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Abstract

In the current user-server interaction paradigm of prompted generation with large
language models (LLMs) on cloud, the server fully controls the generation process,
which leaves zero options for users who want to keep the generated text to them-
selves. We propose LatticeGen, a cooperative framework in which the server still
handles most of the computation while the user controls the sampling operation.
The key idea is that the true generated sequence is mixed with noise tokens by
the user and hidden in a noised lattice. It is shown that while the noised lattice
degrades generation quality, LatticeGen successfully protects the true generation to
a remarkable degree under strong attacks (more than 50% of the semantic remains
hidden as measured by BERTScore).

1 Introduction

Many of the high-performing large language models (LLMs) need to be deployed on cloud servers
[Zhao et al., 2023, Kaplan et al., 2020, OpenAI, 2023]. This raises new privacy challenges [Li et al.,
2021, Yu et al., 2021], since users have to send or receive their data to/from cloud providers.

In this work we focus on a popular interaction paradigm between end users and a server hosting an
LLM on cloud named prompted generation: The user sends server a prompt, which is usually an
instruction [Chung et al., 2022] or a beginning of a document, and the server, who fully controls
the generation process, sends user back the generated text from the LLM. Both the prompt and the

∗ Equal Contribution. Both are corresponding authors.

The Third Efficient Natural Language and Speech Processing Workshop (NeurIPS-ENLSP 2023).



(Permutated) 2-Lattice ෩𝑊𝑡−1
2

Linearized Lattice ෩𝑊𝑡−1
2

Server Step 𝑡

𝑃𝐿(∙ | ෩𝑊𝑡−1
2 challenging ) 𝑃𝐿(∙ | ෩𝑊𝑡−1

2 with )

The

A scientist

girl

works

stood there

on with

challenging

challengingThe A girl scientist stood works there with

User Step 𝑡

problemsanotheron

True Tokens Noise Tokens

LLM Inference

True & Noise Token 

Generation

Reverse-permute

Permute

Figure 1: User-Server interaction under LatticeGen for time-step t.

generation are raw texts which are completely transparent and accessible to the server, leaving zero
options for users who want to keep the generated text to themselves. 2

We argue that in prompted generation, there are many scenarios in which user prompts as well as
the generated contents need obfuscation, because they can directly affect the user’s decisions (as
we discuss in §A). With the goal of preventing the server from gaining complete knowledge of the
generated text and prompt, we propose LatticeGen (Figure 1), a user–server interaction framework in
which the user and server conduct prompted generation token-by-token in a cooperative way. The
key idea is that on each time-step, the user sends the sever not one, but N tokens (thus the name
lattice), in which one is true and others act as noise. See §G for discussion on related work.

2 LatticeGen

To save space, we focus on key protocol-related notations in this section, while the preliminaries
(including the definition of lattice denoted by W ) and motivations are deferred to §A.

LM Finetuning and Inference with the Linearized Lattice Format As a prerequisite for Lattice-
Gen, we need the transformer LM [Vaswani et al., 2017] to be able to do inference based on a given
lattice and we achieve that by finetuning the base LLM PM to make next-token prediction with the
linearized lattice format. As the name suggests, we conduct a simple linearization operation before
feeding it to the LM, in which the token options on each time-step are linearized and concatenated
into a sequence of length T ×N (see Figure 1 for an example):

linearize(W̃N
T ) = [<bos>] + concatTt=1([w̃

1
t , ..., w̃

N
t ]). (1)

In §B we describe in detail how the LLM can be finetuned to accept a linearized lattice as input, and
we denote the lattice-finetuned LLM as PL, which is trained to give the next-token prediction for
every token in the linearized lattice.

To simplify notation, when the lattice appears as part of the history in an LLM inference, we assume it
is linearized. The terminology position is used to refer to the index of a token in the linearized lattice.
We use the notation PL(·|W̃N

T [w̃i
t]) with T ≥ t to refer to the next-token prediction distribution on

the position of token w̃i
t ∈ W̃N

T outputted by PL. An illustration of this notation is given in Figure 1.

2.1 Protocol

To prevent the server from gaining full knowledge of the generation and prompt, LatticeGen makes
several core changes to the user–server interaction. Instead of letting the server handle the whole
generation process alone, the user and server will conduct the generation token-by-token in a
cooperative way on each time-step. In particular, the user will hide the true generation in a width-N
lattice, where N ≥ 2 is a hyperparameter controlling the number of noise tokens.

On a high level, the server who possesses the lattice-finetuned LLM PL (the training is detailed in §B)
still handles most of the computation, while the user controls the key sampling operation and expands
the lattice to the next time-step. The server needs to share the vocabulary V with the user, but all
other parameters or configurations of the LLM are not shared. We describe the protocols below.

2See §H for a more involved discussion about the current industry state.
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For simplicity, we first ignore the prompt part and assume the generation starts at the first token. In
the beginning t = 0, the server begins with an empty local lattice, and the user sends a w0 = <bos>
token to the server. We divide the user–server interaction at each time-step t ≥ 1 into a server step
and a user step, illustrated by Figure 1 (also see Algorithm 1 in §C).

Server Step From the last time-step, the server receives N permutated tokens {w̃1
t−1, ..., w̃

N
t−1}

(only the first time-step is special where only <bos> is received) and expands its local lattice to
W̃N

t−1. The permutation is done by the user from the last time-step, and the server does not know
which received token is the true token. The server then computes the respective next-token prediction
distribution for all N tokens with the LLM. More concretely, the lattice W̃N

t−1 is linearized and fed to
PL, which outputs {PL(·|W̃N

t−1[w̃
i
t−1])}Ni=1.

