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Abstract

Pre-trained models are growing increasingly large which can be problematic for
applications with strong inference constraints. Fortunately, task-aware structured
pruning offers a solution. While existing pruning algorithms can be efficient, the
common practical setting where task-specific data is limited is yet to be addressed.
To address the data scarcity problem, we propose a structured pruning strategy that
leverages transfer learning. Detailed analyses of simple transfer learning based
remedies lead us to a simple, flexible formulation of what, how and when to transfer,
resulting in pruned models with improved generalization over strong baselines.

1 Introduction

Large pre-trained language models have been successfully applied to a wide variety of application
scenarios. However, not all applications can justify the cost of running such large models.
E.g. an interactive, offline spellchecker for a phone has strong memory limits compared to
a server-side chat model [5]. Even server-side, the benefit/cost of large models depends on
the application. This situation motivates research into structured model pruning algorithms.

0% 40% 70% 90% 95% 98%
Sparsity Level

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
la

tiv
e 

Ac
cu

ra
cy

 D
ro

p 
Fr

om
 1

00
%

 D
at

a

Performance Drop on MRPC (3.7k Examples) With Varying Data
100.0% of data
50.0% of data
10.0% of data
5.0% of data

Figure 1: Accuracy degradation of CoFi [20] vs training
data sizes. Sparsity level refers to the fraction of
preserved weights (excluding embeddings). Accuracy at
50% data is stable across sparsity levels (except for 98%
sparsity) while more data-limited regimes (10%–5%)
exhibit stronger sensitivity to the sparsity level.

Structured pruning algorithms generate
smaller, faster and yet reasonably accurate
sub-models from large pre-trained ones by
removing components (beyond individual
parameters) like convolutional channels,
attention heads and whole layers. Several
works over the years [19, 15, 20] have
been proposed to perform task-specific
structured pruning. Unfortunately, to
the best of our knowledge, all existing
algorithms have been developed without
consideration for the amount of training
data available for the target task. Thus, as
Figure 1 shows that, even state-of-the-art
methods like CoFi [20], do not gracefully
handle scenarios with limited training data.
We argue that the data-limited structured
pruning setting is important since limited
compute for inference and data scarcity for
training co-occurs often in practice [1].

A popular remedy to the limited data problem at fixed model size, is to leverage transfer learning
[3, 7, 4] by introducing external data or extra tasks. In this work, we investigate transfer learning
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based remedies for structured pruning under limited data. Structured pruning algorithms need to
jointly learn both model weights and structural variables (which layers, attention heads, etc. to prune)
for the final reduced-size model [19, 20]. This added complexity makes deploying transfer learning
in the structured pruning setting non-trivial and raises several questions. Do we only perform transfer
learning for model weights or do we include structural variables too? How do we learn structural
variables for the target task in a way that benefits from the presence of a transfer task? When is it best
to introduce transfer learning so as to produce the most accurate pruned target model?

This work aims to provide answers to these questions. We contribute (i) a flexible weight sharing δ
formulation for effective transfer of both structural variables and model parameters and (ii) empirical
analyses to provide prescriptions to researchers about what, how and when to transfer during structured
pruning. Our effort results in significant improvements in generalization performance even at
compression ratios as high as 50×.

2 Methodology

Structured pruning algorithms remove components from pre-trained models such as attention heads
[14, 17], whole layers [8] or intermediate dimensions of fully connected layers [19] in order to
produce faster, memory efficient sub-models without overly sacrificing downstream accuracy. This is
unlike unstructured pruning [9, 2] that do not exhibit run-time speedups. In this work, we assume
that we have a structured pruning algorithm that jointly learns structural variables {zktarget} and
their corresponding parameters {θktarget} for the target task. We are primarily concerned with how
to incorporate a transfer task by learning

[
{zktransfer}, {θktransfer}

]
such that we enjoy improved

generalization on the target task’s final model. We focus on building on top of a state-of-the-art
structured pruning algorithm, CoFi [20]. Whilst we describe CoFi below, for the rest of the paper,
we will abstract away the details of the pruning algorithm and focus on the specifics of our transfer
learning approach.

2.1 CoFi

CoFi (Coarse- and Fine-grained Pruning) is a mixed resolution structured pruning algorithm.
Previous algorithms to prune transformer models [16] have focused on pruning high level units like
whole layers [8] or intermediate ones like attention heads [17] or dimensions of fully connected
layers [19]. CoFi introduces variables that account for pruning at multiple levels of granularity.
Coarse Grain: CoFi introduces variables sets {ziMHA}i∈[N ] and {ziFFN}i∈[N ] for each of the model
N layers. ziMHA represents the probability that the whole attention component of the ith layer is
removed whilst ziFFN is similarly defined for the fully connected component of the specified layer.
Fine Grain: Given a particular layer i, CoFi prunes subsets of the attention heads available. The
variables {zij,head}[j∈nh] represent the jth attention head in the i layer which has nh total attention
heads. A similar set of variables is defined for the fully connected units within a layer : {zij,FC}[j∈nf ]

where the ith fully connected layer has nf units.

