06
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Table 12: Downstream Eval numbers and development set log perplexity loss on 850M model size granulari-
ties.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 9.26 6.62 10.82 9.78 11.07 11.72 13.31 13.76
NaturalQuestions (EM) 1.66 0.89 1.69 1.58 2.24 2.38 2.66 2.74

WebQuestions (EM) 3.89 3.35 4.08 4.18 3.74 4.43 4.08 5.31
LAMBADA 3.2 8.25 6.97 10.83 8.19 10.44 14.03 10.83
HellaSwag 36.11 36.64 38.26 37.7 40.63 39.64 43.4 42.55
StoryCloze 64.78 65.26 66.33 66.17 68.25 67.13 71.25 69.64

WSC 66.32 65.96 63.16 64.21 69.82 69.12 70.53 68.42
WinoGrande 52.17 51.54 52.25 52.57 55.17 52.96 54.14 54.62
Winograd 68.13 69.23 67.03 71.43 71.06 70.33 72.16 72.89

SQuAD v2 (EM) 29.9 23.79 29.07 25.51 25.07 26.39 33.41 28.46
RACE-H 30.39 30.76 31.93 31.88 32.53 31.88 33.79 32.73
RACE-M 40.95 40.95 42.06 41.16 42.27 42.55 44.64 42.48

PIQA 64.04 63.98 64.64 64.91 65.45 65.23 67.25 66.21
ARC-C 24.49 24.15 26.71 24.91 26.71 26.54 27.13 27.47
ARC-E 52.15 51.01 53.66 52.95 56.27 54.92 57.11 56.57
OpenBookQA 38.2 40.4 40.8 41.2 42.8 40.8 43 42

BoolQ 52.63 50.31 51.9 47.8 56.73 50.15 55.6 48.41
COPA 68 73 68 73 71 73 73 76
RTE 51.62 51.99 52.71 52.35 51.62 51.99 53.07 52.71
WiC 47.34 47.18 47.34 47.18 47.34 47.18 47.34 47.18
MultiRC (F1) 44.37 51.32 52.11 50.46 54.7 53 37.58 47.16
ReCoRD 63.52 64.27 65.03 65.36 67.55 66.53 69.56 68.03
CB 42.86 37.5 42.86 42.86 42.86 42.86 46.43 39.29

ANLI-R1 30.9 31.8 33.7 32.1 31.7 32.2 32.6 32.4
ANLI-R2 31.8 31.5 31.5 30.9 31.1 30.6 30.4 30.8
ANLI-R3 32 30.25 32.83 30.17 30.75 30 30.58 30.25

Average 40.41 40.46 41.44 41.27 42.56 42.08 43.39 42.65

Avg over GEN Taks 9.58 8.58 10.53 10.38 10.06 11.07 13.5 12.22

Avg over RANK Tasks 47.75 48.05 48.8 48.63 50.3 49.46 50.5 49.9

Dev set log pplx 3.017 3.03 2.971 2.98 2.91 2.928 2.84 2.874

Table 13: Downstream Eval numbers and development set log perplexity loss on 1.3B model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 11.92 12 14.68 13.09 16.48 14.91 20.14 17.62
NaturalQuestions (EM) 1.88 2.19 2.24 2.47 3.07 2.99 4.79 4.13

WebQuestions (EM) 3.84 5.02 4.72 5.36 5.07 5.76 6.05 6.15
LAMBADA 7.3 9.94 13.55 12.34 17.97 13.51 22.65 19.21
HellaSwag 40.53 40.35 42.86 42.5 46 44.48 49.78 47.69
StoryCloze 67.29 68.2 69.75 69.91 72.37 71.14 73.81 72.8

WSC 64.56 65.96 64.91 69.12 67.72 69.82 72.63 69.82
WinoGrande 55.8 53.99 56.67 55.25 56.12 57.7 58.25 58.41
Winograd 71.06 68.5 67.77 70.7 73.99 70.33 72.53 72.89