With a properly finetuned LLM, this can be done efficiently with one pass of model inference.
We defer the details of finetuning and inference (both conducted by the server) to §B. The server
represents the distributions as N length-|V | vectors, and sends them back to the user.

User Step Upon receiving the list of distribution vectors from the server, the user applies the reverse
permutation mapping (saved from the last time-step) and obtains {PL(·|W̃N

t−1[w
i
t−1])}Ni=1. Knowing

that w1
t−1 is the true token, and the user samples w1

t from PL(·|W̃N
t−1[w

1
t−1]). The user also generates

N − 1 “noise” tokens {w2
t , ..., w

N
t } with a certain noise scheme.

How to generate noise tokens is a key part of making our framework robust to potential attacks from
the server side. For now, we assume a simple synonym noise scheme in which we use synonyms of
the true token. Concretely, w2

t is randomly sampled from S tokens which the closest embedding with
w1

t measured by cosine similarity. In our experiments we set S = 5. In practice this simple noise
scheme will be vulnerable to attacks from a malicious server. See §3 for discussions on attacks and
more advanced noise schemes for defense.

With a private random seed, the user permutates the token list and sends it to the server. 3 We denote
the permutated list by [w̃1

t , ..., w̃
N
t ]. The reverse mapping of the permutation is saved by the user for

the next time-step and is not shared with the server. This concludes the user–server interaction in
time-step t.

Incorporating Prompts (User) The incorporation of prompts is quite straightforward by regarding
it as a prefix of the generation, and the content in the prompt can also be noised and protected by
LatticeGen. See §C.1 for implementation details.

We summarize the LatticeGen protocols as pseudo-code in Algorithm 1 (§C). §C also contains
two important discussions: (1) the comparsion between LatticeGen and standard generation; (2)
how the bigram units can be incorporated for better performance. The discussion on the network
communication cost between user and server is deferred to §C.4.

3 Attack and Defense
We discuss the potential attack algorithms from a hypothetically malicious server to reverse-engineer
the true token sequence {w1

t }Tt=1 hidden in the lattice W̃N
T , and the user’s noise generation schemes

as defense. We define true-ratio, max-true-ratio and utilizes BERTScore as metrics for measuring the
strength of attacks, and we discuss the exact definitions in §D. In §D, we also motivate and describe
the repeated beam-search (RBS) attack, which is the major attack we consider in this work.

3.1 The Mixing Noise Scheme Defense (User)

We propose the mixing noise scheme to defend against the RBS attack, with the intuition that the true
and noise sequences should somehow be mixed.

This scheme can be regarded as a variant of the parallel noise scheme. Again we adopt a radical
hyper-parameter for the sampling of the noise sequences (top-k with k = 5). At time-step t, with
a random ratio determined by a hyper-parameter mix-ratio, the i-th noise token is sampled from
PL(·|W̃N

t−1[w
1
t−1]), which is the next-token distribution for the true sequence. 4 Otherwise we

sample from PL(·|W̃N
t−1[w

i
t−1]), same as in the parallel scheme.

3The seed can be t multiplied by a large prime number only known to the user.
4We will re-sample if the sampled token is the same as the true token.
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Config N = 2 (LG only) N = 3 (LG only)

Metric PPL PMI True-Ratio BERTScore PPL PMI True-Ratio BERTScore
Attack BS RBS BS RBS BS RBS BS RBS

Vanilla (PM ), w.o. noise 28.378 .340 1.0 1.0 1.0 1.0 / / / / / /
Synonym, w.o. lattice 229.616 .058 / / / / / / / / / /

LG, unigram, synonym 33.167 .279 .923 .923 .824 .824 38.267 .279 .886 .886 .756 .756
LG, unigram, parallel 80.071 .160 .121 .878 .129 .821 105.72 .141 .146 .555 .133 .409
LG, unigram, mixing 73.330 .190 .549 .590 .389 .411 109.536 .154 .328 .426 .199 .252

LG, bigram, synonym 42.030 .288 .987 .987 .974 .974 38.005 .291 .975 .975 .953 .953
LG, bigram, parallel 63.124 .197 .138 .861 .164 .808 71.074 .144 .108 .645 .141 .550
LG, bigram, mixing 64.480 .232 .536 .601 .409 .449 72.746 .149 .383 .457 .280 .318

Table 1: Main results when LatticeGen (LG) is applied to both the generation and the prompt. All
metrics are the lower the better except PMI. While the generation quality and alignment are degraded,
LatticeGen with the proposed mixing scheme successfully protects the true generation from RBS
attack to a remarkable degree (measured by max-true-ratio/BERTScore).

We illustrate this at the bottom of Figure 4 in §D. In comparison to the parallel scheme, the goal is to
make the sequence with the highest log-probability be a mix between the true and noise sequences.
And the key is to make the true sequence “branch” out to the noise sequences, which breaks the
continuity of the noise sequences. Although broken, the radical sampling used for the noise sequence
would still attract the repeated beam-search attack, and the true and noise sequences are mixed by the
branching connections. Our experiments show that with a tuned mix-ratio, the mixing noise scheme
achieves the best max-true-ratio under RBS attack.

