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Abstract

Quantization is an indispensable technique for serving Large Language Models1

(LLMs) and has recently found its way into LoRA fine-tuning (Dettmers et al.,2

2023). In this work we focus on the scenario where quantization and LoRA fine-3

tuning are applied together on a pre-trained model. In such cases it is common4

to observe a consistent gap in the performance on downstream tasks between full5

fine-tuning and quantization plus LoRA fine-tuning approach. In response, we6

propose LoftQ (LoRA-Fine-Tuning-aware Quantization), a novel quantization7

framework that simultaneously quantizes an LLM and finds a proper low-rank8

initialization for LoRA fine-tuning. Such an initialization alleviates the discrep-9

ancy between the quantized and full-precision model and significantly improves10

generalization in downstream tasks. We evaluate our method on natural language11

understanding, question answering, summarization, and natural language genera-12

tion tasks. Experiments show that our method is highly effective and outperforms13

existing quantization methods, especially in the challenging 2-bit and 2/4-bit mixed14

precision regimes. We will release our code.15

1 Introduction16

The advent of Pre-trained Language Models (PLMs) has marked a transformative shift in the field17

of Natural Language Processing (NLP), offering versatile solutions across various applications (He18

et al., 2021b; Lewis et al., 2019; Touvron et al., 2023). However, the extensive computational and19

memory demands of these models pose significant challenges, especially in real-world deployments20

where resources are often constrained and need to be shared among many users.21

To mitigate the extensive storage requirements of pre-trained models, quantization serves as a pivotal22

compression technique (Zafrir et al., 2019; Shen et al., 2020; Bai et al., 2022; Dettmers et al.,23

2022), converting high-precision numerical values into a discrete set of values. Typically, model24

parameters, originally stored in a 16-bit float format, are transformed into a 4-bit integer format25

through quantization, resulting in a substantial 75% reduction in storage overhead.26

When quantizing pre-trained models, however, practitioners often concentrate primarily on the27

quantization technique, inadvertently neglecting the importance of subsequent task adaption, e.g.,28

LoRA fine-tuning (Dettmers et al., 2023; Diao et al., 2023). For example, QLoRA inherits the fixup29

initialization (Zhang et al., 2019) used in LoRA, which (Dettmers et al., 2023) attaches zero initialized30

low-rank adapters to the quantized pre-trained model. The inevitable discrepancy introduced by31

quantization during the approximation of the original high-precision numbers, a scenario particularly32

pronounced in low-bit situations such as the 2-bit regime, can adversely impact the initialization of33

LoRA fine-tuning. This deviation often results in an inferior fine-tuning performance.34

In this paper, we introduce a novel quantization framework, called LoRA-Fine-Tuning-aware35

Quantization (LoftQ). It is designed specifically for pre-trained models that require quantization36
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and LoRA fine-tuning. This framework actively integrates low-rank approximation, working in37

tandem with quantization to jointly approximate the original high-precision pre-trained weights. This38

synergy significantly enhances alignment with the original pre-trained weights. Consequently, our39

method provides an advantageous initialization point for subsequent LoRA fine-tuning, leading to40

improvements in downstream tasks.41

We evaluate our quantization framework by conducting extensive experiments on downstream tasks.42

Experiments show that LoftQ consistently outperforms QLoRA across all precision levels. LoftQ is43

also competitive with different quantization methods, e.g., NormalFloat (Dettmers et al., 2023) and44

the uniform quantization.45

2 Method46

We propose LoRA-Fine-Tuning-aware Quantization (LoftQ), a quantization framework for LLMs. It47

alternatively applies quantization and low-rank approximation to approximate original pre-trained48

weights. This quantization framework provides a promising initialization for LoRA fine-tuning,49

which alleviates the quantization discrepancy in QLoRA and improves generalization in downstream50

tasks significantly.51

2.1 LoRA-Aware Quantization52

We use an N -bit quantized weight Q ∈ Rd1×d2

N and low-rank approximations A ∈ Rd1×r, B ∈53

Rd2×r to approximate the original high-precision pre-trained weight W ∈ Rd1×d2 as the initialization54

of LoRA fine-tuning. Specifically, before fine-tuning, we initialize the network by minimizing the55

following objective:56

min
Q,A,B

∥∥W −Q−AB⊤∥∥
F
, (1)

where ∥·∥F denotes the Frobenious norm. This objective in (1) takes LoRA fine-tuning into consid-57

eration by jointly optimizing the initial values of the quantized backbone Q and low-rank adapters58