SQuAD v2 (EM) 29.63 35.47 28.85 34.64 36.55 34.47 39.48 36.39
RACE-H 32.19 33.19 33.08 34.39 34.48 35.11 36.59 35.25
RACE-M 43.8 44.22 44.22 45.96 47.7 45.75 50.07 46.59

PIQA 66.49 64.36 66.05 66.38 67.52 66.97 69.1 67.68
ARC-C 27.99 25.77 27.65 27.22 29.01 28.75 30.55 31.48
ARC-E 56.44 54.08 58.54 57.03 59.85 58.84 63.26 61.83
OpenBookQA 41.4 42.2 41 42 43.4 42.8 44.8 45.4

BoolQ 52.57 49.85 54.86 52.42 53.76 56.06 55.35 53.52
COPA 70 75 69 77 74 74 77 75
RTE 52.35 53.07 53.07 52.35 54.15 53.43 52.35 49.82
WiC 47.34 47.34 47.18 47.34 47.34 47.34 48.43 47.02
MultiRC (F1) 42.98 46.69 43.82 49.09 45.29 48.2 40.99 46.42
ReCoRD 67.32 67 69.02 68.61 71.13 70.26 73.4 71.49
CB 42.86 44.64 46.43 42.86 48.21 44.64 42.86 37.5

ANLI-R1 32.5 33.5 31.9 33.8 33 33.3 32.4 32.1
ANLI-R2 30.3 34.7 30.5 34.6 30.6 33.1 31.5 33.5
ANLI-R3 30.5 33.17 31.5 33.67 31.33 33.5 32.58 33.67

Average 41.96 42.71 42.84 43.85 44.85 44.51 46.21 45.13

Avg over GEN Taks 10.91 12.92 12.81 13.58 15.83 14.33 18.62 16.7

Avg over RANK Tasks 49.35 49.8 49.99 51.06 51.76 51.69 52.77 51.9

Dev set log pplx 2.90 2.923 2.856 2.867 2.79 2.81 2.718 2.76
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Table 14: Downstream Eval numbers and development set log perplexity loss on 2.6B model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 18.58 18.64 19.83 21.41 25.17 24.9 28.84 28.01
NaturalQuestions (EM) 3.05 3.13 3.19 3.66 4.76 4.24 6.73 5.01

WebQuestions (EM) 5.61 6.74 4.43 6.3 6.1 6.74 8.27 7.78
LAMBADA 18.46 13.74 29.92 19.89 27.34 24.84 27.94 29.98
HellaSwag 46.41 46.01 49.04 48.94 52.87 52.2 57.14 55.33
StoryCloze 72.26 72.1 73.54 73.22 75.09 75.04 77.02 75.79

WSC 71.23 69.82 70.88 71.58 75.09 74.39 80 77.54
WinoGrande 56.83 57.85 57.62 56.91 60.93 59.19 62.19 59.59
Winograd 76.56 71.43 72.89 74.36 76.56 74.73 81.68 78.75

SQuAD v2 (EM) 34.89 37.97 34.33 40.07 34.89 42.24 43.47 42.59
RACE-H 33.62 34.76 35.59 35.85 36.91 36.82 38.91 37.28
RACE-M 47.63 47.49 49.44 49.51 50.77 50.07 53.34 51.67

PIQA 67.74 67.79 68.39 68.28 69.21 69.59 71.49 71.11
ARC-C 29.95 30.29 31.83 31.91 32.51 34.22 35.67 35.41
ARC-E 60.82 59.97 61.2 62.42 63.51 64.56 67.76 64.86
OpenBookQA 45.6 43.8 45.4 44.8 49 46.4 49 49.4