4 Experiments

In our experiments, we utilizes the WritingPrompts dataset [Fan et al., 2017], and we use perplex-
ity and pointwise mutual information (PMI) as quality metrics of generated text. True-ratio and
BERTScore are used as metrics for effectiveness of defense noise schemes. Details are given in §E.

Table 1 includes the main results when LatticeGen (LG) is applied to both generation prompt. The
standard vanilla model (PM ) enjoys the best generation quality (PPL and PMI), while having zero
obfuscation (100% true-ratio).

LatticeGen sacrifices generation quality (due to noised history) for obfuscation. The empirical
behavior of the three noise schemes aligns with the respective intuition given in §3: The synonym
scheme has relatively better PPL&PMI, but is completely defenseless against the BS attack; The
parallel scheme is most effective under BS with true-ratio lower than 20%, but is vulnerable under
the stronger RBS attack.

The mixing scheme, which is our main recommended scheme, achieves the best protection under the
RBS attack. The max-true-ratio/BERTScore is close to or lower than 50%, implying more than 50%
of the semantic is hidden from the attacker. There, however, is still a gap between the theoretical best
max-true-ratio ( 1

N ). The protection is better with N = 3, but with worse generation quality.

The quality degradation (especially PPL) is alleviated to some degree by using the bigram units.
One could also try trigram or even 4-gram units for further quality improvement. However, the
computational cost would grow exponentially and we leave it to future work due to limited resources.

What if we directly apply noise to generation but without the lattice structure? We add an additional
non-lattice baseline with the same synonym scheme used in LatticeGen: On every time-step, the user
gets next-token distribution from the server and generates a true token, but sends a synonym of it back
to the server. The finetuning is modified accordingly with details given in §F.1. As shown in Table
1, the synonym noise without lattice results in drastically degraded PPL and PMI. In comparison,
LatticeGen provides a trade-off between quality degradation and privacy protection.

We show generation examples with RBS attack outputs in §F. It also contains results on inference
speed, and other analysis. See §I for discussions on limitations and conclusion.
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Supplemental Materials

A Motivations and Preliminaries

Generated Text (also) Needs Obfuscation In the current user–server interaction paradigm, the
user sends the server a prompt which is usually the beginning of a dialogue, story or instruction, then
the server generates a complete response using the process described below, and sends it back to the
user. Both the prompt and generation are directly available to the server in raw text format.

This paper contends that in privacy-aware settings, generated texts, as well as user prompts, require
a privacy protection mechanism. A key reason is that the generation from the LLM can affect the
user’s private decisions: e.g., a customer is likely to go to the restaurant suggested by the LLM; an
engineer could adopt the approach proposed by the LLM; a writer could take inspiration from outputs
provided by the LLM. Also see §H for recent privacy-related incidents with ChatGPT or Bard. The
obfuscation provided by LatticeGen makes it harder for a hypothetically malicious server to infer the
user’s actions after interacting with the LLM.

On the other hand, under stochastic sampling with ample diversity in open-ended tasks [Dai et al.,
2019, Fan et al., 2017], the generated text is in general unique, and can not be directly replicated even
if the prompt is known to the server. In LatticeGen, this is ensured by sampling with a private random
seed controlled by the user (§2).

Standard Autoregressive LM Generation We assume the server-side LLM is an autoregressive
LM, i.e., it generates tokens one at a time and from left to right. We denote the LLM as PM with
parameter set θ, the vocabulary as V , the generated token at time-step t as wt, and the given prompt
as p. In this work we regard the prompt as part of generation, therefore, wt := pt for 1 ≤ t ≤ len(p).
On each time-step t > len(p), we sample the next token wt from PM (·|w0..t−1) by calling a sampling
algorithm such as top-k [Fan et al., 2017] or nucleus sampling [Holtzman et al., 2020]. w0 is the
<bos> token.

The Lattice Structure A key concept in our proposed framework is the lattice [Young et al., 2006],
which is a graphical structure widely used in structured prediction problems to represent a range
of hypotheses. In this work we adopt a simple linear-graph form of lattice which is known as the
confusion network [Mangu et al., 1999]. For convenience, we will just refer to it as the lattice, and
an example is shown in the left part of Figure 1. For a width-N lattice (or an N -lattice for short),
each time-step contains N token options and we denote them as {w1

t , ..., w
N
t } (see Figure 1 for

an example with N = 2). Therefore, a N -lattice with length T (denoted as WN
T ) represents NT

possible sequence combinations.

In our proposed LatticeGen protocols (§2.1), for each time-step t, the user possesses the “true”
generated token denoted as w1

t . And the other N−1 tokens {w2
t , ..., w

N
t } are be referred to as “noise”

tokens. To prevent the server from knowing which one is the true token, the user will randomly
shuffle the list before sending it to the server, denoted as [w̃1

t , ..., w̃
N
t ]. We will also use the notation

W̃N
t to emphasize that the tokens in the lattice are shuffled in each time-step.

B Model Training and Inference with Lattice (Server)

Finetuning with Linearized Lattice Format We now describe how PL is obtained by finetuning a
standard autoregressive LM PM parameterized by θ to accept and make next-token predictions on a
linearized N -lattice. We assume access to a public corpus D for finetuning. For simplicity, we focus
on the training objective for one length-T sentence wd ∈ D and we also assume N = 2 (the process
for N > 2 is highly similar) and unigram units.

We first generate the lattice W̃ 2
T for wd with a given noise generation scheme. The tokens in the data

wd will be used as the true tokens w1
t := wd

t and we need to generate the noise tokens w2
t ̸= w1

t for
each time-step t. In our experiments we use a simple synonym scheme (§2.1).

