
Measuring and Improving Recall in Convolutional
Language Models

Simran Arora*∗1, Sabri Eyuboglu*1, Aman Timalsina3, Isys Johnson2, Michael Poli1, James Zou1,
Atri Rudra2, and Christopher Ré1

1Stanford University, 2University at Buffalo, 3Purdue University

Abstract

Convolution-based language models are asymptotically more efficient than Trans-
formers as sequence length grows and are increasingly competitive in quality. To
better understand the quality differences between these architectures, we pretrain
a suite of 14 language models across attention and convolution-based architec-
tures, finding that the SoTA gated convolution architectures still underperform
Transformers by up to 2.1 perplexity points on the Pile. Our analysis shows that
a single language modeling capability, termed associative recall (AR) accounts
for 76% of the perplexity gap on average. The task requires recalling an associa-
tion from earlier in the context, e.g. Hakuna Matata means no worries...Hakuna
Matata it means no→ ??. We show via experiments and theory that the associative
recall solution encoded by convolution-based models is less parameter efficient
than the one encoded by attention. The issue arises because convolution-based
models process sequences using fixed filters that do not depend on the input data.
Finally, we propose two methods for constructing input-dependent convolution
filters and show theoretically and empirically that they can solve AR with improved
parameter-efficiency relative to input-independent filters.

1 Introduction
Two recent advances have catalyzed excitement around convolution-based language models [9, 14,
19, 16, inter alia.]: (1) gating (i.e. element-wise multiplication) and (2) long convolutional filters (i.e.
filters the length of the sequence) to enable interactions between distant tokens [8, 12]. Language
models based on gated-convolutions support sub-quadratic training and inference, unlike attention.

However, it remains unclear how differences in these architectures affect a model’s behavior. To
study this, we pretrain and evaluate 14 language models across 3 scales and 5 architectures on the
same data and infrastructure setup. In spite of the recent progress, we find there is still a perplexity
gap of up to 2.1 points between state-of-the-art convolution-based architectures and Transformers in
language modeling on the Pile (Table 1). Through fine-grained analysis, we find that a single simple
issue is responsible for much of the gap: recalling an association seen earlier in-context. For example:

Hakuna Matata︸ ︷︷ ︸
Key-Value

it means no worries︸ ︷︷ ︸
Key-Value

for the rest of your days! Hakuna︸ ︷︷ ︸
Query

Matata︸ ︷︷ ︸
AR Hit

means no︸︷︷︸
Query

→ worries︸ ︷︷ ︸
AR Hit

We find that errors on “AR Hits” (e.g. worries in the example above) account for 76% of the perplexity
gap to Attention on average, despite only representing 6.4% of all tokens in the Pile dataset. Scaling
gated convolutions to 4× the parameters of a Transformer baseline fails to close the gap (Table 1).

The associative recall gap is particularly surprising given that prior work demonstrates how gated-
convolutions can solve a version of the very task [9, 16]. However, in the synthetic version studied in

∗Equal contribution, order determined by coin toss. Contact: {simran, eyuboglu}@stanford.edu.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

�������������������������������

�������������������������������������� ��

�����������������

�����	����������������������
����������	���������������������
������	�������������
������������

������������

�����	��	���������
���������
�
������������������
���	����
�	�����������	��	���������
��

�

������������������������ ��������������������
�����

������

+
�����

+

���������

�����
����

�������������������������������

�������������������������������������� ��

����

+
�����

+

��
��

�

�

��
��
�	
�

��������
��
	
���������

������������� �	���

�
����������

������
����������

������

������������������* �
� .

���������������
��������������
�����������
��

������
�����	�����

�

��

���������������
�������������
���
��

����������������

�

	

��

Figure 1: The associative recall gap. We stratify Pile validation data by whether or not the predicted
token is an associative recall hit (see Section 2). We find the perplexity between gated convolutions
and attention grows as an associative recall bigram was seen less frequently in the training data.

prior work, there is only one AR query per-example. Through our downstream analysis, we find this
doesn’t reflect the way AR manifests in real languages: e.g., above there are multiple AR hits in a
single passage (Matata and worries). We formally study this Multi-query AR (MQAR) setting.

By analyzing MQAR, we provide the following explanation for the observed gap: the associative
recall solution encoded by gated convolutions is less parameter efficient than the solution encoded by
attention. To perform variable distance recalls (e.g. at a distance of 10 tokens for Hakuna Matata and
9 for no worries), convolution-based models require dimensionality to scale with sequence length.

To analyze the class of gated convolutions (beyond specific architectures like Hyena), we introduce
a simple operator called BASECONV, which provably simulates any gated convolution architecture
within poly-log factors (in number of parameters and layers). Using BASECONV as the canonical
representation of gated convolutions, we prove the model dimension for BASECONV to solve MQAR
grows with the input sequence length (Theorem 3.3) while attention can solve MQAR with model
dimension independent of sequence length (Proposition 3.2). This scaling is undesirable. However,
we show theoretically that if we extend BASECONV to include convolutions with filters that are
dynamically defined as a function of the data (input-dependent convolutions), then the resulting class
of architectures could solve MQAR with improved efficiency (Theorem 3.4).

In Section 3, we empirically validate these theoretical observations: (1) On MQAR, we show scaling
the gated convolutions closes the MQAR gap to attention. In practice, with limited dimensionality,
gated-convolutions appear to encode approximate solutions to MQAR that support only a subset of
recall distances. (2) We propose using input-dependent convolutions and show they scale better than
those with input-independent convolutions, matching attention with fewer parameters. To do this, we
introduce two prototype approaches for constructing input-dependent convolutions (Figure 2).

Overall, we document fundamental differences between attention and gated-convolution language
models. We prove and demonstrate that input-dependent convolutions can help close the gap.

2 Identifying the associative recall problem
In this section, we show that there is a perplexity gap between state-of-the-art gated convolutions and
attention and identify that Associative Recall(AR) accounts for 76% of the quality gap on average.

2.1 Fine-grained analysis of downstream quality
Perplexity Gap We pretrain a suite of large language models across 3 different scales (70M-360M)
for 10B tokens on the standard Pile language modeling setting [11]. We cover 4 different architectures
(see Appendix A for experimental details). Across scales, we find that the Transformer outperforms
the gated convolutions by at least half of a perplexity point: the minimum gaps are +2.14, +0.63,
+0.94 PPL at 70M, 160M, and 360M parameter scales, respectively. We report overall test perplexity
in the first column of Table 1. The extended results for 70M and 360M are in Table 2.

Associative Recall Perplexity We perform a fine-grained analysis of the next token predictions by
dividing the overall Pile test split into two slices, AR and non-AR tokens, defined as follows:

1. AR Hits: (6.4% of tokens) Tokens in the final position of a bigram (a pair of consecutive
tokens) which previously appeared in context, but ≤ 1250× during training.

2

Overall Slices % of gap due to
Model Param (M) TFLOPs AR Hits Other Tokens AR Hits

Attention 125 2.46 11.01 (2.40) 2.16 (0.77) 12.45 (2.52) —
Long Conv 128 1.74 16.98 (2.83) 25.62 (3.24) 16.46 (2.80) 40.1%
Hyena 158 2.41 11.60 (2.45) 5.00 (1.61) 12.28 (2.51) 100.0%
RWKV 169 2.08 11.64 (2.45) 5.70 (1.74) 12.29 (2.51) 100.0%

Table 1: Language modeling validation perplexity on the Pile. After pretraining on 10B tokens
of Pile data, we report log perplexity with negative log-likelihood in parentheses. We report overall
scores, and for the AR vs. non-AR token slices defined in Section 2. Extended results in Table 2.

2. Other tokens: (93.6% of tokens) Tokens in the final position of a bigram which did not
previously appear in context or it appeared more than 1, 000 times during training.

In Table 1 and Table 2, we find that the AR slice accounts for 76% of the average perplexity gap
between the gated convolutions and attention, measured as: ∆ log(ϕAR)·|TAR|

∆ log(ϕ)·|T | , where ϕ is the perplexity
and T is the set of tokens in the test set.

2.2 Defining the problem: Multi-Query Associative Recall
This gap in AR perplexity is surprising since gated convolution architectures (H3, Hyena [16, 9])
were explicitly evaluated on AR synthetic tasks in prior work and shown to match attention on the
task. In our study, we find major properties of AR in real language that are missing from prior
synthetic formulations. In real world inputs, the language model often needs to perform multiple
associative recalls in a single forward pass, at different positions in the sequence. We refer to this as
Multi-Query AR (MQAR). We formally define the MQAR problem as follows:

Definition 2.1 (Multi-Query-AR (MQAR)). Suppose we are given an input sequence x =
{x0, . . . , xN−1} where each xi ∈ C is a token drawn from a vocabulary of size c =
|C|. The sequence consists of key, value, and query triplets ki,vi, qi ∈ C from:
{(k0, v0, q0) , . . . , (kN−1, vN−1, qN−1)}. The task is to check, for every query qi, whether there
exists a key kj at 0 ≤ j < i such that qi ≡ kj .

3 Explaining the associative recall problem
In this section, we analyze how the quality of gated convolution models on MQAR relates to the
model’s size, towards explaining the performance gaps discussed in Section 2.

3.1 BASECONV: a minimal gated convolution operator
First,we define a minimal gated-convolution architecture, called BASECONV, which we show can
simulate a broad class of architectures built from gating and convolutions.

Definition 3.1 (BASECONV Operator). Given an input u ∈ RN×d, layer ℓ of BASECONV is:

y :=
(
u ·W ℓ + bℓ1

)︸ ︷︷ ︸
Linear Projection

⊙
(
hℓ ∗ u+ bℓ2

)︸ ︷︷ ︸
Convolution

(1)

where the layer is parameterized by learnable filters h ∈ RN×d, a linear projection W ℓ ∈ Rd×d that
supports (near) linear time matrix-vector multiplication, and ‘bias’ matrices b1, b2 ∈ RN×d. The ⊙
is component-wise product (i.e. gating) and convolution of two matrices is computed column-wise.

We show any gated convolution model can be simulated by BASECONV with only a (poly)logarithmic
blowup in parameters and layers (Theorem D.18 in Appendix D.5). Further, we observe that
BASECONV and Hyena models can simulate each other with only a small constant blowup in
parameters (Proposition D.9 in Appendix D.5). This suggests that simply re-combining the gating
and convolution primitives does not change the representational capacity.

