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Abstract

Currently, over a thousand LLMs exist that are multi-purpose and are capable of
performing real world tasks, including Q&A, text summarization, content genera-
tion, etc. However, accessibility, scale and reliability of free models prevents them
from being widely deployed in everyday use cases. To address the first two issues
of access and scale, organisations such as HuggingFace have created model reposi-
tories where users have uploaded model weights and quantized versions of models
trained using different paradigms, as well as model cards describing their training
process. While some models report performance on commonly used benchmarks,
not all do, and interpreting the real world impact of trading off performance on a
benchmark for model deployment cost, is unclear. Here, we show that a herd of
open source models can match or exceed the performance of proprietary models via
an intelligent router. We show that a Herd of open source models is able to match
the accuracy of ChatGPT, despite being composed of models that are effectively
2.5x smaller. We show that in cases where GPT is not able to answer the query,
Herd is able to identify a model that can, at least 40% of the time.

1 Introduction

Large language models have found novel ways to increase the number of use cases, such as by
expanding the number of parameters, combining existing models to augment a single models’
functionality and quanitizing large models to fit on smaller devices [4, 12, 9, 18, 2, 8, 13, 3–5].
The rapid expansion of model availability has created a significant challenge in practice, where
corporations want to expose performant LLM endpoints for their users, and have to spend time
evaluating models to find the best one that works for them in practice. To overcome this problem,
engineers often resort to proprietary models without knowing if there are open-source models
available at a comparable performance standard.

This often leads to the problem elaborated in Figure 1, showing examples of questions taken from
MMLU that ChatGPT (GPT 3.5 Turbo) answers incorrectly, but there is some open source model
that can answer the question correctly. We use this insight to try and construct a herd of models such
that at least one model in the herd can answer any incoming query correctly.
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Figure 1: In practice, not all models are able to answer all questions accurately (the ones that do
answer the questions correctly have their answers boxed in green), which leads to the practical
challenge in picking an ensemble of models that has at least one highly performant model for every
question. Herd attempts to solve this problem by constructing a herd of large language mdoels that
collectively can answer the query accurately, and by learning the association between input text and
performance of each LLM.

Recent model evaluation frameworks [6, 19] help users compare LLMs against each other, but the
growing pace of model formats, outpaces one-size-fits-all comparison software suites. Empirical
evidence in this work, reveals that open source models have caught up with leading proprietary
models, but not all open source models feature on leaderboards, due to their vast number.

Deployment of models also remains a key challenge. The 70b parameter Llama-2, in 16-bit precision,
requires 2 80Gb A100 GPUs, and in practice, users might want several models running in parallel.
Sacrificing parameter count to cut costs risks performance degradation, the exact magnitude of which
is unknown before deployment.

While quantized models might alleviate some of the challenges associated with model deployment,
finding performant quantized models, navigating their formats and knowing their training details,
such as what datasets were used in their quantisation calibration, requires expertise.

In addition to quantized variants of models, specific model variants exist with chat capabilities, with
different performance metrics from non-chat models. Others with more specific domain expertises
such as science or code [17, 1], might be useful for some user applications but aren’t fine-tuned for
chat capability, making it harder to pick one model to use in production.

Today the Huggingface (HF) model repository contains ∼24,000 machine learning models for text
generation. While model cards might provide some insight into the dataset that a model is trained
on, common practices such as fine-tuning models using inputs from other large language models or
model merging [10, 16, 14, 11] has made it difficult to track what data was used to train the model.
This has also made it challenging to track what datasets or tasks one can expect the models to be
performant on. Futher, not all open source models have detailed model cards, making trusting them
in deployment even more challenging.

Together, it would be a useful service to expose an endpoint that would process an incoming users’
request by abstracting away model selection. Here, we explore the advantage of exposing a model
herd of open source models, which outperforms a larger, proprietary large language model, offering
size advantages. We also train a Tryage router [7] to predict model performance, and show that the
model herd is able to answer 74% of incoming queries with performance comparable to or better
than ChatGPT.