The noise generation scheme used by server in the finetuning stage might be different from the
scheme used by user in the actual generation, but empirically we find this misalignment does not
affect the generation performance drastically. To be consistent with the actual generation protocols,
the tokens on each time-step are shuffled and the positions of the true tokens need to be saved.
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The goal is to finetune the LLM for next-token prediction for tokens in the linearized lattice. The
challenge is that we do not have ground-truth next token for the noise tokens w2

t . Instead of generating
pseudo training data, we utilize the property that the lattice is shuffled on each time-step, and simply
omit the labels (no training signal) for the noise tokens. The intuition is that since the token positions
are randomly shuffled, after training the LLM will be able to predict the next token for any position
in the lineazried lattice and we find this simple finetuning strategy works well in practice.

In summary, we only train the LLM for predict the next token for the true tokens w1
t = wd

t in W̃ 2
T

(illustrated in Figure 2). We summarize it into the following objective:

Llattice-finetune(w
d, W̃ 2

T ; θ) =
1

T

T∑
t=1

logPθ(w
1
t |W̃ 2

t−1[w
1
t−1]). (2)

The implementation is similar to the standard finetuning of autoregressive LMs, and we only need to
make modifications to the inputs and the labels.

Figure 2: An illustration of the lattice-finetuning objective described in §B. The input is a linearized
2-lattice permutated on each time-step. The noise tokens w2

t do not get training signal.

Inference We now discuss how the server can do efficient LLM inference at time-step t. Since
linearize(W̃N

t−2) from the previous time-step t−2 is a prefix of linearize(W̃N
t−1), the server can reuse

the saved LLM hidden states5 from the last time-step for the inference of {PL(·|W̃N
t−1[w̃

i
t−1])}Ni=1. In

this way, none of the computations on the server-side are repeated and the computation cost remains
reasonable.

Implementation Details Our model implementation, training and inference utilize the HuggingFace
transformers library [Wolf et al., 2020]. We finetune PL with learning rate of 10−4 and a batch size
of 8 for 3 epochs using the PyTorch [Paszke et al., 2019] implementation of the AdamW [Loshchilov
and Hutter, 2017] optimizer. We perform finetuning of the model under various configurations on
one Nvidia V100 GPU.

C LatticeGen Protocols

This section continues from §2.

We summarize the LatticeGen protocols as pseudo-code in Algorithm 1. 6 The discussion about noise
schemes is in §3.

C.1 Incorporating the Prompt (User)

The prompt p can be easily incorporated by the following. At all time-steps t with t ≤ len(p), instead
of sampling w1

t from PL(·|W̃N
t−1[w

1
t−1]), the user directly sets w1

t := pt. All other steps in the
protocols including the noise token generation continue as normal. In this way, the prompt is also
embedded and noised in the lattice.

5The past_key_values in HuggingFace transformers library.
6For convenience, in the beginning, the user sends out N <bos> tokens to server.
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Algorithm 1 Pseudo-code for LatticeGen (Unigram)
Input (Server): Lattice-finetuned LLM PL, lattice width N , generation length T .
Input (User): Prompt p, a noise generation scheme S, a private large prime number for random seed.
1: User sets w̃i

0 := <bos> for 1 ≤ i ≤ N . And initialize the reverse permutation as the identity mapping.
2: The server begins with an empty lattice.
3: The user sends [w̃1

0, ..., w̃
N
0 ] to server indicating the beginning of generation.

4: for t = 1 . . . T do
5: # Server Steps Below
6: Receives [w̃1

t−1, ..., w̃
N
t−1] from user and use it to extend the lattice to W̃N

t−1.
7: Infer the LLM PL and obtain {PL(·|W̃N

t−1[w̃
i
t−1])}Ni=1.

8: The next-token distributions are sent to the user as N length-|V | vectors.
9: # User Steps Below

10: Receives the next-token distributions {PL(·|W̃N
t−1[w̃

i
t−1])}Ni=1 from server.

11: Apply the saved reverse permutation mapping to get {PL(·|W̃N
t−1[w

i
t−1])}Ni=1.

12: if t ≤ len(p) then
13: Set w1

t := pt.
14: else
15: Sample w1

t from PL(·|W̃N
t−1[w

1
t−1]).

16: end if
17: Generate N − 1 noise tokens {w2

t , ..., w
N
t } with scheme S.

18: Set the current random seed to be t multiplied by the private prime number.
19: Obtain the permuted list [w̃1

t , ..., w̃
N
t ] from the current private random seed.

20: Save the reversing permutation for next time-step.
21: Send [w̃1

t , ..., w̃
N
t ] to server.

22: end for
Output (Server): Permutated lattice W̃N

T .
Output (User): True sequence w1, and lattice WN

T .

C.2 Comparison with Standard LM: History Noised While Locally Sharp

It is helpful to formulate a comparison between LatticeGen (PL) and generation from a standard
autoregressive LM PM . For simplicity, we ignore the noise generation (i.e., lattice-building) part, and
only care about how the true tokens are generated with PL. Under this simplification, the probability
of generating a true sequence w is:

logPL(w) ≈
T∑

t=1

logPL(wt|W̃N
t−1[wt−1]), (3)

where the forming process of W̃N
t−1 (noise tokens and permutation) at each time-step is omitted.