BoolQ 53.58 52.87 53.15 53.52 59.36 54.89 60.8 57.22
COPA 74 74 77 76 75 78 82 81
RTE 49.1 53.07 49.82 54.15 48.01 54.51 48.01 52.35
WiC 47.34 47.34 47.18 47.34 47.34 47.18 47.02 47.49
MultiRC (F1) 43.4 52.28 43.65 51.64 46.99 53.7 39.24 53.77
ReCoRD 71.34 71.9 72.79 72.97 74.86 74.57 76.71 75.32
CB 28.57 44.64 46.43 46.43 41.07 50 50 44.64

ANLI-R1 32.4 32.3 30.4 32.3 32.5 32.1 31.2 31.5
ANLI-R2 30.4 30.1 30.6 31 30.1 30.2 31.7 30.8
ANLI-R3 30.75 30.83 31.25 31 33.5 30.92 32 31.92

Average 44.23 45.03 45.76 46.36 47.29 47.93 49.54 49.08

Avg over GEN Taks 16.12 16.04 18.34 18.26 19.66 20.59 23.05 22.68

Avg over RANK Tasks 50.93 51.94 52.29 53.05 53.86 54.44 55.85 55.37

Dev set log pplx 2.77 2.787 2.722 2.732 2.66 2.68 2.592 2.63

23



Table 15: Downstream eval numbers and development set log perplexity on 2.6B MatLM
Mix‘n’Match granularities. For original granularities, please refer to Table 14. First row repre-
sents the non-embedding parameters of the model.

Downstream Task 830M 1B 1.11B 1.32B 1.43B 1.55B 1.65B

TriviaQA (EM) 18.89 22.43 23.8 25.77 26.26 26.15 26.6
NaturalQuestions (EM) 3.49 3.77 4.02 4.07 4.46 4.65 5.12
WebQuestions (EM) 5.95 6.1 6.64 6.69 6.94 6.69 6.69
LAMBADA 16.34 20.16 23.07 24.8 24.32 25.87 29.13
HellaSwag 47.98 50.46 51.29 52.78 53.75 54.16 54.56
StoryCloze 73.01 73.33 74.83 75.2 75.68 75.41 75.63
WSC 70.88 70.53 74.04 72.98 74.74 73.33 77.19
WinoGrande 57.85 58.88 60.93 58.88 59.67 60.06 59.91
Winograd 73.26 73.26 76.19 74.36 76.56 77.66 78.02
SQuAD v2 (EM) 36.49 39.72 38.05 41.33 41.08 40.26 41.36
RACE-H 34.71 35.93 35.48 36.74 36.62 36.22 36.96
RACE-M 46.59 48.89 49.44 50.28 50.42 51.32 50.91
PIQA 68.5 69.04 69.53 70.4 70.46 70.51 70.29
ARC-C 31.06 33.11 33.19 34.81 35.75 35.84 34.56
ARC-E 62.29 62.58 62.63 64.86 65.99 65.49 64.69
OpenBookQA 44.6 46.2 46.8 47 47.4 47.4 47.6
BoolQ 54.86 55.08 54.46 55.78 58.38 57.19 56.88
COPA 76 76 75 80 77 80 80
RTE 53.43 53.79 53.79 52.71 53.79 54.51 53.79
WiC 47.34 47.34 47.18 47.34 47.18 47.34 48.12
MultiRC (F1) 53.34 53.85 52.97 54.23 57.57 55.09 54.91
ReCoRD 72.21 73.25 73.98 74.43 74.72 75.05 75.37
CB 48.21 46.43 48.21 50 50 44.64 55.36
ANLI-R1 32.4 32.1 32 32.4 32.3 31.4 32.4
ANLI-R2 30.5 30.6 30.6 30.6 30.7 30.4 31.4
ANLI-R3 31.17 31.17 31.17 31.5 31 31.5 31.33
Average 45.82 46.69 47.28 48.07 48.57 48.39 49.18
Avg over GEN Taks 16.23 18.44 19.12 20.53 20.61 20.72 21.78
Avg over RANK Tasks 52.87 53.42 53.99 54.63 55.22 54.98 55.71

Dev set log pplx 2.774 2.729 2.706 2.68 2.675 2.663 2.65
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