3.2 Theoretical analysis of gated convolution capacity and associative recall
In this section, we analyze the model complexity for attention and gated convolution architecture
families to solve MQAR. First, we note attention can solve MQAR with number of parameters
independent of sequence length (assuming c2 > N , as it typically is in practice).

3

RWKV

Attention

Hyena

Autocorrelation
Programmatic

Input-dependent
Convolutions

Input-independent
Convolutions

Figure 2: Model dimension and accuracy on associative recall. The x-axis is the model dimension
and the y-axis is accuracy. Increasing the sequence length correlates with increased task difficulty.

Proposition 3.2 (Attention). Given an input u ∈ {0, 1}N×c, Attention solves MQAR for u using
O(max(N, c2)) parameters, O(min(Nc2, N2c)) time complexity and O(1) layers.

Next, we prove that BASECONV can solve associative recall with number of parameters linear in
sequence length and number of layers poly-logarithmic in sequence length. This improves upon the
prior best known upper bound for gated convolutions to solve associative recall.

Theorem 3.3 (BASECONV). Given an input u ∈ {0, 1}N×O(log c) to MQAR (where we assume that
distinct tokens are embedded into vectors in {0, 1}O(log c)), there exists a BASECONV operator that
solves MQAR for u using Õ(N log c) parameters as well as time complexity and Õ(1) layers.

Compared to attention’s bounds, BASECONV’s have a dependence on sequence length, which is
undesirable for long sequence lengths encountered in practice. Thus, we analyze simple extensions
of BASECONV that use input-dependent filters. In this class of models, the layer is defined as in
Definition 3.1, except the convolutional filter is not a weight, but rather a function of the input itself:
ht = f(u). A natural choice for f is autocorrelation, a standard operation borrowed from signal
processing where the input is convolved with itself [5]. Using input-dependent convolution filters, one
can get constant many layers (for a sub-class of inputs). Towards that end, we define the interaction
distance between a query qi and the matching key kj as i− j. This allows us to present the upper
bound for input-dependent mixing (Theorem D.29 in Appendix D.7).

Theorem 3.4 (Input-dependent BASECONV). Given an input u ∈ {0, 1}N×c to MQAR (where we
assume that the tokens are embedded as one-hot encoding in {0, 1}c and there exists at most t distinct
interaction distance), there exists a BASECONV operator that uses data-dependent kernels to solve
the above case of MQAR using O(t ·Nc) parameters and O(1) layers.

This improves upon the poly-logarithmic scaling incurred with input-independent convolutions.

3.3 Empirical analysis of gated convolution capacity and associative recall
In this section, we provide empirical evidence (1) that gated-convolution models (Hyena and RWKV)
require larger model dimension than attention to solve MQAR on long sequences and (2) that
introducing input-dependent convolutions enables convolution-only models to solve MQAR with
improved parameter efficiency. Our results are summarized in Figure 2.

We train and evaluate models on synthetic MQAR with vocabulary size 8, 192, varying sequence
lengths ∈ {32 - 1, 024} and model dimension ∈ {64-1, 024}. Appendix C provides further details on
the formulation and construction of this synthetic task.

We find that the accuracy of gated-convolution models drops as we decrease the model dimension and
increase the sequence length, while attention solves the task with near perfect accuracy at all sequence
lengths. In Figure 2, we propose and validate two prototypes –autocorrelation and programmatic—
for constructing input-dependent convolutions (defined in Appendix A) that demonstrate improved
scaling vs. Hyena and RWKV. We hope these prototypes inspire future efficient architectures.

4 Conclusion
We (1) find a quality gap between efficient convolution and attention based architectures, finding
76.2% of the gap on average lies in tokens that require recall. (2) We show that the gap in associative
recall performance is due to differences in the parameter-efficiency of the AR solutions of each
architecture. (3) Finally, we present strategies for introducing input-dependent sequence aggregation.
This work can guide future architectures that are both efficient and maintain high quality.

4

Acknowledgments
We would like to thank Albert Gu, Stefano Massaroli, Tri Dao, Michael Zhang, Dan Fu, Hermann
Kumbong, Neel Guha, Kush Bhatia and Eric Nguyen for helpful discussions and feedback. We
gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under Nos.
CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); US
DEVCOM ARL under No. W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under
No. N000141712266 (Unifying Weak Supervision); ONR N00014-20-1-2480: Understanding and
Applying Non-Euclidean Geometry in Machine Learning; N000142012275 (NEPTUNE); NXP,
Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture,
Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits
for Research program, the Stanford Data Science Initiative (SDSI), National Science Foundation
Graduate Research Fellowship, and members of the Stanford DAWN project: Facebook, Google, and
VMWare. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.

References
[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. An 0 (n log n) sorting network. In

Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 1–9, 1983.
D.26

[2] Selim G Akl and Henk Meijer. Parallel binary search. IEEE Transactions on Parallel &
Distributed Systems, 1(02):247–250, 1990. D.6.4, D.6.4

[3] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29,
2016. D.6.1

[4] P. Bürgisser, T. Lickteig, M. Clausen, and A. Shokrollahi. Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1996. D.10

[5] Chris Chatfield. The analysis of time series: An introduction, fifth edition. 1995. 3.2, D.7.1

[6] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022. D.23

[7] Tri Dao, Nimit S Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps. arXiv preprint arXiv:2012.14966, 2020. D.4, D.11, D.14, D.4, D.16

[8] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In International conference on machine learning, pages 933–941.
PMLR, 2017. 1

[9] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré.
Hungry Hungry Hippos: Towards language modeling with state space models. In International
Conference on Learning Representations, 2023. 1, 1, 2.2, C

[10] Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri
Rudra, and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling.
arXiv preprint arXiv:2302.06646, 2023. A.1, 8

[11] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020. 2.1

[12] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021. 1

[13] Michael T Heideman and C Sidney Burrus. Multiplicative complexity, convolution, and the
DFT. Springer, 1988. D.1.1

5

[14] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Zettlemoyer Luke. Mega: Moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022. 1

[15] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Przemyslaw Kazienko, Jan Kocon, and Jiaming et al. Kong. Rwkv: Reinventing rnns for the
transformer era. arXiv:2305.13048, 2023. A.1, 7

[16] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023. 1, 1, 2.2, A.1, C, 3

[17] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023. D.2.1, D.3

[18] Ilya Volkovich. A guide to learning arithmetic circuits. In Conference on Learning Theory,
pages 1540–1561. PMLR, 2016. D.1.1

[19] Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without
attention. arXiv preprint arXiv:2212.10544, 2022. 1

6

Appendix
Appendix A gives details for the experiments, including model architectures and hyperparameters.
Appendix B provides additional details of the MQAR problem and synthetics used in our work.
Appendix C provides additional details of the MQAR problem and synthetics used in our work.
Appendix D gives proofs and additional discussion for the theoretical analysis in our work.

A Experimental Details
We use A100 NVidia GPUs to run all experiments. We use the reference training infrastructure from
https://github.com/EleutherAI/gpt-neox for all pretraining runs. The Pile data is tokenized
using the GPT2BPETokenizer and all models see the data in the same order.

A.1 Models
We evaluate over 4 previously proposed architectures as well as BASECONV, the theoretically
“canonical” representation for gated convolutions, introduced in Section 3, for a total of 14 training
runs. Here we provide details on the hyperaparamters and configurations used for training each
architecture. We also provide details on the FLOPs computation.

Notation: We provide the equations used to compute the FLOPs for each model, letting D be the
model width, H the head dimension, L the depth, N the sequence length, V the vocabulary size, and
B the batch size.

Hyena [16] We train and compute FLOPs using the specifications in Tables 3 and 4 respectively.
The parameters are sourced from the Appendix of [16] and the implementation is sourced from the
provided reference at https://github.com/HazyResearch/safari.

Attention We train and compute FLOPs using the the specifications in Tables 5 and Table 6
respectively. The parameters are sourced from the Transformer implementation in https://github.
com/EleutherAI/gpt-neox.

RWKV [15] We train and compute FLOPs using the specifications in Table 7. The parameters
are sourced from the Appendix of [15] and the details provided in the reference implementation
at https://github.com/BlinkDL/RWKV-LM. We specifically focus on RWKV-V4. We compute
FLOPs as in the Appendix of [15], based on the number of linear layer parameters, plus input and
language modeling head FLOPs.

Long Convolution We train and compute FLOPs using the specifications in Tables 8 and 9
respectively. We evaluate a simple long convolution based model with no gating as a refer-
ence point. While this is a generic architecture, we use the reference implementation and ini-
tialziations/regularizations from recent work [10]. The implementation is provided at https:
//github.com/HazyResearch/safari.

BASECONV We train and compute FLOPs using the specifications in Tables 10 and 11 respectively.

A.2 Input-Dependence Implementations
The results in Section 3 highlight how the input-independent sequence aggregation of gated-
convolutions is a fundamental limitation that affects their ability to solve associative recall. We
theoretically show that introducing input-dependent aggregation into gated-convolution models can
enable them to solve associative recall with improved parameter efficiency. In Figure 2, we show
that input-dependent convolutions via autocorrelation or programmatic filters outperforms Hyena
and RWKV across scales. Here we define the autocorrelation and programmatic filters baselines in
additional detail.

First, we explore a simple convolution-only layer based on autocorrelation, a standard operation
borrowed from signal processing where the input is convolved with itself (i.e. the convolutional filter
is a function of the input). Autocorrelation can, in sub-quadratic time, identify the most important
token interaction distances for the input u. See (Appendix D.7.2) for a formal definition of this
operation.

Next, in the programmatic baseline, we mark the positions of potential associative recall hits as we
causally process the input. Specifically, we mark positions (ui) that correspond to tokens (uj) that
previously occurred in the sequence (u<i) at some position j, since MQAR may be helpful to predict

7

https://github.com/EleutherAI/gpt-neox
https://github.com/HazyResearch/safari
https://github.com/EleutherAI/gpt-neox
https://github.com/EleutherAI/gpt-neox
https://github.com/BlinkDL/RWKV-LM
https://github.com/HazyResearch/safari
https://github.com/HazyResearch/safari

the next word. We can then construct a filter with a 1 at position i− j − 1 and 0’s elsewhere, to shift
forward the value that is associated with the matching token. Ideally we would like learnable filters,
however this baseline is illustrative and effective as shown in Figure 2.

B Extended Results
Below, we provide extended results beyond Table 1 across two additional parameter scales: 70M
parameters and 350M parameters. The purpose is to demonstrate that AR remains an issue as we
increase the model size.