For comparison, the log-probability of generating w with the standard model PM is:

logPM (w) =

T∑
t=1

logPM (wt|w0...t−2, wt−1). (4)

Comparing the above two equations with similar structure, it should be clear that what LatticeGen
does is essentially blurring the token history w0...t−2 by the noised lattice W̃N

t−2. Therefore,
increasing the number of noise tokens gives better protection for the true token sequence, but at the
same time degrades the LM’s performance.

While the history is blurred, the local sharpness [Khandelwal et al., 2018] is preserved by
LatticeGen: From Equation 3, the exact last token wt−1 is provided to the model. Therefore, in the
worst-case scenario (zero utilization of non-immediate history), LatticeGen is at least as strong as a
bigram LM (or a trigram LM when we use bigram units, see §C.3).

C.3 Incorporating Bigram Units

In the formulations described above, when the server is doing LLM inference on time-step t, only the
last token w̃i

t−1 is locally “exact” or “sharp” while all other context tokens are noised by the lattice.
In other words, the inference unit is unigram-level. Naturally, this would lead to serious degradation
of generation quality.
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Figure 3: User–Server interaction under LatticeGen with bigram units for time-step t.

To alleviate it, we explore a variant in which we expand the unit from unigram (one token) to bigram
(two adjacent tokens). While the lattice is still one token per time-step, the user enumerates all N2

potential bigram combinations of wt−2 and wt−1 and asks the server LLM to return the next-token
prediction distribution for each bigram.

We explore a variant in which we expand the unit from unigram (one token) to bigram. While the
lattice is still one token per time-step, the user enumerates all N2 potential bi-gram combinations
of wt−2 and wt−1 and ask the server LLM to return the next-token prediction distribution for each
bigram. We illustrate it in Figure 3. Accordingly, the finetuning stage (§B) needs to be modified so
that the model treats bigram instead of unigram as the unit.

In this way, the approximate probability of generating a true sequence w is (following §C):

logPL-bg(w) ≈
T∑

t=1

logPL-bg(wt|W̃N
t−1[wt−2wt−1]), (5)

where PL-bg can utilize the exact bigram context (to be compared with Equation 3). In experiments,
we observe visible improvement in generation quality comparing to the unigram version. However
on each time-step, the server needs to inference the LLM on input of length 2N2, instead of length
N in the unigram case. The inference speed is traded for generation quality.

We end this section by emphasizing that the bigram variant mostly affects LLM inference and does
not change the lattice structure. Therefore it does not affect the noise schemes to be discussed in §3.

C.4 Communication Cost

At each time-step, the server needs to send user N (or N2 in the bigram case) length-|V | vectors,
which could be slow if |V | is large. This can be largely alleviated if the user and server can agree
upon a sampling algorithm beforehand. For example, if top-k sampling with k = 50 is used, then
only the logits and indices of the top-50 tokens are needed.

D The (Repeated) Beam Search Attack and Parallel Noise Scheme Defense
Metrics Given a lattice W̃N

T , the attacker’s target is to reverse-engineer a hypothesis sequence ŵ
with ŵt ∈ {w̃1

t , ..., w̃
N
t } having biggest overlap with the true generation w1. We define a simple

true-ratio metric to measure the strength of the attack algorithm:

true-ratio(ŵ, w1) =

∑T
t=1 1ŵt=w1

t

T
. (6)

In the repeated beam search attack described in §3, the result of the attack algorithm is not only one
but N sequences {ŵi}Ni=1 which spans the whole lattice (i.e., {ŵi

t}Ni=1 = {w̃i
t}Ni=1). In this case,
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Figure 4: Illustration of different noise schemes under (repeated) beam-search attack. The lattice W 3
5

is from the user’s perspective and is therefore not permutated.

we argue that the defending noise scheme should prevent any of the hypothesis from having a high
overlap with the true sequence, and measure it with the maximum true-ratio: 7

max-true-ratio({ŵ}Ni=1, w
1) = max

i

∑T
t=1 1ŵi

t=w1
t

T
. (7)

And we state without proof that 1
N is a lower bound for max-true-ratio for any noise scheme, which

provides an intuition of why larger N would better protect the true sequence.

Albeit intuitive, a big weakness of the true-ratio metric is that it only considers exact matches and
does not reflect the semantic similarity between the hypothesis and the true generation. Therefore, in
our experiments we will also use an embedding-based metric BERTScore [Zhang* et al., 2020] to
measure the leaked information on semantics. Similar to true-ratio, BERTScore is larger than zero
and has a maximum value of 1 (we refer readers to its paper for details). We define max-BERTScore
in the same fashion as max-true-ratio and we omit the formulation for brevity.

The Beam-Search Attack (Server) Assuming unigram unit, a natural objective of the attacker is
to find the sequence ŵ with ŵt ∈ {w̃1

t , ..., w̃
N
t } which is mostly likely to be generated by PL:

argmax
ŵ

logPL(ŵ|W̃N
T ) = argmax

ŵ

T∑
t=1

logPL(ŵt|W̃N
t−1[ŵt−1]). (8)

Since the inference for ŵt only depends on which token is chosen for ŵt−1, this optimization problem
can be efficiently solved by dynamic programming which maintains the most probable sequence
ending with each wi

t on time-step t. The time complexity is O(N2T ). 8 Due to the high similarity
with the classical beam-search algorithm, we term it as the beam-search attack.