For the jth attention head of the ith layer, the likelihood that this head is left unpruned is proportional
to ziMHA · zij,head. This allows the algorithm to make coupled fine and coarse grained decisions that
lead to improved results. We collectively represent {z} as the set of all structural variables that
are learned by CoFi. {z} are learned by applying the reparameterisation trick on the hard concrete
distribution [12] and minimizing a joint loss wrt {z, θ} that includes distance from target size, target
task loss and a distillation objective on the original large model.

2.2 Transfer Learning

When targeting a task T with limited training data, we want to improve CoFi by leveraging additional
training data from an auxiliary task A. At sparsity level γ, we expect the generalization performance
when we learn {z} using only data from T to be less than when we learn them using data from A and
T jointly in some appropriate form. We explore several options for incorporating the auxiliary task:
Single mask multi-task learns a single set of structural {z} and model {θ} parameters that are
shared between both tasks. This choice tightly couples the two tasks. Whilst this allows maximal
sharing of information between the target and transfer task, poor choices of transfer tasks could cause
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this to perform worse than no transfer at all.
Multi-mask multi-task learns distinct structural parameters {z}T and {z}A for each task but a
single set of model parameters {θ} is shared between both tasks. There is no transfer of structural
information and only the shared model parameters provide a coupling of the two tasks.
Our δ-Formulation aims to leverage strength from both alternatives. In this method, both tasks
share a base set of structural variables {z}base but also have task specific addends such that:
{z}T = {zbase + δT} and {z}A = {zbase + δA}. We regularize δ∗ to encourage sharing between
tasks via zbase whilst maintaining flexibility for task-specific modelling.

3 Experimental Setup

Datasets We consider 2 pairs of tasks. One pair of classification tasks from the computer science
domain tasks – SCIIE [13] and ACL-ARC [11] with 3.2k and 3.7k training samples respectively. The
other pair is from GLUE [18]: STSB and MRPC are sentence similarity and paraphrase detection
tasks with 7k and 3.7k train examples respectively. For the GLUE tasks, we follow previous work
[10, 19, 20] and report results on the validation set. Appendix B.1 provides additional information
about the datasets.
Model Details To compare with CoFi [20], we use the same model configuration. We use the
BERTbase [6] which has ∼ 110M parameters. We explore pruned model sparsities in the set
{40%, 70%, 90%, 95%, 98%}. γ% sparsity means that the model has been reduced to (100− γ)%×
110M parameters. Similar to [15] we also freeze the model embedding weights. See Appendix B for
details about training as well as hyper-parameter values.

4 Results And Discussion

4.1 How should you transfer?
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Figure 2: SCIIE and ACL_ARC performance at 95% sparsity.

In Section 2.2, we introduced
various approaches for leveraging
transfer learning for structured
pruning. Figure 2, shows
experimental results after
implementing various options.
For the SCIIE task, using
ACL_ARC as an auxiliary
task can negatively impact
performance (single mask multi-
task) compared to no transfer at all. Our δ-Formulation ensures that SCIIE actually benefits
introducing transfer learning. For the ACL_ARC task, our formulation recovers close to the best
performance (single mask multi-task). Note that in principle, our formulation can mimic the Single-
mask multitask setting by using a high enough regularization on the δ offsets but we used a default
l2-regularization strength of 1e−2. From Figure 3, we see that using the Multi mask multi-task strategy
with the MRPC task (STSB as transfer task) does not maximally exploit task relatedness for improved
generalization. However, our δ-formulation gives improved results for both STSB and MRPC.

4.2 What should you transfer?

We perform an ablation at 95% sparsity to determine what is most important to transfer:
Weights Only: We learn model weights and structural mask for the transfer task only. We then
generate a random structural mask at the appropriate sparsity level (95%) and extract the model
weights corresponding to this mask from the model trained on the transfer task. We then fine-tune
this smaller, pruned model on the target task.
Masks Only: We learn model weights and structural mask for the transfer task only. We then reset
the model weights to the pre-trained (not-yet-finetuned) state. Given the learned mask from the
transfer task, and the untuned model weights, we then fine-tune this pruned model on the target task.
Masks and Weights: We use the transfer task to learn both the model weights and structural
mask. We take weights and masks of this small model and fine-tune it on the target task.
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Table 1: It is most beneficial to transfer both the learned weights and structural variables (masks)
Metric No Transfer Weights Only Structure Only Both

STSB → MRPC Accuracy % 79.2 68.4 (↓) 76.96 (↓) 79.7 (↑)
MRPC → STSB Pearson C. 0.868 0.23 (↓) 0.8527 (↓) 0.871 (↑)
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Figure 3: STSB and MRPC performance 95% sparsity.

Note that we do hyper-parameter
search for these experiments in
the space given by Table 4 and
we report the best results for each
approach in Table 1. In all these
experiments, we do not see the
target task until we start fine-tuning
the pruned model.