Overall Slices % of gap due to
Model Param (M) TFLOPs AR Hits Other Tokens AR Hits

Attention 73 1.52 12.99 (2.56) 2.41 (0.88) 14.76 (2.69) —
Long Conv 76 1.20 20.28 (3.01) 40.25 (3.70) 19.25 (2.96) 44.4%
Hyena 72 1.34 15.13 (2.72) 9.00 (2.20) 15.74 (2.76) 60.8%
RWKV 72 1.89 16.10 (2.78) 14.11 (2.65) 16.26 (2.79) 57.9%

Attention 125 2.46 11.01 (2.40) 2.16 (0.77) 12.45 (2.52) —
Long Conv 128 1.74 16.98 (2.83) 25.62 (3.24) 16.46 (2.80) 40.1%
Hyena 158 2.41 11.60 (2.45) 5.00 (1.61) 12.28 (2.51) 100.0%
RWKV 169 2.08 11.64 (2.45) 5.70 (1.74) 12.29 (2.51) 100.0%

Attention 360 6.23 9.44 (2.25) 1.98 (0.69) 10.62 (2.36) —
Long Conv 360 4.08 13.13 (2.57) 13.27 (2.59) 13.12 (2.57) 40.5%
Hyena 358 5.03 10.07 (2.31) 3.83 (1.34) 10.75 (2.38) 98.2%
RWKV 351 4.31 9.79 (2.28) 3.82 (1.34) 10.51 (2.35) 100.0%

Table 2: Language modeling validation perplexity on the Pile. After pretraining on 10B tokens
of Pile data, we report log perplexity with negative log-likelihood in parentheses. We report overall
scores, and for the AR vs. non-AR token slices defined in Section 2.

C Extended Discussion of MQAR

Here we provide additional discussion on the properties of our MQAR synthetics, drawing contrast to
the AR formulations in prior work [9, 16]. We hope MQAR can be a useful tool to stress test future
architectures.

As discussed, the core difference is that language modeling can require performing O(n) recalls
in one forward pass. Prior work assumes there is a single token that requires AR per example, we
address this by designing a synthetic with multiple queries per example.

Figure 3: Across the Pile training data, we measure the distance between n-grams and their prior
occurrences a provided context. We plot the frequency across differences, finding it follows a power
law distribution.

The other modifications we find important are:

8

• Vocab size. We increase the vocabulary size to match the sizes typically used in language
modeling (30k - 50k tokens). Prior work uses vocab sizes ≤ 40 tokens.

• Gap distribution. Prior work further assumes that the single AR token is always at a fixed
position in the sequence. In real-world English text, the gaps between repeated n-gram
occurrences follows a power-law (Figure 3). We setup our multi-query AR to contain a
power-law distribution of lookup distances.

• Limited repetition. The prior AR task has each n-gram to be repeated numerous times per
input. Our setup requires the model to identify a needle-in-the-haystack when recalling the
n-gram.

D Details on Theoretical Analysis
D.1 Preliminaries and Notation
D.1.1 Notation
We denote the all 1 row vector of size k, given by [1 1 . . . 1 1], and the all 0 row vector of
size k, given by [0 0 . . . 0 0], as 1k and 0k, respectively. We also construe the standard basis
vector ei as a column vector in these notes, and adhere to the following matrix indexing convention:
M[i, j] is the entry in the ith row and the jth column, M[i, :] ∈ F1×n denotes the ith row, and
M[:, j] ∈ Fm×1 denotes the jth column of M ∈ Fm×n. We then use 1m×n,0m×n ∈ Fm×1 to
denote the matrix of all 1s and 0s, respectively.

Next, we denote the Hadamard product of vectors u,v ∈ Fn as u⊙v; the operation can be extended
to matrices by applying the Hadamard product column-wise across the matrices. This is commonly
referred to as (element-wise) gating. For vectors u,v ∈ Fn, we also denote their linear (or acyclic)
convolution as u ∗ v and cyclic convolution as u⊛ v.

Polynomial Notation. Because convolution is intimately tied to operations on polynomials, it is
convenient to use them to discuss the inputs and outputs of gated convolution models. Let us define
maps poly,poly∗ : Fn → F[X]/(Xn) such that

poly(u) =

n−1∑
i=0

u[i]Xi, and poly∗(u) =

n−1∑
i=0

u[i]Xn−1−i.

This allows us to map between vectors and polynomial. Accordingly, we also define coeff : Fn →
F[X]/(Xn+1) as the map converting polynomials back to vectors: coeff(u(X)) = u with u[i]
defined as the coefficient in u(X) at degree i.

These operations allow us to interpret the convolution of vectors in terms of polynomial multiplica-
tion [13]. More specifically, we have

u ∗ v = coeff (u(X) · v(X) mod Xn) , and
u⊛ v = coeff (u(X) · v(X) mod Xn − 1) .

We can similarly interpret the Hadamard product of vectors u ⊙ v as the Hadamard product of
polynomials u(X)⊙ v(X):

u⊙ v = coeff (u(X)⊙ v(X)) = coeff

(
n−1∑
i=0

(u[i] · v[i]) ·Xi

)
.

Arithmetic Circuit Notation. We briefly introduce the notation of arithmetic circuits [18], the
focus of Appendix D.5. An arithmetic circuit C with variables X ≜ {x1, x2, . . . , xn} over a field F
is interpreted as a directed acyclic graph, where the input nodes are labelled by either the variables
from X or constants from F and the internal nodes are labelled by + or × with the output being the
polynomial computed at the output node.

We shall also refer to the size of the circuit as the number of nodes, the depth of the circuit as the
length of the longest path between an input node and the output node, and the width of the circuit as
the number of parallel operations in the circuit, or ’wires’ which will be intersected by a horizontal
’cut’ through the circuit. Moreover, the degree of a circuit is defined as the degree of the polynomial
computed by the circuit. We summarize this with the following definition:

Definition D.1. An arithmetic circuit C is an (n, s,∆, w)-circuit if C is an n-variate arithmetic circuit
of size s and of depth at most ∆, and width w.

9

Model Notation. Now we introduce the notation we will be using for defining layers. In what
follows we denote u ∈ RN×d as the model input; N as the sequence length; L as the number of
stacked layers, indexed by ℓ; and d as the input (embedding) dimension.

D.1.2 Summary of the Results
The outline of our results are as follows: In Appendix D.2 we introduce gated convolution models
and define BASECONV and Hyena. In Appendix D.3 we introduce a set of primitive operations
that BASECONV can implement. Then, in Appendix D.5, we show that general arithmetic circuit
of size s and degree at most ∆ can be simulated by BASECONVṄext, in Appendix D.6, we derive
a BASECONV model inspired from dyadic intervals, followed by a BASECONV model with data-
dependent kernels, both of which can solve the multiple-query associative recall problem (MQAR).

D.2 Gated Convolution Models
We now present formal definitions of gated convolution models with respect to the 5-tuple of
parameters (N,L, d,N ′, d′).

Definition D.2. An (N,L, d,N ′, d′)− Gated Convolution Model is a stacked sequence to sequence
model with L layers such that:

1. input and output are N × d matrices,

2. each layer’s operations consist of element-wise gating, convolution, and linear projection,
and

3. all the individual gated convolution layers take in N ′ × d′ matrices and output N ′ × d′

matrices. We refer to the tuple (N ′, d′) as the inner dimension of the model.

We define the Hyena and BASECONV layers to make step 2 more concrete. We also assume that the
input u ∈ RN×d is embedded into u′ ∈ RN ′×d′

such that

u′[n, t] =

{
u[n, t] if n < N, t < d

0 otherwise.

The output from the last layer z ∈ RN ′×d′
is transformed into output y ∈ RN×d by extracting the

top left N × d entries in z.

D.2.1 The Hyena Layer
We will now outline the Hyena layer [17]. Hyena takes a sequence u ∈ RN×d as input and produces
L+ 1 projections p1, . . . , pL, v by passing y though a linear layer and applying a short convolution
afterwards. The algorithm then recursively performs a point-wise multiplication of the projection with
the convolution of the filter hl with the previous output. We summarize this process in Algorithm 2.

Algorithm 1 Projection (u,h)

Require: Input sequence u ∈ RN×d, a short convolution filter h ∈ RN .
1: In parallel for 0 ≤ n < N : ẑ[n, :]← Lineard′,(L+1)d (u[n, :]) so that ẑ ∈ RN×(L+1)d

2: In parallel for 0 ≤ t < (L+ 1)d : z[:, t]← h ∗ ẑ[:, t]
3: Reshape and split z ∈ RN×(L+1)d into p1, . . . ,pL,v, where pℓ,v ∈ RN×d for ℓ ∈ [L].
4: return p1, . . . ,pL,v.

Algorithm 2 Hyena (u,h,hs)

Require: Input sequence u ∈ RN×d, set of convolution filters h1, . . . ,hL ∈ RN×d, short convolu-
tion filter hs ∈ RN .

1: p1, . . . ,pL,v ← Projection(u,hs).
2: z0 ← v
3: for ℓ = 1, . . . , L do
4: In parallel for 0 ≤ t < d : zℓ[:, t]← pℓ[t, :]⊙

(
hℓ[:, t] ∗ zℓ−1[:, t]

)
.

5: return zL

10

Remark D.3. Algorithm 2 is not the model in [17] in terms of the number of layers L as we
have focused on the recursive application of the Hadamard product and convolutions. However,
asymptotically, this does not make a difference.

Henceforth, we will refer to a model consisting of L Hyena layers is a gated convolution model with
associated tuple (N,L, d,N, (L+ 1)d) as (N,L, d,N, (L+ 1)d)− Hyena.

D.2.2 BASECONV

Finally, we introduce the BASECONV here as follows:

Y = (uW + b1)⊙ (u ∗ h+ b2), (2)

with input u ∈ RN ′×d′
, weight matrix W ∈ Rd′×d′

and bias matrices bi ∈ RN ′×d′
defining linear

projections of the input sequence, and h ∈ RN ′×d′
is the a set of the d′ mixed length filters. The

corresponding pseudocode for BASECONV is as follows:

Algorithm 3 BASECONV (u,W ,b1,h,b2)

Require: Input sequence u ∈ RN ′×d′
, linear mapping W ∈ Rd′×d′

, convolution filter h ∈ RN ′×d′
,

bias matrices b1,b2 ∈ RN ′×d′
.