7The average of the true-ratio will always be 1
N

because each true token is in one of the N hypotheses.
8The attacker can reuse saved prediction distributions during generation, and therefore does not need to redo

LLM inference. In the bigram case, the time complexity is O(N3T ).
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Our experiments (§4) show that the synonym noise scheme §2 is highly vulnerable to the beam-search
attack. We show some intuition in the upper part of Figure 4: There does not exist a direct link
between the noise tokens. The log-probability of the true sequence will likely be higher than any
combination of the noise tokens, and is therefore revealed by the attack.

The Parallel Noise Scheme (User) There is an intuitive way to defend against the beam-search
attack: The user can sample a noise sequence independent of the true sequence, and make it have
higher log-probability than the true sequence by tuning the hyper-parameter of the sampling algorithm.
We term it the parallel noise scheme and illustrate in the middle of Figure 4.

More concretely, we assume the user is using some popular sampling hyper-parameter for the genera-
tion of the true sequence (e.g., k = 50 for top-k or p = 0.96 for nucleus), which enables the adoption
of a more radical hyper-parameter for the sampling of the noise sequences. In our experiments we
use k = 5. At time-step t, the i-th (i > 1, noise) token is sampled from PL(·|W̃N

t−1[w
i
t−1]). In this

way, the noise sequences wi are parallel and independent of the true sequence w1.

Our experiments show that the parallel noise sequences can very effectively hide the true sequence
from the beam-search attack. This motivates our proposed repeated beam-search attack.

The Repeated Beam-Search (RBS) Attack (Server) We propose a simple but more powerful
attack algorithm based on the beam-search attack: Given a N -lattice, we do beam-search N − 1
times. After obtaining the resulting hypothesis sequence of the i-th beam-search (denoted as ŵi),
we remove the tokens in ŵi from the lattice, resulting in a (N − i)-lattice. After the (N − 1)-th
beam-search, only one sequence is left in the lattice, which becomes the N -th hypothesis ŵN . We
term it the repeated beam-search (RBS) attack.

The intuition of why the RBS attack is effective against the parallel noise scheme is shown in the
middle of Figure 4. Since the noise sequences are of high probability and independent of each other,
it is likely that the N − 1 times of beam-search would obtain all the noise sequences as hypotheses
which are removed from the lattice in turn, and the remaining true sequence is therefore revealed in
the end as ŵN . This would result in a high max-true-ratio.

E Experiment Setting

Dataset & Lattice Finetuning Since the word history is noised (discussed in §C), LatticeGen
is not recommended for tasks with high requirements for consistency or factuality [Pagnoni et al.,
2021]. In this work we focus on the task of creative writing [Martin et al., 2017], and utilize the
WritingPrompts dataset [Fan et al., 2017].

The dataset is composed of stories and the corresponding high-level descriptions as prompts. The
average length of prompts/stories is 29/674. We use 200/500 samples from the valid/test set for
development/evaluation. The training set (10,000 samples) is used for finetuning of PL and PM , and
we defer details to §B.

Model & Noise Schemes We use the OPT-1.3B [Zhang et al., 2022] model as our base LLM,
from which both PL and PM are finetuned. In our implementation, for convenience we simulate the
user–server interaction protocols (§2.1) on a single machine.

For sampling of the true sequence, we (user) use top-k [Fan et al., 2017] sampling with k = 50.
For the parallel or mixing noise scheme, k = 5 is used. It should be clear that LatticeGen can
also be applied to other sampling algorithms with proper hyper-parameters. We limit the maximum
generation length to 60 tokens. For the mixing noise scheme, we use a mix-ratio of 0.12 for N = 2,
and 0.1 for N = 3, for the generation part. For the prompt part, we use a mix-ratio of 0.7. They are
found to achieve the lowest max-true-ratio on our dev set.

Metrics We use a larger LLM, OPT-2.7B, to measure the generation’s quality or alignment with the
prompt. For quality, we use the popular perplexity metric. For alignment, we use pointwise mutual
information (PMI) [Shi et al., 2023]:

PMIOPT-2.7B(x; y) =
logPOPT-2.7B(x|y)− logPOPT-2.7B(x)

len(x)
, (9)

where x and y denote the generation and prompt.

13



Speed (second/token) N=1 N=2 N=3

PM .061 / /
LG, Unigram / .088 (1.44x) .125 (2.04x)
LG, Bigram / .127 (2.08x) .186 (3.04x)

Table 2: Generation speed comparison between different systems. For LG, the mixing noise scheme
is used. Our implementation is run on a single V100 GPU.

To compare between different noise schemes and measure the (semantic) overlap between the attack
hypothesis (ŵ) and the true sequence (w1) under RBS attack, we use the true-ratio or BERTScore
discussed in §3. We will report true-ratio for the BS attack and max-true-ratio under RBS attack, and
the same applies to BERTScore.

F Auxiliary Results

Figure 6 and 7 show examples using different prompts using bigram N = 2. Figure 8 shows an
example of generation with the same prompt as in Figure 6 using N = 3. Figures 7 and 8 contain
sample lattices of prompt tokens, each separated by a vertical bar. LG is able to generate a sample
with decent quality. More importantly, much of the story semantics remains hidden from the RBS
attack by the mixing noise scheme.

F.1 The Non-Lattice Baseline

The training for the non-lattice baseline is a bit similar to the lattice finetuning process described in
§B, with the difference that the true tokens are not included in the input. Following the notations
in §B with wd as the data sample and w2 as its synonym noise sequence, the training objective is
formulated as:

Lnon-lattice,synonym(w
d, w2; θ) =

1

T

T∑
t=1

logPθ(w
d
t |w2

0..t−1). (10)

Basically, the model is trained to predict the next true token with all input tokens noised.