A,B. Contrarily, practitioners typically convert the pre-trained weight W into a quantized weight Q59

outright and initialize the low-rank adapters by A ∼ N (0, σ2), B = 0, neglecting the subsequent60

LoRA fine-tuning process. This oversight leads to notable performance degradation in downstream61

tasks arising from the quantization discrepancy.62

2.2 Alternating Optimization63

We solve the minimization problem in (1) by alternating between quantization and singular value64

decomposition (SVD). Initially, we set A0, and B0 equal to 0. The total alternating steps are T .65

Quantization. At the t-th step, we quantize the difference between the original pre-trained weight W66

and the low-rank approximation At−1B
⊤
t−1 from the last step to obtain the quantized weight Qt by67

Qt = qN (W −At−1B
⊤
t−1), (2)

where qN (·) : Rm×n 7→ Rm×n
N is a quantization function that maps a high-precision matrix into a68

quantized matrix, and RN : {T [i] ∈ R|0 ≤ i < 2N}.69

We remark that our algorithm is compatible with different quantization functions qN (·). We apply70

NF4 and the uniform quantization in Section 3 as examples. We also remark that Qt is not an exact71

solution of the minimization in (1), given the fixed At−1B
⊤
t−1, but it is an efficient approximation.72

SVD. After obtaining the t-th quantized weight Qt, SVD is applied to the residual of the quantization73

denoted by Rt = W −Qt by74

Rt =

d∑
i=1

σt,iut,iv
⊤
t,i, (3)

where d = min{d1, d2}, σt,1 ≥ σt,2 ≥ ... ≥ σt,d are the singular values of Rt, ut,i’s and vt,i’s are75

the associated left and right singular vectors of Rt. We then obtain a rank-r approximation of Rt by76

AtB
⊤
t , where77

At = [
√
σt,1ut,1, ...,

√
σt,rut,r],

Bt = [
√
σt,1vt,1, ...,

√
σt,rvt,r]. (4)

It is worth noting that T = 1 is a special case where Q1 is the exact quantized weight obtained78

by QLoRA, and low-rank approximations A1, B1 are obtained by the SVD of the quantization79
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residual W − Q1. T = 1 is sufficient to mitigate the quantization discrepancy, and alternating80

optimization helps to find a closer initialization to the pre-trained weight W , which further improves81

the performance.82

We remark that the computational cost of LoftQ is negligible because it is applied to individual83

weight matrices and therefore can be executed in parallel. Also, it only requires being applied once to84

a pre-trained model, and the initialization obtained can be reused for various downstream tasks85

We then use QT , AT , BT obtained by the alternating optimization above as LoRA fine-tuning86

initialization. We freeze the quantized backbone QT and optimize the low-rank adapters, starting87

from AT , BT , with an efficient optimization algorithm, e.g., AdamW (Loshchilov & Hutter, 2017).88

3 Experiments89

We evaluate our method on NLU and NLG tasks. We apply LoftQ for quantizing DeBERTaV3-base90

(He et al., 2021b), BART-large (Lewis et al., 2019), and LLAMA-2 series (Touvron et al., 2023).91

Implementation Details. Following the prior works of LoRA variants (Zhang et al., 2023; He et al.,92

2021a), we freeze all the backbone weight matrices and add low-rank adapters to weight matrices in93

MHA and FFN of all layers. We quantize the weight matrices that are attached by low-rank adapters.94

Quantization Methods. We apply two quantization methods to demonstrate LoftQ is compatible95

with different quantization functions. We apply uniform quantization and NF4 quantization 1 in our96

experiments. We perform 2-bit and 4-bit quantization on all models, achieving compression ratios of97

25-30% and 15-20% at the 4-bit and 2-bit levels, respectively. The compression ratios and trainable98

parameter ratios for all models are detailed in the Appendix A.99

Baselines. We compare LoftQ with baseline methods of Full fine-tuning, Full precision LoRA100

(LoRA), and QLoRA. Specific introductions of baseline methods are given in Appendix B101

3.1 Encoder-only Model: DeBERTaV3102

Models, Datasets, Implementations, and Results We quantize the DeBERTaV3-base (He et al.,103

2021b) with LoftQ, then finetune the model on the General Language Understanding Evaluation104