1: In parallel for 0 ≤ n < N ′ : x[n, :] = Lineard′,d′ (u[n, :])
2: In parallel for 0 ≤ t < d′ : z[:, t] = h[:, t] ∗ u[:, t]2

3: In parallel for 0 ≤ t < d′ : y[:, t]← (x[:, t] + b1[:, t])⊙ (z[:, t] + b2[:, t]). ▷ See (2)
4: return y

Similar to Hyena, we will refer to a model consisting of L BASECONV layers as (N,L, d,N ′, d′)−
BASECONV. In our experiments, we extend BASECONV by adding an MLP after Algorithm 3. For
simplicity we will denote BASECONV (u,h, b1, b2) as BASECONV (u,h) when b1 = b2 = 0.

We will now show that there exists a BASECONV model that can emulate each of the basic operations
in Algorithm 3.

Lemma D.4. The functions Lineard,d (u), with d, d′ defined as in Algorithm 3, convolution with
filter h ∈ RN×d, and element-wise gating can be computed with Algorithm 3 via a (N, 1, d,N, d′)−
BASECONV.

Proof. For each operation from Definition D.2 and Algorithm 3:

1. For any input u ∈ RN ′×d′
, Lineard,d′ (u) with matrix representation W ∈ RN ′×d′

can
be performed by a single BASECONV layer computing BASECONV (y,W ,h, b1, b2) with
b1 and b2 being the matrix of all 0s and all 1s, respectively while and the convolution with
the zero filter. That is, we have

Y = (uW+0N ′×d′
)⊙(u∗0N ′×d′

+1N ′×d′
) = (uW)⊙1N ′×d′

= uW = Lineard,d′ (u) .

2. For any input u ∈ RN×d, convolution with filter h ∈ RN×d can be performed by a single
BASECONV layer computing BASECONV (y,W ,h, b1, b2) where W, b2 are all zeroes,
and b1 is the matrix of all 1s so that we get

Y = (u0N ′×d′
+ 1N ′×d′

)⊙ (u ∗ h+ 0N ′×d′
) = 1N ′×d′

⊙ (u ∗ h) = u ∗ h.

3. We may compute element-wise gating between matrices u,v ∈ RN×d, where v is some
fixed factor, with a single layer computing BASECONV (y, ,)0N ′×d′

, e0,v,0
N ′×d′

where
e1 is the identity filter, respectively, by Definition D.2.

Y = (u0N ′×d′
+ v)⊙ (u ∗ e0 + 0N ′×d′

) = v ⊙ u.

11

D.3 Primitives
In this section, we will establish some additional basic primitives that we expect a gated convolution
model to emulate: shift, remember and add. We specify them below:

1. Shift an sequential input of length N up or down by s entries:

shift_up(y, s), shift_down(y, s)

• Input: y ∈ RN×d, s ≥ 0

• Output: z ∈ R
N×d where z+ = shift_down(y, s) and z− =

shift_up(y, s)

y ≡



← y0 →

...

← yi−1 →

← yi →

...

← yN−1 →



z+ ≡



← 0→

...

← 0→

← y0 →

...

← yN−1−s →



z− ≡



← ys →

...

← yN−1 →

← 0→

...

← 0→



2. Add a sequence x ∈ Rn×d to a running sum S ∈ Rn×d for some 2n ≤ N ′ with both x
and S contained as subvectors in y ∈ RN×d

addn(y : x,S)

• Input: sequence y containing x,S ∈ Rn×d for 2n ≤ N such that y[0 : n−1] ≡
x,y[n : 2n− 1] ≡ S and y[2n : N − 1] ≡ 0N−2n.

• Output: z ∈ RN×d containing the sum y+S such that y[0 : n−1] ≡ 1n,y[n :
2n− 1] ≡ S + x and z[2n : N − 1] ≡ 0N−2n.

y ≡



← x→

← S →

←− 0 −→

...

← 0→


z ≡



← 1n →

← S + x→

←− 0 −→

...

← 0→



3. Remember v ∈ Rm×d as part of a sequence of input y ∈ RN×d while performing gated
convolution only on x ∈ Rn×d for some m,n ≤ N × d.

remembern,m,s,t(y : x, v, h, p)

12

• Input: sequence y ∈ RN×d containing x ∈ Rn×d,v ∈ Rm×d, and modifiers
p,h ∈ Rn×d such that y[0 : n − 1] ≡ x,y[n + s : n + s + m − 1] ≡ v and
y[i] = 0 otherwise with x ∗ h ∈ R(n+s)×d and v ∗ h ∈ R(m+t)×d.

• Output: z ∈ RN×d containing (p⊙ (x ∗ h)) ∈ R(n+s)×d, such that:

y ≡



← x→

0s

← v →

...

0


z ≡



← p⊙ (x ∗ h)→

← v →

...

0



These primitives are building blocks of our proofs in the sequel. We will show that each of these
primitives can be solved by some (N,L, d,N ′, d′)− BASECONV model with a small constant L.

Proposition D.5 (The Shift Primitive). For any y ∈ RN×d, there exist (N, 1, d,N, d)−BASECONV
and (N, 3, d,N, d) − BASECONV that computes shift_down(y, s) and shift_up(y, s) for any
s ≤ N .

Proof. Define the following kernel dependent on s ≤ N

hs[n, :] ≡
{
1d if n = s+ 1

0d otherwise.

We now deal with the down and up shifts separately:

1. We define W := 0N×d, b1 := 1N×d, b2 := 0N×d. Then, for input y ∈ R
N×d,

BASECONV
(
y,0N×d,hs,1

N×d,0N×d
)

for BASECONV in Algorithm 3 is given by (2) as

Y ≡ y ∗ hs.

Now, to perform shift_down(y, s), we note that

Y[:, j] = y[:, j] ∗ hs[:, j] = coeff(y[:, j](X) · hs[:, j](X))

= coeff

((
N−1∑
i=0

y[i, j] ·Xi

)
·Xs mod XN

)

= coeff

(
N−1∑
i=0

y[i, j] ·Xi+s mod XN

)

= coeff

(
N−1+s∑

i=s

y[i− s, j] ·Xi mod XN

)

= coeff

(
N−1∑
i=s

y[i− s, j] ·Xi

)
,

which implies that we exactly get what is specified in the output.

2. We again define W := 0N×d, b1 := 1N×d, b2 := 0N×d. Then, for input y ∈ RN×d,
BASECONV

(
y,0N×d, e0,1

N×d,0N×d
)

for BASECONV in Algorithm 3 is given in (2) as

Y0 ≡ y ⊛ e0.

13

Now, to perform shift_up(y, s), as before, we first apply the circular convolution to
reverse the input

Y0[:, j] = y[:, j]⊛ e0 = coeff

(
N−1∑
i=0

y[N − 1− i, j] ·Xi

)
,

We then apply Y1 ≡ shift_down(Y0, s) to get

Y1[:, j] ≡ coeff

(
N−1∑
i=s

Y0[N − 1− (i− s), j] ·Xi

)
,

≡ coeff

(
N−1∑
i=s

Y0[N − 1− i+ s, j] ·Xi

)
.

Finally, we apply another circular convolution with the identity filter to replace N − 1− i
with i to get

Y2[:, j] = Y1[:, j]⊛ e0 = coeff

(
N−1∑
i=0

y[i+ s, j] ·Xi

)
,

Here, we note that we can compute both of these primitives in one and three layer, respec-
tively (see Lemma D.8).

Now, we present a BASECONV model with two layers that implements the addn(y : x,S), the
purpose of which is to add some window of computation x to a running sum S.

Proposition D.6 (The Running Sum Primitive). For any x,S ∈ Rn×d contained in some y ∈
R

N×d, there exists a (N, 2, d,N, d)− BASECONV that computes addn(y : x,S) for BASECONV
as in Algorithm 3.

Proof. We will show this for d′ = 1 and the general case follows as we will explain at the end. We
now specify the two layers that we use

z1 ≡ BASECONV
(
y,0N×1,h1, b11,0

N×1
)
≡ b11 ⊙

(
h1 ∗ y

)
z ≡ BASECONV

(
z1,0N×1,h2, b21, b

2
1

)
≡ b21 ⊙

(
h2 ∗ y + b22

)
,

where we will specify the kernels as we go along. Let us start by defining the kernel and the bias for
the first layer as

h1 ≡



e0

e0

0n

· · ·

0n


, b1 ≡



0n

1n

0n

· · ·

0n


.

Let us first compute h1 ∗ y as follows:

h1(X) · y(X) = (Xn + 1) · (S(X) ·Xn + x(X))

= S(X) ·X2n + (S + x)(X) ·Xn + x(X).

14

We then have

z1 ≡ b11 ⊙
(
h1 ∗ y

)
≡



0n

1n

0n

· · ·

0n


⊙



x

S + x

S

· · ·

0n


≡



0n

S + x

0n

· · ·

0n


Resetting for Next Phase. We now use the next layer to reset for the next phase. Here, we need the
first vector to be 1n in order to start adding the next vector. We thus use the kernel and the biases
h2, b21, b

2
2 defined as

h2 ≡



e0

0n

0n

· · ·

0n


, b21 ≡



1n

1n

0n

· · ·

0n


, b22 ≡



1n

0n

0n

· · ·

0n


.

Explicitly, for the second layer, we compute the result of the convolution in terms of polynomials as
follows:

h2(X) · z1(X) = 1 · (S + x)(X) ·Xn = (S + x)(X) ·Xn.

Thus, the output for the second layer is given by

z ≡ b21⊙
(
h2 ∗ z1 + b22

)
≡



1n

1n

0n

· · ·

0n


⊙





0n

S + x

0n

· · ·

0n


+



1n

0n

0n

· · ·

0n




≡



1n

1n

0n

· · ·

0n


⊙



1n

S + x

0n

· · ·

0n


≡



1n

S + x

0n

· · ·

0n


.

Therefore, we have used two BASECONV layers to add x to the running sum S and reset for the
next phase. Here, we note that the only operations we perform and are convolutions and Hadamard
product and they generalize in the obvious way to d > 1.

Next, we show that a five layer BASECONV model can perform gated convolution on windows of the
input (without changing the rest of the input).

Proposition D.7 (The Remembering Primitive). For any x ∈ Rn×d,v ∈ Rm×d contained in
some y ∈ RN×d for some n + m + s + t ≤ N so that for h ∈ Rn×d and p ∈ R(n+s)×d with
x∗h ∈ R(n+s)×d and v∗h ∈ R(m+t)×d, there exists a (N, 5, d,N, d)−BASECONV that computes
remember(y : x,v,h,p) for BASECONV as in Algorithm 3.