F.2 Further Discussion on Mix-Ratio and Inference Speed

Figure 5 shows the impact of mix-ratio on max-true-ratio under RBS attack. When mix-ratio=0, it is
reduced to the parallel scheme and the true-ratio from the 1st BS is very low but the max-true-ratio is
high. As mix-ratio increases, more true tokens are mixed in to the 1st beam. The mix-ratio achieveing
the best max-true-ratio is around 0.1.

On a single V100 GPU we use, LG with bigram units (N = 2) has a 2x slowdown comparing to
PM (Table 2, §F). Since inference with transformer model benefits from parallel computing, the
slowdown should be less significant on servers with stronger computing power.

G Related Work

Lattice in NLP The lattice structure has found interesting applications in neural NLP models. As a
pioneering work, Su et al. [2017] proposes lattice-based RNN encoders for machine translation, where
the lattice is generated by merging results from different segmenters. Buckman and Neubig [2018]
proposes a neural lattice language model, which constructs a lattice of possible paths (segmentations)
through a sentence in order to model multiple granularities. Lattice-BERT [Lai et al., 2021] trains
LLM to predict a masked portion of a lattice representing possible segmentations of a sentence.
To the best of our knowledge, our work is the first to utilize the lattice structure for privacy-aware
generation.

Differential Privacy (DP) for LM Training and Inference There are numerous existing works on
how to train LLMs with differential privacy [Li et al., 2021, Yu et al., 2021, Kerrigan et al., 2020],
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(a) Max-true-ratio under different mix-ratio for N=2.

(b) Max-true-ratio under different mix-ratio for N=3.

Figure 5: How tuning of mix-ratio affects the result from RBS attack. Bigram units are used.

which mostly rely on DP-SGD [Abadi et al., 2016] and limits leakage of private data during training.
More related to LatticeGen is a line of work with local DP [Xu et al., 2020, Meehan et al., 2022],
which applies discrete noise onto text and can be used to synthesize private text data [Yue et al., 2023,
Mireshghallah et al., 2023]. Finally, there has been recent work on protecting data for in-context
learning [Panda et al., 2023, Duan et al., 2023] or prefix tuning [Li et al., 2023b].

It is not directly clear how these techniques can be adapted for our setting of privacy-aware autore-
gressive text generation. In comparison, LatticeGen provides a totally different and cooperative
approach with the lattice structure and novel defense and attack schemes.

Homomorphic Encryption There is also a line of work [Hou et al., 2023, Chen et al., 2022]
applying techniques from homomorphic encryption [Rivest et al., 1978, Gentry, 2009] to transformer
LM. While they enjoy nice cryptographic guarantees, the induced computational cost is usually huge.

Prompt Anonymization Contemporary and independent of our work, Chen et al. [2023] proposes
to anonymize the named entities (e.g., change USA to <GPE>) in the prompt, and de-anonymize after
receiving the generated text from server. In comparison, LatticeGen offers a more general option in
that all types of tokens can be noised.
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Prompt: Prompt: You live in a world where light helps you retain and regain memory while darkness makes
you forget everything. One day.... Story:
Generated Text (PM ): I had forgotten everything. The moment when the light shone out of the darkness that
my brain had created was when it all came together.Everything. The moment when everything came together,
that was when my forgetting started. A slow burn, a warm fire, everything coming back to me. It had been...
Generated Text (LG): The world is a strange one, I call it’s just that, a big empty, like a dream. The thing I
recall was the people. I remember them, but the way they looked and walked, yet ’just a dream. The memory
lapse might be about a light, so bright...
First Round RBS: Prompt: You live in a world where light comes people in memories. It is darkness, you
forget everything. One day.... Story: The world is a strange one, I call it’s just a place I came from. It ’empty’I
thought I recall was the people. I remember them. I remember them, not as if they were real. ’.’The memory I
most remember is of the people, the...
Second Round RBS: applying </ Shogun A are on an underground. the helps you retain and regain memory
while down makes and afraid, until You stumble upon You’unstoppable XIII/r/iN. The surface world I live in
is that, a big empty, like a dream. The thing as remember most about the same people, over, but the way they
looked and walked, yet ’just a dream. I think lapse might be about a light, so bright...

Figure 6: An example of text generation with LatticeGen, using the configuration of bigram, N=2
and the mixing scheme. The true tokens are italicized in both rounds of RBS, and the underline
indicates that the noise token is mixed from the previous true token. Note that the prompt is also
noised by LG. See §F for more examples.

H The Current Privacy Protection Practices in Industry

The privacy protection offered by today’s LLM providers’ data usage and retention policies is far
from enough. 9 For example, OpenAI’s consumer-facing ChatGPT used to train its models with user
input, and also shares user input with third-party providers, and Google’s Bard retains user activity for
at least 3 months. As a striking example, employees in Samsung reportedly shared sensitive code with
OpenAI during their interaction with ChatGPT. 10 More recently, some of the users’ conversations
with Bard is mistakenly indexed and accessed by Google search. 11

While providers have recently improved their security posture (e.g., OpenAI no longer uses data
submitted via its API to train its model), users still can not assume that all sent/received data will
be immediately and completely deleted. Rather than regulations, our proposed LatticeGen takes an
algorithmic and cooperative approach to give the user advantage and control in privacy protection.