(GLUE) benchmark (Wang et al., 2019), SQuADv1.1 (Rajpurkar et al., 2016), and ANLI (Nie et al.,105

2019). We show the implementation details in Appendix E.3. Table 1 summarize the results for106

2-bit quantization on the GLUE, SQuADv1.1, and ANLI datasets, by NF2 quantization. Our method107

consistently outperforms QLoRA on all settings with respect to different ranks, and datasets. The108

4-bit quantization experiment results are presented in Appendix E.1 as both LoftQ and QLoRA109

achieve performance close to full fine-tuning. We also show our method excels over baseline using110

uniform quantization shown in Table 8, indicating our method is applicable to different methods.111

Table 1: Results with 2-bit LoftQ of DeBERTaV3-base models on GLUE development set,
SQuADv1.1 development set, ANLI test set using NF2 quantization. N.A. indicates the model
does not converge. The best results on each dataset are shown in bold.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB SQuAD ANLI
m / mm Acc Acc Acc Acc Matt Acc P/S Corr EM/F1 Acc

Full FT 90.4/90.5 94.6 85.1 95.1 89.9/93.6 69.9 92.0/89.4 91.7/91.1 87.3/93.1 59.8

16 LoRA 90.5/90.6 94.8 85.2 95.0 89.9/93.6 69.8 92.0/89.4 91.6/91.0 87.0/93.1 60.2

16 QLoRA 75.4/75.6 82.4 55.9 86.5 73.8/82.8 N.A. 86.8/82.3 83.0/82.8 61.5 / 71.2 N.A.
LoftQ 84.7/85.1 86.6 61.4 90.2 83.8/88.6 37.4 90.3/86.9 87.1/86.9 81.5/88.6 47.1

32 QLoRA 78.5/78.7 80.4 56.7 86.9 73.8/82.7 N.A. 87.1/82.7 83.6/83.3 64.6/73.8 N.A.
LoftQ 86.0/86.1 89.9 61.7 92.0 83.6/87.2 47.5 91.0/87.9 87.5/87.0 82.9/89.8 49.0

3.2 Encoder-Decoder Model: BART112

Models, Datasets, Implementations, and Results We quantize BART-large model (Lewis et al.,113

2020) with LoftQ, then finetune and evaluate the model on two commonly used summarization114

datasets: XSum (Narayan et al., 2018) and CNN/DailyMail(Hermann et al., 2015). The implemen-115

tation details are given in Appendix F. The 2-bit quantization results are shown in Table 2. Our116

observation is consistent with the NLU experiments, that LoftQ demonstrates the convergence to117

reasonable results, while QLoRA does not converge. This indicates our method is robuster by nar-118

1We abbreviate NF4 for NormalFloat quantization used in QLoRA. NF2 is its 2-bit variant
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rowing the initialization gap. We remark that our method is also successful within 4-bit quantization119

precision. Results shown in Table 13120

Table 2: Results with 2-bit LoftQ of BART-large on XSum and CNN/DailyMail using NF2 quantiza-
tion. N.A. indicates the model does not converge. We report ROUGE-1/2/L.

Rank Method XSum CNN/DailyMail

- Lead-3 16.30/1.60/11.95 40.42/17.62/36.67
Full FT 45.14/22.27/37.25 44.16/21.28/40.90

8
FP LoRA 43.40/20.20/35.20 44.72/21.58/41.84
QLoRA N.A. N.A.
LoftQ 39.63/16.65/31.62 42.24/19.44/29.04

16
FP LoRA 43.95/20.72/35.68 45.03/21.84/42.15
QLoRA N.A. N.A.
LoftQ 40.81/17.85/32.80 42.52/19.81/39.51

3.3 Decoder-only Model: LLAMA-2121

Models, Datasets, Implementations, and Results We quantize LLAMA-2-7b and LLAMA-2-13b122

(Touvron et al., 2023) with LoftQ. We then fine-tune and evaluate the models on two NLG datasets:123

GSM8K (Cobbe et al., 2021) and WikiText-2 (Merity et al., 2016). Please see Appendix G for more124

details about the datasets. The implementation details are given in Appendix G. Table 3 presents a125

summary of our experiments on LLAMA-2-7b and LLAMA-2-13b using 2-bit, 4-bit, and mixed-126

precision NormalFloat quantization methods on WikiText-2 and GSM8K datasets. In WikiText-2, our127

method consistently outperforms QLoRA across all quantization precision settings on both models.128