Proof. We will again show this for d′ = 1 and the general case should follow. We now specify the
first two layers that we use

z1 ≡ BASECONV
(
y,0N×1,h1, b11,0

N×d
)
≡ b11 ⊙

(
h1 ∗ y

)
z2 ≡ BASECONV

(
z1,0N×1,h2, b21,0

N×d
)
≡ b21 ⊙

(
h2 ∗ y

)
,

15

The kernel h1 and the bias b11 for the first layer are then given by

h1 ≡



h

0m

es+t

0n

0n

· · ·

0n



, b11 ≡



p

0m+t

0n

0s

1m

· · ·

0n



.

where recall that x ∗ h ∈ R(n+s)×d and v ∗ h ∈ R(m+t)×d.

We now want to first specify the result of applying the first kernel:(
h1 ∗ y

)
= coeff

(
(h(X) +Xn+m+s+t) ·

(
v(X) ·Xn+s + x(X)

))
= coeff

(
h ∗ v(X) ·Xn+s + h ∗ x(X) + v(X) ·X2n+2s+m+t + x(X) ·Xn+m+s+t

)
We then have

z1 ≡ b11 ⊙
(
h1 ∗ y

)
≡



p

0m+t

0n

0s

1m

· · ·

0n



⊙



h ∗ x

h ∗ v

x

0s

v

· · ·

0n



≡



p⊙ (h ∗ x)

0m+t

0n

0s

v

· · ·

0n



.

We now describe the second kernel h2 and the bias matrix b21 as follows:

h2 ≡



e0

0m+t

e0

0n+s

0m

· · ·

0



, b21 ≡



0n+s

0m+t

0n

1n+s

1m

· · ·

0


This yields the following convolution computation:

h2 ⊙ z1 ≡ coeff
((
Xm+n+s+t + 1

)
·
(
v(X) ·X2n+2s+m+t + (p⊙ (h ∗ x)) (X)

))
≡ coeff(v(X) ·X3n+3s+2m+2t + v(X) ·X2n+2s+m+t

+ (p⊙ (h ∗ x)) (X) ·Xm+n+s+t + (p⊙ (h ∗ x)) (X))

16

Thus we have

z2 ≡ b12 ⊙
(
h2 ∗ z1

)
≡



0n+s

0m+t

0n

1n+s

1m

· · ·

0



⊙



p⊙ (h ∗ x)

0m+t

0n

p⊙ (h ∗ x)

v

· · ·

0



≡



0n+s

0m+t

0n

p⊙ (h ∗ x)

v

· · ·

0


We now shift this up by 2n+s+m+t entries using the primitive operation defined in Proposition D.5
that costs three additional layers so that we end up with

z ≡



p⊙ (h ∗ u)

v

· · ·

0


Again, we note that the only operations we perform and are convolutions and Hadamard product and
they generalize in the obvious way to d > 1.

Finally, we show that these primitives may be composed by ’stacking’ models with matching inner
dimension (N ′, d′).

Lemma D.8. For f, g : RN×d → R
N×d that have (N,L1, d,N

′, d′) and (N,L2, d,N
′, d′)

BASECONV models then their composition f ◦ g has an (N,L1 + L2, d,N
′, d′) BASECONV model

which can be computed by performing their models in succession, or ’stacking’.

Proof. This result follows from noting that for any f(u) which requires L1 layers to compute and
that we can compute f ◦ g(u) = g(f(u)) using the BASECONV model with L2 layers, yielding
L1 + L2 layers in total.

D.3.1 BASECONV-Hyena Equivalence
We show that the equivalence between BASECONV and Hyena by showing that each layer can
simulate the other’s computation using a constant number of layers.

Proposition D.9. For any input u ∈ RN×d and (N,L, d,N ′, d)−Hyena such that zHyena ≡
Hyena(u) with a set of filters hℓ and projections pℓ for ℓ ∈ [L], there exists a (N, 5L, d,N ′ +N, d)-
BASECONVmodel such that zHyena ≡ BASECONV(u).

Similarly, for any input uBASECONV ∈ RN×d and (N,L, d,N ′, d)−Coyote such that zBASECONV ≡
BASECONV(u) with a set of filters hℓ for ℓ ∈ [L], there exists a series of Hyena layers such that we
have

Hyena (Hyena (. . .Hyena(uBASECONV,h)))︸ ︷︷ ︸
L layers

≡ zBASECONV.

Proof. For the input uHyena ∈ RN×d, the output of the ℓth layer zℓ
Hyena ∈ RN ′×d′

for Hyena is
given by (see Algorithm 2)

zℓ
Hyena ≡ pℓ

Hyena ⊙ (hl ∗ zℓ−1),

17

where pℓ
Hyena ≡ Linear(uHyena) ∈ RN ′×d. Now, using the original input uHyena ∈ RN×d to

Hyena, we define the following input for BASECONVusing one layer:

uBASECONV ≡


uHyena

0(N ′−N)×d

uHyena


Then, we simply use the rememberN,N,N ′−N,N ′−N (uBASECONV : uHyena,uHyena,h

ℓ
Hyena,p

ℓ
Hyena)

primitive for BASECONV. Consequently, this allows us to “remember” the input uHyena in the output
of the previous BASECONVlayer zℓ−1

BASECONV. We then use this to retrieve pℓ
Hyena ≡ linear(uHyena)

with the projection used for BASECONV given by

pℓBASECONV ≡ Linear(zℓ−1
BASECONV) ≡

 1N×d

pℓ
Hyena.


Overall, the output of the ℓth layer for BASECONV is given by

zℓ
BASECONV ≡


pℓ
Hyena ⊙

(
hℓ
Hyena ∗ uHyena

)
0(M−N)×d

uHyena

 ≡


zℓ
Hyena

0(M−N)×d

uHyena


Hence, we can reproduce the output of the ℓth layer of Hyena using five layers of BASECONV after
augmenting the input and using the remembering primitive (Proposition D.7) with internal dimension
N ′ +N .

Now, for the input uBASECONV ∈ RN×d, the output of the ℓth layer for BASECONV is given by

zℓBASECONV ≡ Linear(zℓ−1
BASECONV)⊙ conv(hl, zℓ−1

BASECONV).

Here, we show inductively that simply using ℓ-many Hyena models recursively simulates zℓBASECONV.
For ℓ = 1, we have

Hyena(uBASECONV,h) ≡ Linear(uBASECONV)⊙ (h1 ∗ uBASECONV) ≡ z1
BASECONV.

We now assume that (ℓ− 1)-many recursive Hyena models produce z
(ℓ−1)
BASECONV. For the ℓth layer, we

then have

Hyena (Hyena (. . .Hyena(uBASECONV,h)))

≡ Hyena
(
z
(l−1)
BASECONV

)
≡ linear

(
z
(l−1)
BASECONV

)
⊙ conv

(
hl, z

(l−1)
BASECONV

)
≡ zl−1

BASECONV

≡ zℓBASECONV.

D.4 Linear Arithmetic Circuits
In this section we show the relation between linear arithmetic circuits and BASECONV. We recall a
few definitions from [7].

Definition D.10 (Linear Arithmetic Circuit [4]). An arithmetic circuit is called a linear arithmetic
circuit if it only uses addition, subtraction and scalar multiplication. Further, every multiplication has
a fixed constant from F as at least one of its two inputs. In other words, all gates in the circuit are
linear functions of their inputs (i.e. of the form ax+ by for fixed constants a, b ∈ F).

Definition D.11 (Butterfly Matrices [7]). A butterfly factor of size k ≥ 2 (denoted as Bk) is a matrix

of the form Bk =

[
D1 D2

D3 D4

]
where each Di is a k

2 ×
k
2 diagonal matrix. We restrict k to be a

power of 2 .

18

A butterfly factor matrix of size n with block size k (denoted as B(n)
k) is a block diagonal matrix of

n
k (possibly different) butterfly factors of size k :

B
(n)
k = diag

(
[Bk]1 , [Bk]2 , . . . , [Bk]n

k

)
Finally, a butterfly matrix of size n (denoted as B(n)) is a matrix that can be expressed as a product of
butterfly factor matrices: B(n) = B

(n)
n B

(n)
n
2

. . .B
(n)
2 . Equivalently, we may define B(n) recursively

as a matrix that can be expressed in the following form:

B(n) = B(n)
n

 [B(n
2)
]
1

0

0
[
B(n

2)
]
2


(Note that

[
B(n

2)
]
1

and
[
B(n

2)
]
2

may be different.)

From Definition D.11, we observe that size n butterfly factor is comprised of three vectors
d, d+, d− ∈ Rn such that

d =
(
diag−1 (D1) ,diag

−1 (D4)
)
,

d+ =
(
0
n
2 ,diag−1 (D2)

)
, and

d− =
(
diag−1 (D3) ,0

n
2

)
,

where diag−1(D) : Rn×n 7→ R
n is the mapping from diagonal matrices to the vector of its diagonal

entries. Let us define D1,D2,D3 ∈ Rn×n as diag (d) ,diag
(
d+
)
, and diag

(
d−) respectively.

Then we note that

D1 ≡
[

D1 0
0 D4

]
D2S

n
2 ≡

[
0 D2

0 0

]
S

n
2 D3 ≡

[
0 0
D3 0

]
(3)

where Sk ∈ Fn×n is a shift matrix for i ∈ [n/2]. This gives us the following proposition:

Proposition D.12. For any powers of 2, n = k ≥ 2, any butterfly factor matrix B(n)
k is equivalent to

B
(n)
k = S

k
2D3 +D2S

n
2 +D1

where D3,D2,D1,S
n
2 are defined as in (3).

We use Proposition D.12 to show that butterfly matrices can easily be computed by BASECONV .

Lemma D.13. For any n, d ≥ 2, k ≥ 1, and arbitrary vector x ∈ Rnd:

(1) there exists a (N,L, d,N ′, d′)−BASECONV that can represent B(nd)
k ·x with N = n,N ′ =

O(N), L = O(1), and d′ = O(d), and

(2) there exists a (N,L, d,N ′, d′)−BASECONV that can represent B(nd) ·x with N = n,N ′ =
O(N), L = O(log nd), and d′ = O(d).

Proof. (1) Given x ∈ Rnd, construct u ∈ Rn×d where x is the row-major form of u. We
show that BASECONV can compute Bnd · x column by column.

Let A = S
k
2D′

3,C = D′
2S

n
2 , and D = D1 for Di,S

k
2 ∈ Rnd×nd for 1 ≤ i ≤ 3 as

defined in Proposition D.12. We take d1 = 1ndD, d2 = 1ndC2,d3 = 1ndA, which
extracts the diagonal entries of Di. With this we construct D′

i ∈ Rn×d where di is the row
major form of D′

i. This implies that

Dix ≡ D′
i ⊙ u.