4.3 When should you transfer?

We ablate at 95% sparsity to
determine what to introduce the
transfer task (T) :
Prune(T ) → FT(P ): We do structural pruning to learn both the weights and structure for a small
model using the transfer task, T. We then fine-tune (FT) the pruned model on the primary task (P) only.
Prune(P ) → FT(P, T ): We learn both the weights and structure for a small model using the primary
task, P. We then fine-tune the pruned model on both (T) and (P).
Prune(P, T ) → FT(P ): We learn both the weights and structure for a small model using both the
transfer and primary task. We use our δ-formulation for this joint learning stage. We then fine-tune
(FT) the pruned model on the primary task (P) only.

Table 2: We find that it is optimal to introduce the primary task early.
Metric No Transfer Prune(T ) Prune(P ) Prune(P, T )

→ FT (P) → FT (T, P) → FT (P)

STSB → MRPC Accuracy % 79.2 79.7 (↑) 83.09 (↑) 83.82 (↑)
MRPC → STSB Pearson C. 0.868 0.871 (↑) 0.861 (↓) 0.8751 (↑)

4.4 Does the learned structured sparsity translate to hardware speedups?
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Figure 4: Leveraging a transfer task via our δ-
formulation, gives accuracy boosts on SCIIE at varying
levels of compression.

Taking SCIIE as our primary task and
ACL-ARC as the transfer task, we explore
the accuracy-speedup tradeoff that is
induced by leveraging transfer learning for
structured pruning. We vary the degree of
compression from 40% sparsity to 98%.
Figure 4 summarises our findings. For
SCIIE+ACL, we fix the task weighting
to the best performing configuration
from our 95% sparsity experiments, the
rest of the hyper-parameters are cross-
validated from values in Table 4. At 50×
compression (95%) sparsity, we are able
to obtain a ∼ 5% boost in accuracy over
not using a transfer task, whilst achieving
a ∼ 10× speedup in inference.

5 Conclusion

We presented the challenge of structured pruning under limited data. Our work provides various
prescriptions to practitioners for effectively leveraging transfer learning as a remedy. For future work,
it would be interesting to investigate robust ways of choosing the transfer task.
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A CoFi Degradation with Data Scarcity
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Figure 5: Performance degradation of CoFi [20], a SOTA structured pruning algorithm, with varying
data sizes.

B Experimental Details

B.1 Dataset Information

Table 3: Specifications of datasets used to evaluate our methods.
Domain Task Task-Type Train Size Metric

CS SCIIE [13] Classification 3219 Accuracy
ACL-ARC [11] Classification 1688 Accuracy

GLUE STSB [18] Sentence Similarity 7K Pearson’s Correlation
MRPC [18] Paraphrase Detection 3.7K Accuracy

B.2 Training Parameters

We follow as closely as possible the hyper-parameters that are used in the original CoFi code base.
For CoFi specific hyper-parameter settings please see AppendixC During pruning, we perform 10K
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gradient descent steps to learn both the structural and parameter variables of the model. We perform
20 epochs of post-pruning finetuning on the target task.

Table 4: Hyper-parameter choices
Hyper-parameter Values Description

Task pair weightings (1, 1), (1, 2), (2, 1) Weightings applied to transfer task vs target task during training.
Model LR - Pruning 1e-4, 2e-5 Learning rate used for model parameters during pruning.
Model LR - Finetuning 1e-4, 2e-5 Learning rate used for finetuning pruned model.
Structure LR 0.1, 0.01 Learning rate used for learning structural parameters.
δ-l2 Reg Weight 1e-2 Regularization weight used in δ-formulation.

C CoFi-specific Details

We turn off output prediction distillation for all experiments. ie – we do not distill the predictions
from the pre-trained models since unlike in the original CoFi paper, we are not starting from a model
that has already been fine-tuned on the target task but rather we are starting from the pre-trained
model itself.

D What impacts the quality of transfer ?

Table 5 contains experimental results highlighting our investigation of different variables that can
impact the quality of a transfer task.

Target Full BERT No Transfer Domain Resourced-ness Transfer Task Performance

In-Domain High (364k) QQP 85.78
MRPC 83.48 79.2 In-Domain Low (7k) STSB 83.82

Out-of-Domain High (180k) RCT 85.29

In-Domain High (364k) QQP 0.877
STSB 0.901 0.868 In-Domain Low (3.7k) MRPC 0.875

Out-of-Domain High (180k) RCT 0.873
Table 5: Using a high-resource, in-domain transfer task leads to best transfer performance. For all
experiments, best results from hyper-parameter search are reported. All models (apart from Full
BERT) are pruned to 98% sparsity.

E What are the structural differences between a pruned model using transfer
learning and without ?
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Figure 6: Structural visualization at 98% sparsity. Qualitatively, using a transfer task changes the
pruned model structure significantly. The ACL transfer task in this case induces the learned SCIIE
structure to be more diffuse across the layers of the model.
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Figure 7: Structural visualization at 98% sparsity. Qualitatively, using a transfer task changes the
pruned model structure significantly. The ACL transfer task in this case induces the learned SCIIE
structure to be more diffuse across the layers of the model.
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