When dealing with the challenging 2-bit precision, where QLoRA fails to converge, LoftQ manages129

to achieve a perplexity of 7.85. In GSM8K, our method also achieves better or on par performance130

compared to QLoRA across different model sizes and quantization precision levels.131

We also explore mixed-precision quantization where matrices in the first 4 layers are quantized132

using 4 bits, and the rest matrices remain 2 bits. We witness a remarkable 5.9% accuracy boost133

on the GSM8K dataset using LLAMA-2-7b and a 12.7% boost using LLAMA-2-13b. This result134

underscores the potential of LoftQ for complex mixed-precision quantization scenarios.135

Table 3: Results of LoftQ using 4-bit, 2.25 bit and 2-bit for LLAMA-2 series on WikiText-2 and
GSM8K. 2.25-bit indicates mixed-precision NormalFloat quantization: 4-bit precision for the first 4
layers and 2-bit precision for the rest of layers. We report the perplexity (the smaller the better) for
WikiText-2 and accuracy for GSM8K. The rank of low-rank adapters is 64. N.A. indicates the model
does not converge.

Method Bit LLAMA-2-7b LLAMA-2-13b
WikiText-2↓ GSM8K↑ WikiText-2↓ GSM8K↑

LoRA 16 5.08 36.9 5.12 43.1

QLoRA 4 7.41 35.1 5.22 39.9
LoftQ 4 5.24 35.0 5.16 45.0

QLoRA 2.25 N.A. N.A. N.A. N.A.
LoftQ 2.25 6.13 26.5 5.45 38.1

QLoRA 2 N.A N.A. N.A. N.A.
LoftQ 2 7.85 20.9 7.69 25.4

4 Conclusion136

We propose LoftQ, a quantization framework for LLMs, which alternatively applies quantization137

and low-rank approximation to the original high-precision pre-trained weights, to obtain an ini-138

tialization for the subsequent LoRA fine-tuning. Experiments on natural language understanding,139

question answering, summarization, and natural language generation show that our framework remark-140

ably surpasses existing methods, e.g., QLoRA, for quantizing encoder-only, encoder-decoder, and141

decoder-only models. We have not observed our method exhibiting worse performance over QLoRA.142

Moreover, our quantization framework demonstrates effectiveness and robustness particularly in143

low-bit quantization regimes, e.g., the 2-bit level.144
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A Model Compression Ratio246

Table 4: Compression ratios of backbones.
Model Compression ratio (%) Trainable ratio (%) Rank Bits Quantization method

DeBERTaV3-base 15.6 3.1 16 2 uniform
DeBERTaV3-base 18.8 6.3 32 2 uniform
DeBERTaV3-base 17.2 3.1 16 2 nf2
DeBERTaV3-base 20.4 6.3 32 2 nf2

BART-large 15.3 1.2 8 2 nf2
BART-large 16.7 2.5 16 2 nf2
BART-large 27.8 1.2 8 4 nf4
BART-large 29.0 2.5 16 4 nf4
BART-large 26.2 1.2 8 4 uniform
BART-large 27.5 2.5 16 4 uniform

LLAMA-2-7b 16.6 2.4 64 2 nf2
LLAMA-2-7b 29.0 2.4 64 4 nf4

LLAMA-2-13b 16.0 1.9 64 2 nf2
LLAMA-2-13b 28.5 1.9 64 4 nf4

B Baseline Methods247

• Full fine-tuning is the most common approach for adapting a pre-trained model to down-248

stream tasks. The model is initialized with pre-trained weights and all parameters are249

updated through an SGD-type optimization method.250

• Full precision LoRA (LoRA) is a lightweight method for task adaptation, where it stores the251

backbone using 16-bit numbers and optimizes the low-rank adaptors only. The adaptors are252

applied to the same matrices as in LoftQ.253

• QLoRA is similar to LoRA except the backbone is quantized into low-bit regime. The254

low-rank adapters are zero initialized using and are applied to the same matrices as in LoftQ.255

C GLUE Dataset Statistics256

We present the dataset statistics of GLUE Wang et al. (2019) in the following table.