19

Then we can decompose Bnd · x into

Bndx ≡ D1 ⊙ u+D2 ⊙ u+D3 ⊙ u.

By Lemma D.4, each Hadamard product A ⊙ u,B ⊙ u,C ⊙ u can be trivially be per-
formed with a single layer BASECONV model. Let each of these model outputs be denoted
y1, y2, y3, respectively. Finally all that remains is to compute the y1 + y2 + y3. We
achieve this using layers of add primitives3:

addn(y1 : y1,0)

addn(y2 : y2,y1)

addn(y3 : y3,y1 + y2),

where using by Proposition D.6 and Lemma D.8, this requires six more layers, and we get

y3 ≡ y1 + y2 + y3 ≡ Bndx.

Then we can construct the (N,L, d,N ′, d′)−BASECONV as desired with L = O(1) layers.

(2) From Definition D.11, B(nd) = B
(nd)
nd B

(nd)
nd
2

. . .B
(nd)
2 . From (1), BASECONV can compute

any butterfly matrix by simulating the log(nd) butterfly factor matrices which comprise
B(nd). With Lemma D.8, this creates a BASECONV with 5 · log(nd) = O(log(nd)) layers.
Lemma D.8

Butterfly matrices comprise the kaleidoscope hierarchy, which we define below:

Definition D.14 (The Kaleidoscope Hierarchy [7]).

• Define B as the set of all matrices that can be expressed in the form B(n) (for some n).

• Define (BB∗) as the set of matrices M of the form M = M1M
∗
2 for some M1,M2 ∈ B.

• Define (BB∗)
w as the set of matrices M that can be expressed as M = Mw . . .M2M1,

with each Mi ∈ (BB∗) (1 ≤ i ≤ w). (The notation w represents width.)

• Define (BB∗)
w
e as the set of n× n matrices M that can be expressed as M = SES⊤ for

some en× en matrix E ∈ (BB∗)
w, where S ∈ Fn×en = [In 0 . . . 0]] (i.e. M is the

upper-left corner of E). (The notation e represents expansion relative to n.)

We similarly show how BASECONV can simulate any kaleidoscope matrix.

Lemma D.15. Given n, d ≥ 2, e > 0 for any nd×nd matrix M ∈ (BB∗)
w
e , and x ∈ Rnd there exists

a (N,L, d,N ′, d′)− BASECONV that can represent M · x with N = n,L = O(w log(end)),N ′ =
en, and d′ = d.

Proof. By Definition D.14, M can be decomposed with respect to size end× end matrix

E = E1 ·E2 · · ·Ew.

Further, any Ei ∈ (BB∗) can be expressed as a product of 2 log end butterfly factor matrices. Then
by Lemma D.13 and Lemma D.8 we can compute Eix

′ in by stacking 2 log end (n, d, L, en, d)−
BASECONV models each with L = O(1). Because E has width w, Lemma D.8 implies that
composing with each Ei for 1 ≤ i ≤ w constructs a final model with O(w log(end)) layers.

Finally, the kaleidoscope hierarchy is related to linear arithmetic circuits via the following result. We
note that in [7] it is assumed that w = s, yet inspection of the proof yields the following stronger
result:

3Recall that addn(y : x,S) adds the subvector x to S for the input y.

20

Theorem D.16 ([7]). Let M be an n× n matrix such that multiplication of M times an arbitrary
vector u can be be represented as (n, s,∆, w)-linear arithmetic circuit C. Then, M ∈ (BB∗)

O(∆)
O(w/n).

We combine Theorem D.16 and Lemma D.15 to show that BASECONV can compute any linear
arithmetic circuit with polylogarithmic factors in ∆.

Corollary D.17. For any (nd, s,∆, w)-linear arithmetic circuit C that can be represented by a
matrix M ∈ Rnd×nd multiplied by a vector x ∈ Rnd, there exists an equivalent (n,∆′, d, w, d)−
BASECONV with ∆′ = O(∆ log(nd)) such that Mx = BASECONV (u,h) where x is the row
major form of u ∈ Rn×d.

D.5 General Arithmetic Circuits
We are now ready to prove the result that yields the equivalency between arithmetic circuits and
BASECONV.

Theorem D.18. For any (nd, s,∆, w)-arithmetic circuit C, there exists an equivalent
(N,∆′, d,N ′, d′) − BASECONV with N = n,∆′ = O(∆ logw), N ′ = O(w), d′ = d which
simulates C.

Proof. Let us layer C so that each layer Cℓ for ℓ ∈ LC = O(∆) either only has linear gates or
multiplication gates, and the composition of all Cℓ layers results in C. We use zℓ ∈ Rw to denote the
output of the ℓ-th layer Cℓ which feeds as the input to the (ℓ+ 1)-th layer Cℓ+1. Here, we note that if
we can simulate each Cℓ with BASECONV, then we can simulate the entire layered circuit C due to
Lemma D.8.

Now, if the layer Clinℓ is a linear layer (with only addition gates), then it can be represented by a
matrix M ∈ Rw×w multiplied by zℓ−1 ∈ Rw (We can append with 0s if necessary so that the input
from the previous gates can be written as w-length vector). Thus, we can apply Corollary D.17 to
simulate Clinℓ with an equivalent (n, logw, d,w, d)− BASECONV model.

Next, if Cmult
ℓ instead consists of only the multiplication gates. Then, we note here that the output

zℓ−1 may not exactly equal the input to Cmult
ℓ . Nevertheless, we can apply a O(w) sparse linear map

R ∈ Rw×w so that Rzℓ−1 yields vectors v1,v2, and v3, where v1 constitutes the “first" input to
all the multiplication gates and v2 constitutes all the “second" inputs while v3 consists of all entries
needed as inputs in the subsequent layers. That is, for the ith gate in Cmult

ℓ , we compute v1
i · v2

i . This
implies that for all the gates in Cmult

ℓ , we can simply compute v1⊙v2. To this end, we can simply use
the remember(zℓ−1 : v1,v3, e0,v2) primitive with constant number of layers from Proposition D.7
to define a (n,O(logw), d, w, d) − BASECONV model that remembers v3 while performing the
Hadamard product of v1 with v2.

Overall, we can then collect all the resulting BASECONVlayers and compose them as in Lemma D.8
to simulate C. Overall, the number of layers used is given byO(∆ logw) while the internal dimension
remains fixed at w.

D.6 The Multiple-Query Associative Recall Problem
D.6.1 Introduction
In this section, we consider a general version of the associative recall problem [3]. The original
formulation of the associative recall problem considers an input sequence of key-value pairs with a
query at the end. If there exists a key in the sequence that matches the query, we return its associated
value. However, as we have shown empirically in Section 2, proficiency in this synthetic does not
necessarily align to performance in downstream tasks. Therefore, we have proposed a new general
synthetic version of this problem that helps in this regard.

Setup. We recall here the multiple-query associative recall problem (MQAR) from Definition 2.1.

Suppose we are given an input sequence u[0 · · · 3N − 1] ≜
{(k0,v0, q0) , . . . , (kN−1,vN−1, qN−1)} with each ki,vi, qi ∈ C is a to-
ken drawn from a vocabulary of size c = |C|. Our goal is then to check, for each
1 ≤ i ≤ N − 1, whether there exists 0 ≤ j < i such that qi ≡ kj , and if so, output
vj .

21

Here, we note that it suffices to have d ≈ log(C) so that ki,vi, qi is embedded in {0, 1}d. Here, we
construe the tokens ki, qi and vi to be the keys, the queries, and the associated values. Indeed, it
might be helpful to think of the input u as a streaming sequence of key-value pairs for which we
sequentially employ standard associative recall for every key that shows up in the sequence so far. A
slightly more specific problem considers a sequence u[0 · · ·N − 1] := {x0, . . . ,xN−1}, where each
xi ∈ C. The goal is then to check, for each 1 ≤ i < N − 1, whether there exists 0 ≤ j < i such that
xi ≡ xj , and if so, output xj+1, and continue otherwise. We can reduce this problem to the general
formulation by taking the following sequence of tuples as the input {(xi,xi+1,xi)}.

D.6.2 Trivial Solution via Attention

Before describing how BASECONV solves the multiple-query associative recall problem, we discuss
how Attention solves it trivially using pairwise inner-products.

Proposition D.19. Given an input u ∈ {0, 1}N×c, Attention (even without using soft-max) solves
MQAR for u using O(max(N, c2)) parameters, O(min(Nc2, N2c)) time complexity and O(1)
layers.

Proof. Without softmax, the output for attention O ∈ R3N−1×d is given by

O ≡
(
QK⊤)V1, (4)

where Q,K,V ∈ R3N−1×d are positional embeddings learned from the input u ∈ R3N−1×d such
that we have

Q[i, :] :=

{
u[i, :] if i ∈ Q,
0d otherwise

,

K[i, :] :=

{
u[i, :] if i ∈ K,
0d otherwise

,

V[i, :] :=

{
u[i, :] if i ∈ V,
0d otherwise

,

where K,Q,V are defined as in (13). We can then use N parameters to shift up V1 so that we have

V1[i, :] :=

{
u[i− 1, :] if i ∈ V,
0d otherwise

=

{
u[i+ 1, :] if i ∈ K,
0d otherwise

,

where note that u[i+ 1, :] ≡ vi for i ∈ K. Next, we compute the term in the parenthesis as

(
QK⊤) [i, j] = ⟨Q[i, :],K⊤[:, j]⟩

= ⟨Q[i, :],K[j, :]⟩

=

{
⟨u[i, :],u[j, :]⟩ if i ∈ Q, j ∈ K
0 otherwise

=

{
⟨qi,kj⟩ if i ∈ Q, j ∈ K
0 otherwise

=

{
1 if i ∈ Q, j ∈ K, qi ≡ kj ≡ ek for some k

0 otherwise.

22

Finally, we compute the output as follows:

O[i, :] =
((
QK⊤)V1

)
[i, :]

=
(
QK⊤) [i, :] ·V1

=

N−1∑
j=0

(
QK⊤) [i, j] ·V1[j, :]

=
∑
j∈K

(
QK⊤) [i, j] · u[j + 1, :]

=

{
u[j + 1, :] if j ∈ K, i ∈ Q, qi ≡ kj

0d otherwise

=

{
vj if j ∈ K, i ∈ Q, qi ≡ kj

0d otherwise

That is, for each query qi, we solve the associated value problem yielding a match for the jth key.