I Limitations and Conclusion

Limitations LatticeGen sacrifices generation quality and speed for obfuscation of generated con-
tents. While we show the quality degradation can be alleviated to some degree by using larger
m-gram unit, it would also cause the inference computation to grow exponentially. An interesting
future direction is that, instead of running an inference for all Nm grams, we only select a small
portion strategically.

In this work we focus on protecting the user and the (repeated) beam-search attack from server. There
could be other forms of interesting or stronger attacks on the server side (e.g., manual inspection
from a human). On the other hand, sharing generation control with user could also endanger the
server (e.g., jailbreaking) [Liu et al., 2023, Li et al., 2023a].

In the current implementation, we lattice-finetune a seperate OPT model for every different lattice
configuration, which is space unfriendly. As future work, it would be interesting to explore a unified
format of linearized lattice by which a single LLM can process different lattice configurations.

Conclusion LatticeGen aims for an ambitious and seemingly conflicting goal: The server still does
most computation for the generation but does not know what exactly is generated. This is achieved

9https://opaque.co/announcing-opaqueprompts-hide-your-sensitive-data-from-llms/
10https://gizmodo.com/chatgpt-ai-samsung-employees-leak-data-1850307376
11https://venturebeat.com/ai/oops-google-search-caught-publicly-indexing-users-

conversations-with-bard-ai/
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Prompt: Prompt: It is believed that the cure for cancer has been discovered on Mars, astronauts have only one
chance to bring it home where they hope to duplicate its properties for mass distribution. Story:
Generated Text (PM ): The quick spreading of disease was what excited the scientist most about the data he
had brought the team back from the brink of extinction. A species capable of living for hundreds of thousands
of years using a system of biological engineering had finally proved the impossible, he was excited. Cancer
could be cured. It was
Sample Linearized Lattice of Prompt: ... | atom Write: Write: It atom It | Write’It is It’Write is | is the’the
is believed’believed | believed that the belief believed belief the that | ...
Generated Text (LG): “ You’ve got to save... my crew shouted. We had done everything possible in the best
medical attention. We trained our astronauts as best science. “ Yeah, the best in the world could even the
journalists asked the President can ever be brought back. ” asked “ No.
First Round RBS: Prompt: It is believed belief of a for cancer has been lost over the last astronauts are on
one month to get it home planet to hope to save its people. Story:. Story: “ The last chance to make it. ” It
was a group of seven. We left the planet available to us in the best. We had the best medical team on the best
in the press said. “ The best can ever be brought back. ” “ No.
Second Round RBS: Ukrainiansb atom Write’the that the cure is a that will discovered on Mars, and have
only been chance left bring the cure where they can it duplicate. properties for mass distribution “Prompt:
You’ve got to save... my crew shouted. We had done everything possible in the best medical attention. We
trained our astronauts as best science. “ Yeah, Mars. ” a world could even the journalists asked the President
cancer cure in Mars? ” We asked “ Why

Figure 7: Another example of text generation with LatticeGen, using the configuration of bigram,
N=2 and the the mixing scheme. The true tokens are italicized in both rounds of RBS, and the
underline indicates that the noise token is mixed from the previous true token. Note that the prompt
is also noised by LG.

Prompt: Prompt: You live in a world where light helps you retain and regain memory while darkness makes
you forget everything. One day.... Story:
Sample Linearized Lattice of Prompt: ... | You are You story The are A live You live A are A story The
live The story | areasia live under liveasia story in live in are in are under story under storyasia | in a under
Madagascar under aasia the in the in Madagascar under theasia aasia Madagascar | the world a city the,
Madagascar world Madagascar, the city Madagascar city a world a, | ...
Generated Text (LG): I had become thin. They could barely visible in the further than before. The buildings
that surround me like a surround me. I could feel my brain cells lining the walls and outside me, as my brain
putting the whole society would be it. I would never get used to the outside world, my
First Round RBS: Prompt: You live in a world where people are people, and can consciousness while
sleeping and dreaming forgetful. One day,you.. Story: The air was thick with the city far, far more clearly
than before. The buildings and emotions, like a surround me. I could feel my brain cells lining the inside me,
as if I was surrounded by so many thoughts, not just. I could feel my body, or at least. My
Second Round RBS: guilt: A The story under the, in order helps you retain consciousness- memory, darkness
makes you see everything that The night.. You do nically trained my eyes. They could barely visible from my
vision, as I felt my mind had become one would in a shell. I could see the thoughts firing up in a massive wall.
It had been this way of thinking and acting. I never get used to this coldness, my
Third Round RBS: ief :990 A are asia Madagascar city that light to us and can regain their of asleep
surrounds sure a. from You man your You go Finch POLIT I had become thin to see what was in in the
further then my surroundings. Darkness that surround me I was hurricane around me- It had become a starting
becoming more walls and outside me, as my brain putting the whole society would be it one way would could
feel my brain the outside world that again

Figure 8: An example of text generation with LatticeGen, using the configuration of bigram, N=3
and the the mixing scheme. The true tokens are italicized in all rounds of RBS, and the underline
indicates that the noise token is mixed from the previous true token. Note that the prompt is also
noised by LG.
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by our proposed noised lattice structure, and a cooperative generation protocol between the server
and user.

While the noised lattice degrades generation quality and inference speed, LatticeGen with our
proposed mixing noise scheme successfully prevents a malicious server from recovering the true
generation to a remarkable degree (more than 50% of the semantic remains unknown as measured by
BERTScore). We hope our work could inspire more research into this under-studied yet important
field of privacy-aware LLM generation on cloud.
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