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 5: Summary of the GLUE benchmark.
257

GLUE includes two single-sentence classification tasks: SST-2 (Socher et al., 2013) and CoLA258

(Warstadt et al., 2019), and three similarity and paraphrase tasks: MRPC (Dolan & Brockett, 2005),259

STS-B (Cer et al., 2017), and QQP. GLUE also includes four natural language inference tasks in260

GLUE: MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), RTE (Dagan et al., 2007;261

Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), and WNLI (Levesque et al.,262

2012).263

D Decompose Time264

We report the execution time of LoftQ applying to a single weight matrix. The time is tested on265

Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.266
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Table 6: Execution time of LoftQ applying to different weight matrices.

Model Size Step T Quantization method Time

DeBERTaV3-base 768*768 5 Uniform 1s
BART-large 1024*1024 5 NF4 1s

LLAMA-2-7b 4096*4096 5 NF4 21s
LLAMA-2-13b 5120*5120 5 NF4 43s

E Natural Language Understanding267

E.1 GLUE with 4-bit268

We show the 4-bits results in the Table 7. Both methods can achieve performance close to full-269

finetuning.

Table 7: Results with 4-bit LoftQ of DeBERTaV3-base models on GLUE development set using NF4
quantization. We report the median over four seeds. Results with N.A. indicate the model does not
converge. The best results on each dataset are shown in bold

Method Rank MNLI SST-2 QNLI ANLI
m / mm Acc Acc Acc

Full FT - 90.5/90.6 95.3 94.0 59.8

QLoRA 32 89.9/89.9 95.3 94.2 59.4

LoftQ 32 89.9/90.0 95.3 94.1 59.9

270

E.2 GLUE with uniform 2-bit quantization271

Table 8: Results with 2-bit LoftQ of DeBERTaV3-base models on GLUE development set,
SQuADv1.1 development set using Uniform quantization . We report the median over four seeds.
N.A. indicates the model does not converge. The best results on each task are shown in bold.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB SQuAD
m / mm Acc Acc Acc Acc Acc Mcc P/S Corr Em/F1

- Full FT 90.5/90.6 94.0 82.0 95.3 89.5/93.3 69.2 92.4/89.8 91.6/91.1 88.5/92.8

16 LoRA 90.4/90.5 94.6 85.1 95.1 89.9/93.6 69.9 92.0/89.4 91.7/91.1 87.3/93.1

16 QLoRA 76.5/76.3 83.8 56.7 86.6 75.7/84.7 N.A. 87.1/82.6 83.5/83.4 69.5/77.6
LoftQ 87.3/87.1 90.6 61.1 94.0 87.0/90.6 59.1 90.9/88.0 87.9/87.6 84.4/91.2

32 QLoRA 79.9/79.5 83.7 57.8 86.9 76.5/84.5 N.A. 88.6/84.7 84.1/84.0 71.6/80.2
LoftQ 88.0/88.1 92.2 63.2 94.7 87.5/91.2 60.5 91.3/88.3 89.5/89.2 85.2/91.6

E.3 Training Details272

Implementation Details. The implementation of LoftQ is based on publicly available Huggingface273

(Paszke et al., 2019) code-base 2.274

Hyper-parameter Details. We select the learning rate of {1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4},275

and use the selected learning rate for both uniform quantization experiments and nf2 quantization276

experiments. We use batch size of 32 for all GLUE tasks and ANLI. We use batch size of 16 for277

SQuADv1.1. We use LoftQ of 5 iterations for all GLUE tasks.278

Table 9 summarizes the detailed hyperparameters for each task used in training DeBERTaV3-base279

using uniform quantization. Table 10 summarizes the detailed hyperparameters for each task used in280

training DeBERTaV3-base using nf2 quantization.281

2https://github.com/huggingface/transformers/tree/main/examples/pytorch
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Table 9: Hyper-parameter setup of LoftQ for GLUE benchmark for training DeBERTaV3-base using
uniform quantization.

Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B SQuADv1.1 ANLI

# epochs 5 20 10 60 10 10 60 60 10 12
Learning rate 1× 10−4 5× 10−4 5× 10−5 1× 10−4 5× 10−5 5× 10−5 5× 10−5 5× 10−5 5× 10−5 5× 10−5

Table 10: Hyper-parameter setup of LoftQ for GLUE benchmark for training DeBERTaV3-base
using nf2 quantization.

Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B SQuADv1.1 ANLI

# epochs 5 20 10 60 10 10 60 60 10 12
Learning rate 1× 10−4 5× 10−5 5× 10−5 1× 10−4 5× 10−5 5× 10−5 5× 10−5 1× 10−4 5× 10−5 5× 10−5

F Summarization282

F.1 Training Details283

We set the batch size as 32, the number of training epoch as 10. We choose Adam as the optimizer284

and try learning rate from{1× 10−5, 5× 10−5, 7× 10−5, 2× 10−4, , 3× 10−4, 4× 10−4}. We show285

the optimal learning rate for different settings in Table We use LoftQ of 1 iteration for all BART-large286

experiments. Table 11 and Table 12 summarize the learning rate for CNN/DailyMail and XSum287

Table 11: Hyper-parameter setup of LoftQ BART-large on CNN/DailyMail

Hyperparameter NF4 4-bit Uniform NF2

rank8 rank16 rank8 rank16 rank8 rank16

Learning rate 2e-4 2e-4 2e-4 3e-4 2e-4 2e-4

Table 12: Hyper-parameter setup of LoftQ BART-large on XSum

Hyperparamete NF4 4-bit Uniform NF2

rank8 rank16 rank8 rank16 rank8 rank16

Learning rate 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4

F.2 BART-large experiments with NF4 quantization288

Table 13: Results with 4-bit LoftQ of BART-large on XSum and CNN/DailyMail. We report ROUGE-
1/2/L, the higher the better. Lead-3 means choosing the first 3 sentences as the summary. N.A.
indicates the model does not converge. Full FT refers to the full fine-tuning where all parameters are
tuned. We report the median over five seeds.

Quantization Rank Method XSum CNN/DailyMail

-
- Lead-3 16.30/1.60/11.95 40.42/17.62/36.67

Full FT 45.14/22.27/37.25 44.16/21.28/40.90

8 LoRA 43.40/20.20/35.20 44.72/21.58/41.84
16 LoRA 43.95/20.72/35.68 45.03/21.84/42.15

NF4
8 QLoRA 42.91/19.72/34.82 43.10/20.22/40.06

LoftQ 44.08/20.72/35.89 43.81/20.95/40.84

16 QLoRA 43.29/20.05/35.15 43.42/20.62/40.44
LoftQ 44.51/21.14/36.18 43.96/21.06/40.96

G Natural Language Generation289

We set the batch size as 32 for WikiText-2 and 16 for GSM8K. We train 2 epochs on WikiText-2 and290

6 epochs on GSM8K. We select learning rate from{1× 10−5, 5× 10−5, 7× 10−5, 1× 10−4, , 3×291
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10−4, 4 × 10−4}. We use five iterations for all experiments. Specific settings are summarized as292

below

Table 14: Hyper-parameter setup of LoftQ LLAMA-2-series on GSM8K

Model Hyperparameter 4-bit NF4 2-bit NF2 Mixed-precision

LLAMA-2-7b learning rate 1e-4 1e-4 3e-4

LLAMA-2-13b learning rate 1e-4 1e-4 3e-4

293

Table 15: Hyper-parameter setup of LoftQ LLAMA-2-series on WikiText-2

Model Hyperparameter 4-bit NF4 2-bit NF2 Mixed-precision

LLAMA-2-7b learning rate 1e-4 1e-4 3e-4

LLAMA-2-13b learning rate 1e-4 1e-4 3e-4

H Comparison to Pruning294

Pruning is also a widely used compression method. Here we compare LoftQ with the state-of-the-art295

pruning method Li et al. (2023). We show the comparison in Table 16. We can see our method296

significantly outperforms the pruning methods on DeBERTaV3-base model. We also remark that297

LoftQ can consistently reduce the memory of both training and storage. In contrast, pruning requires298

training the entire full-precision matrix, which implies that it can not achieve any memory savings299

during the training stage.

Table 16: Results of LoftQ using 2-bits uniform quantization compared with LoSparse with
DeBERTaV3-base models on some of GLUE development sets. Here Ratio is the proportion of total
remaining weights. Results with N.A. indicate the model does not converge.

Method Ratio MNLI SST-2 QNLI
m / mm Acc Acc

Full FT 100% 90.5 / 90.6 95.3 94.0

LoSparse 15% 83.3/82.9 87.6 90.4
20% 84.5/83.8 91.7 88.6

LoftQ 15.6% 87.3/87.1 94.0 90.6
18.8% 88.0/88.1 94.7 92.4

300
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