In total, we only need O(c2)-many parameters to perform these multiplications with N for shifting
values; the time complexity comes from the fact that we can either multiply QK⊤ or K⊤V1, and
finally, we only need O(1) layer to do so.

In the sequel, we develop an algorithm to solve the multiple-query associative recall problem with
O(Nd · log2 N) work complexity and O(d · log2 N) time. We then convert the algorithm into
a BASECONV model via the route of arithmetic circuits, which then solves the multiple-query
associative recall problem with Õ(1) layers and Õ(Nd) parameters.

D.6.3 Initial Attempt: A Sequential Algorithm
We will first discuss the algorithm that simply uses an associative array to solve the multiple-query
associative recall problem. Specifically, we want to use a data structure that allows for logarithmic
insertion and membership query. Here, we do not specify a choice but data structures including
self-balancing binary search trees which allow for O(logN · d) insert and find operations for
d-bit entries should be sufficient.

Algorithm 4 Sequential-MQ-AR (u) [0 · · ·N − 1]

Require: Input sequence u[0 · · ·N − 1] ≜ {(ki,vi, qi)}N−1
i=0 with each ki,vi, qi ∈ {0, 1}d.

1: Initialize an associative array with insert and find and an output array out← [].
2: for i ∈ {0, . . . , N − 1} do
3: (kj ,vj)← find(qi) ▷ Query for qi in the data structure.
4: if kj is not null then
5: Add vj to out.
6: insert(ki,vi) ▷ Add the key-value pair to the data structure.
7: return out.

Proposition D.20. Algorithm 4 solves the multiple-query associative recall problem (MQAR) in
O(dN logN) time for an input sequence u ∈ {0, 1}N×d.

Proof. For any i ∈ {0, . . . , N − 1}, we know that both insertion and lookup operations take
O(log(i) · d) time. Overall, the runtime of the algorithm is

N−1∑
i=0

O(log(i) · d) = O(log(N !) · d) = O(N logN · d).

23

D.6.4 Algorithm via Parallel Binary Search
Our plan is to convert the algorithm for solving the multiple-query associative recall problem in the
RAM model into an arithmetic circuit, which by Theorem D.18 will lead to a BASECONV model
that solves the multiple-query associative recall problem. With respect to Algorithm 4, it may be
the case that the arithmetic circuit has a large number of layers Ω(N). Unfortunately, this would
imply that the resulting BASECONV model may have near quadratic complexity. Instead, we now
initiate our effort into designing a BASECONV model with both small enough number of parameters
and number of layers. Here, we will first subdivide the problem using dyadic intervals into O(N)
subproblems and reduce each such subproblem into a multiple search problem [2]. To this end, we
briefly introduce the multiple search problem below.

Given two array of numbers A ≜ a0 ≤ . . . ≤ an−1 and B ≜ (b0 ≤ . . . ≤ bm−1)
with n ≤ m, for each aj ∈ A, the goal is to find the smallest element in B that is
larger than or equal to aj .

The multiple search problem is solved by a parallel binary search (pbs) algorithm in [2] with work
complexity O(n · logm) and time O(log n logm). Specifically, for sorted arrays A[0 · · ·n− 1] and
B[0 · · ·m− 1], pbs constructs the array C[0 · · ·n− 1] defined as

C[i] ≜

{
min0≤j<m{j| A[i] ≤ B[j]} if A[i] ≤ B[m− 1]

m otherwise.
(5)

The algorithm itself runs in exclusive-read exclusive-write (EREW) PRAM model—no two processors
are allowed to read from or write into the same memory location at the same time.

We now augment the algorithm copied from [2] for our purposes below.

Algorithm 5 pbs-key-values (q[s · · · t], k[x · · · y], n,m)

Require: sorted arrays q[s · · · t] := {qi}ti=s, k[x · · · y] := {kj}yj=x.
1: Initialize n processors denoted P0, P1, . . . , Pn−1

2: {Sequential steps are assumed to be executed by Ps.}
3: Initialize the output array C := [m]ti=s.
4: if s ≤ t then
5: mid← (s+ t)/2
6: if q[mid] ≤ k[x] then
7: for i := s to mid in parallel do
8: C[i]← x ▷ Step executed in parallel by Pi

9: pbs-key-values (q[mid + 1 · · · t], k[x · · · y])
10: else
11: if q[mid] > k[y] then
12: for i := mid to t in parallel do
13: C[i]← y + 1 ▷ Step executed in parallel by Pi

14: pbs-key-values (q[s · · ·mid− 1], k[x · · · y])
15: else ▷ C[mid] is determined using sequential binary search
16: z ← minx≤j≤y{j| q[mid] ≤ k[j]}
17: C[mid]← z
18: do steps 19 and 20 in parallel
19: pbs-key-values (q[s · · ·mid− 1], k[x · · · z − 1])]
20: pbs-key-values (q[mid + 1 · · · t], k[z · · · y])
21: return C.

Let Σ be the set {0, 1} and denote the set of binary strings of size n as Σn. We define prefix(x) for
n-bit strings as the set of all initial substrings of x ∈ Σn which includes the empty string and x itself.
Next, let dec : {0, 1}n → N be the decimal representation of an n-bit string x with x[0] denoting
the least significant bit. We also use sort(A) as a procedure that sorts an array A. Finally, wlog,
we assume that N is a power of 2. We are now ready to present a parallel algorithm that solves the
multiple-query associative recall problem below.

24

Algorithm 6 Parallel-MQAR (u[0 · · ·N − 1])

Require: Input sequence u[0 · · ·N − 1] ≜ {(ki,vi, qi)}N−1
i=0 with each ki,vi, qi ∈ {0, 1}d.

1: Initialize N logN processors denoted P0, . . . , PN logN−1.
2: Initialize the index and output array idx, val← [].
3: for k := {0, . . . , logN − 1} do
4: for x := {x ∈ ΣlogN−k| x[logN − k − 1] = 0} do
5: {All the steps below are executed in parallel by {{{Px,k

i }x}i∈[0,2k−1]}k}
6: Ixk ← {y ∈ ΣlogN | x ∈ prefix(y)}.
7: kkx

sorted ← sort
(
{kdec(i)}i∈Ix

k

)
8: x[logN − k − 1]← 1
9: Jx

k ← {y ∈ ΣlogN | x ∈ prefix(y)}.
10: qkx

sorted ← sort
(
{qdec(j)}j∈Jx

k

)
11: Ck ← pbs-key-values

(
qkx
sorted, k

kx
sorted, 2

k, 2k
)

12: for i ∈ Ixk do
13: if Ck[dec(i)] ̸= 2k then ▷ cf. (5)
14: Add Ck[dec(i)] to idx[dec(i)]. ▷ Executed in parallel by
{{{Px,k

i }x}i∈[0,2k−1]}k.
15: for i ∈ {1, . . . , N − 1} do ▷ Executed in parallel by Pi.
16: if ∃ j ∈ idx[i] then
17: Add vj+1 to val
18: return val.

D.6.5 Correctness and Complexity

Proposition D.21. Algorithm 6 solves the multiple-query associative recall problem with work
complexity O(Nd · log2 N) and time O(d · log2 N).

Proof. The correctness of pbs implies the correctness of Algorithm 6 if we can show that, for
each 1 ≤ i < N , we check for a match among the keys {kj}j∈[i−1]. To this end, for each
1 ≤ i < N , let the set of all iterator indices associated with an index i be defined as Ki ≜
{(k, x)|i ∈ Jx

k } with Jx
k as noted in line 9. Then, we define the corresponding set for keys as

Ii ≜
⋃

(k,x)∈Ki
Ixk with Ixk s defined as in line 6. That is, for all the calls to pbs-key-values that i

is part of (given by Ki) where the algorithm checks for a match among the keys in Ii, it then suffices
to show that Ii = [i− 1].

Here, first note that if some index j ∈ Ixk ⊆ Ii for some x ∈ ΣlogN−k, then, by definition,
x ∈ prefix(bin(j)). Here, let x1 := x|x[logN−k]=1 where we set the (logN − k)-th index of x to
be 1. Consequently, as we have i ∈ Jx

k for the same k and x as in Ixk (cf. line 6), we must have
x1 ∈ prefix(bin(i)). Thus we get j < i, whence we can claim that Ii ⊆ [i− 1].

For the other direction, for any i, let b denote the position of the most significant bit in bin(i) which
differs from bin(j) for any j ∈ [i−1]. Then, there must exist a binary string that is in the prefix set of
both bin(i) and bin(i). That is, there exists x ∈ prefix(bin(i))∩ prefix(bin(j)) with x ∈ Σb. Thus,
we then must have bin(j) ∈ IxlogN−b and bin(i) ∈ Jx

logN−b with x as the corresponding witness.
Hence, we have [i− 1] ⊆ Ii.
Overall, we have shown that Ii = [i− 1]. Since this holds for all 1 ≤ i < N , we can conclude that
Algorithm 6 solves the multiple-query associative recall problem.

Next, it is easy to see that we execute lines 9 to 14
∑logN−1

k=0
N

2k+1 -many times. We note that sorting
n values each of size d can be done with work complexity n log n · d. We note that, at each instance,
we are sorting sorting 2k values. Moreover, each call to pbs-key-values has n = m = 2k which
has work complexity n logm. Finally, we know that the work complexity of lines 15 to 17 is O(N).

25

Thus, the overall work complexity of Algorithm 6 is

d ·
logN−1∑

k=0

N

2k+1
O(2k · log 2k) = d · O(N) ·

logN−1∑
k=0

O(k) = O(Nd · log2 N). (6)

We will now analyze the depth of Algorithm 6. We know that the depth of computation for Algorithm 5
is O(log n logm) for input sizes. Moreover, we have O(1) depth for the computation in 15 to 17
as each entry in idx can have at most one entry. Since the nested for loops iterating over ks and
the associated xs runs in parallel, the depth of Algorithm 6 is dominated by the largest depth
among all calls to pbs-key-values and to sort. The largest such call to pbs-key-values is
of size n = m = 2logN−1 = N/2 which yields a depth of d · log2 N . Moreover, using sorting
networks Definition D.25, we know that the largest depth is for sorting N/2 values of size d given
by d ·Θ(logN) (Lemma D.26). Thus, we can conclude that Algorithm 6 takes O(d · log2 N), time
where N is the length of the input.

D.6.6 Conversion to Arithmetic Circuit
We will convert Algorithm 6 to an arithmetic circuits modularly. In particular, after writing out an
explicit circuit for Algorithm 5, we will uses this circuit as a black-box along with circuits for sorting
networks.