2



Figure 2: Open source model Herds outperform proprietary models such as ChatGPT on MMLU
with decreased model size.

Herd Architecture

Define a model Herd M , which is a collection of models. In an oracle model system, incoming query
z is assigned to argmax

j
Mj(z). However, in practice, evaluating Mj(z) for all j, is expensive. To

this end, we choose the model argmax
j

M̂j(z), where M̂j is learned by a router R [7]. We implement

the router model as a language model. In practice, the router optimizes its weight set W over the
following loss function.

min
W

Ez∼p(z)

(
1

|M |
∑
Mi

D
(
R(z,Mi;W )||L(z,Mi)

))
(1)

where D(·||·) is divergence between predicted loss R(z,Mi;W ) and ground truth loss L(z,Mi) (here
the L1 distance function was used between predicted and ground truth F1s measured character-wise)
for prompts z drawn from data distribution p(z) from the MMLU dataset.

In this work, we found that bert-medium [15] was the best performing router when a variety of router
models were trained on 12,000 examples and validated on 3001 examples from MMLU, with a fixed
batch size of 16, using the Adam optimizer with a learning rate of 2e− 5.

In this work, we composed the herd by replicating realistic user constraints of models that would fit
on an 8x48Gb cluster, using a mixture of 7B, 15B, 30B and 70B order models. We used a mix of
quanitized and non-quantized models, since their performances’ were previously unknown.

Demonstrating Herd

We find that a herd of open source models is able to beat ChatGPT (Figure 2) despite being effectively
less than 30% of the size (effective size measured as the average size of models weighted by the
number of examples allocated to them. Further, none of the models in the herd were individually
better than ChatGPT, but together, they were able to surpass ChatGPT’s performance. Further, all the
models are open source, and the herd can be seamlessly expanded, contracted or interchanged for
other models.

We trained a tryage router [7] to model the performances of a herd and found that the router was able
to successfully allocate incoming queries to models that produced aggregate performance comparable
to GPT 3.5 Turbo despite being effectively 2.5x smaller 3a 1. Further, some models in the herd are
quantized, meaning they can be run on edge compute / cloud compute - a user can trade off the size
of a herd for compute cost.

1exact number of parameters in ChatGPT (GPT 3.5 Turbo) unknown, based on reported information
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Figure 3: a) A router trained to model the performance of a herd offers comparable performance to
GPT 3.5 Turbo (mean performances shown as horizontal lines). b) GPT exceeds the performance of
the Herd in only 26% of incoming queries, implying 74% of incoming queries can be answered by
open source models in the Herd. c) In questions that ChatGPT gets wrong the Herd can find models
that perform correctly (Average of 0.9 F1). A routing model, achieves an aggregate of 0.76 F1 on
these questions.

We show that Herd can capture knowledge in cases where ChatGPT fails to answer an incoming
query. While any single model might not be able to answer all the incoming queries, Herd is able to
find a model that can answer each query, based on the input text of the prompt. ChatGPT is only able
to beat a herd of open source models 26% of the time, implying 74% of the queries can be answered
by open source models (Fig. 3b, ‘beat’ is defined as F1 in excess of 5%).

In the cases where ChatGPT was wrong, defined as when ChatGPT had an F1 score of less than
0.9, Herd was able to achieve a correct answer (defined as when any model in the Herd had an F1
score greater than 0.95), 69.3% of the time. A predictive router, was able to identify a model that
can answer the query correctly, 40% of the time (Tryage bar in Fig. 3c). The mean of the F1s of
the answers from each model, as well as the aggregate F1s from Herd and the predictive router, are
shown in Figure 3c.

Conclusion and discussion

In this work we present the result that a Herd of open-sourced models can achieve performance
comparable or better than ChatGPT, at a fraction of the compute cost and zero query cost. Further,
when proprietary models cannot answer a query, a herd of open source models, are able to cover a
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significant portion of the deficit. This system offers a new model paradigm to compete against closed
source models, by leveraging widely available open source technology.
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