Circuit for pbs-key-values. We will denote the corresponding arithmetic circuit for Algorithm 5
as pbs-key-values as well with the input gates comprising of each entry from q[s · · · t] and
k[x · · · y] and the i-th output gate yielding the value C[i] as in Algorithm 5.

Here, we first convert the comparisons for the if statements in Algorithm 5. To this end, we briefly
introduce comparators.

Definition D.22 (Comparators). A comparator is a device with inputs x and y and outputs x′ and
y′, that performs the following function:

x′ = min(x,y),

y′ = max(x,y).

Using comparators, we can use bit-wise XOR and AND to define the result of the comparisons in lines
6 and 11 as the following fixed variables:

ℓx := 1{q[mid] ≤ kx},
gy := 1{q[mid] > ky},
z := bin-search({ki}ti=s, q[mid]).

(7)

This then allows us to infer the index of the key array for each recursive call to pbs-key-values
in lines 9, 14, 19, and 20 from Algorithm 5. Specifically, let zs and zt − 1 denote the starting and
ending indices for the keys as inputs to the recursive calls in Algorithm 5) below:

pbs-key-values(q[mid + 1 · · · t], k[zt · · · y]); (lines 9 and 20) (8)
pbs-key-values(q[s · · ·mid− 1], k[x · · · zs − 1]); (lines 14 and 19) (9)

Here, zt and zs can assume values dependent on the results of the comparisons in lines 6 and 11.
Specifically, we have

zt = ℓx · x+ (1− ℓx)(1− gy) · z =


x if q[mid] ≤ kx (line 9)
z if q[mid] ∈ (kx,ky] (line 20)
0 otherwise

,

zs = gy · (y + 1) + (1− ℓx)(1− gy) · z =


y + 1 if q[mid] > ky (line 14)
z if q[mid] ∈ (kx,ky] (line 19)
0 otherwise

.

Here, zs or zt getting a value 0 signifies that the branch is dead, and we do not execute the recursive
call.

26

Finally, let the arrays Ct[mid+ 1 · · · t] and Cs[s · · ·mid− 1] denote the outputs to the recursive calls
in (8) and (9), respectively. We can then succinctly express the outputs for each index of the output
array C as

C[i] =


ℓx · x+ zs · (C1[i]) i ∈ [s · · ·mid− 1]

gy · (y + 1) + zt · (C2[i]) i ∈ [mid + 1 · · · t]
ℓx · x+ (1− ℓx)(1− gy) · z + gy · (y + 1) i = mid

(10)

We can thus state the circuit schematically in Fig. 4.

Now, before accounting for the complexity of the circuit for Algorithm 5, we must first assert the
complexity of the comparators that we use in Fig. 4.

1 1

q[mid] ≤ kx q[mid] > kybin-search
({ki}ti=s, q[mid])

pbs-key-values (q[s · · · t], k[x · · · y], n,m) qs q[mid] qt.....kx ky.......................

x
y + 1

×

×× ×

−1 −1

+ +

zs

pbs-key-values(q[s · · ·mid − 1, k[zs · · · y]) pbs-key-values(q[mid + 1 · · · t], k[x · · · zt − 1])

ℓx gy
z

zt

+

× ×

. . .

...........

×

+

×

+

+ +
. . .

C[mid] C[mid − 1]C[s] C[mid − 1]........... C[t]

Figure 4: pbs-key-values (q[s · · · t], k[x · · · y], n,m) as a circuit with recursive calls and subpro-
cedures as “black boxes.”

Lemma D.23 ([6]). For binary strings x,y ∈ Σd of length d, there exists a comparison network of
size O(d), width O(d), and depth O(log d) that computes the variables in (7).

Proposition D.24. There exists an (O(n + m),O(nd · (logm + log n)),O(log n(logm +
log n log d)),O(n))-arithmetic circuit4 equivalent to pbs-key-values (Algorithm 5) with inputs q
and k of lengths n and m with d-bit entries.

Proof. The size of the circuit for pbs-key-values should equal the work-complexity of Algorithm 5
but we also need to account for the comparison gates in (7). Further, the circuit for binary search
also has a size of O(d · n) instead of O(d · log n) work as in Algorithm 5. Using Lemma D.23,
along with the fact that the comparison gates and the binary search are used at most O(log n) times,
we deduce that we are adding O(nd log n) size to the circuit in addition to the work complexity
of the parallel algorithm. Thus, the overall size of the arithmetic circuit for pbs-key-values is
O(dn logm + nd log n). Further, the depth of the circuit here is determined by the runtime of

4Recall that a (n, s,∆, w)-arithmetic circuit is an n-variate circuit with size s, depth at most ∆, and width
w.

27

Algorithm 5 along with the depth of the comparison gates and binary search O(log n log d), and
finally, at most n processors are used for the parallel algorithm in Algorithm 5, which yields the
width of the circuit.

Circuit for Parallel-MQAR. Now, we will call the circuit for Parallel-MQAR with the same
name while the input gates contain the inputs of Algorithm 6. Indeed, we can direct “translate"
Algorithm 6 to an arithmetic circuit as the values for Ixk and Ixk for each x and k are predeter-
mined from N . Thus, we start by placing the corresponding sorting networks which feeds into the
pbs-key-values (q[s · · · t], k[x · · · y], n,m) circuit for Algorithm 5 in Fig. 4 so that the output
values from the calls to pbs-key-values result in the checks as in line 14 of Algorithm 6. That is,
we get outputs Ck[dec(i)] from each call to pbs-key-values. We can then use a comparison gate
to check if this value equals 2k, and if not, we have found a match Ck[dec(i)] for the query qi which
results in the output of the associated value vCk[dec(i)]+1, exactly as in Algorithm 6. That is, we first
define the following variable as the output of the comparison gate:

ckdec(i) := 1{Ck[dec(i)] ̸= 2k}. (11)

Here, as Ck[dec(i)] ̸= 2k implies that Ck[dec(i)] equals the index of the matching key kj corre-
sponding to the query qi, the ith output is then simply given by ckdec(i) · Ck[dec(i)], where the 0

output implies that there does not exist a matching key.

Here, we also briefly introduce the the sorting networks that we use to sort the keys and queries:

Definition D.25 (Informal). Sorting networks are circuits with gates and wires where the gates of
the circuit are comparators (Definition D.22) connecting two wires. Each such circuit can perform
sorting on a fixed number of values.

We can then show the circuit schematically as in Fig. 5.

We now dilineate the complexity of the circuit, starting with the complexity of the sorting networks.

Lemma D.26 ([1]). Let A be an array with d-bit entries of size n. Then, one can implement a sorting
network to sort the array A with size O(d · n log n) and depth O(log d log n).

Proposition D.27. There exists an (N,O(Nd · log2 N),O(log d log2 N),O(Nd logN))-arithmetic
circuit that solves the multiple-query associative recall problem.

Proof. We note here that for each k, there are N/2k+1 parallel problems of size 2k for both the
sorting networks and the pbs− key− values circuit. Using Lemma D.26, the cumulative size of
these sorting networks is O(d ·N log2 N) (see (6)) with overall depth O(log d logN).

Similarly, the next layer again runs
∑logN−1

k=0
N

2k+1 -many circuits for pbs− key− values each of
which has sizeO(2kd(log 2k +log 2k)) = O(d · 2k log 2k), depthO(log2 2k log d) and widthO(2k)
(Proposition D.24). Again, the cumulative size of this layer is given by O(Nd · log2 N) (see (6)).
Since we run each of these circuits in parallel, the depth of this layer is againO(log d log2(N)) while
the width is O(N · logN).

Finally, we perform N logN comparisons at the end of d-bit strings in parallel which results in size
O(N logN · d), depth O(log d) and width O(N logN · d) (Lemma D.23). Therefore, the resulting
arithmetic circuit has size O(d ·N log2 N +Nd · log2 N +N logN · d) = O(Nd log2 N), depth
O(log d log2 N) and width O(Nd logN).

D.6.7 The Resulting BASECONV Model
As we have an arithemtic circuit for solving the multiple-query associative recall problem, we can
now invoke Theorem D.18 to claim that there is a corresponding BASECONV model that solves the
multiple-query associative recall problem with Õ(N log c) parameters and ˜O(1) layers.

Theorem D.28. There exists a
(
N, Õ(1), Õ(1), Õ(N), Õ(1)

)
− BASECONV solves the multiple-

query associative recall problem.

28

(k1, v1, q1), , (kN−1, vN−1, qN−1)

. . .

k = 0

. . .

k = logN
−1.

sort
({qdec(j)}j∈Jx

k
)

sort

({kdec(i)}i∈Ix
k
)

k = 0

sort
({kdec(i)}i∈Ix0

)

. . .
C0

C0[dec(i)] ̸= 20?

c0dec(i)

i ∈ Ix0
k ∈ {0, . . . , logN − 1}
.

×

.

. . .

C0[dec(i)]

vj

.

(u[0 · · ·N − 1])Parallel-General-AR

sort
({qdec(j)}j∈Jx

0
)

.

k = logN
−1

pbs-key-values

(sort{qdec(j)}j∈Jx
k
, sort{kdec(i)}i∈Ix

k
)

pbs-key-values

(sort{qdec(j)}j∈Jx
k
, sort{kdec(i)}i∈Ix

k
)

Figure 5: Parallel-MQAR(u[0 · · ·N − 1]) as a circuit that includes sorting networks and the circuit
for pbs-key-values as subroutines.

Proof. Directly applying Theorem D.18 yields a BASECONV model with the number of layers
O(log d · log2 N · logNd logN) = O(1) layers while the claim on the input and inner dimensions
follow trivially.

D.7 Data-Dependent Convolutions

D.7.1 Introduction
In this section, we are again concerned with solving the multiple-query associative recall problem
(Appendix D.6.1). However, in contrast to Appendix D.6.4, which yields a circuit that is unchanged
and works for all inputs, we instead take the viewpoint of adapting the model with respect to the
particular sequence that the model gets as input. More specifically, we take the distance between the
tokens in the sequence as a measure for designing data-dependent convolutions.

Setup. To formally setup the problem, as in our discussion of designing a parallel algorithm, we
consider the following problem description of the multiple-query associative recall problem.

Suppose we are given an input u[0 · · · 3N − 1] ≜
{(k0,v0, q0) , . . . , (kN−1,vN−1, qN−1)} with each ki,vi, qi ∈ C. Here,
each token is embedded using the standard one-hot encoding in {0, 1}c (i.e. we

29

assume d = c).5 Our goal is again to check, for each 1 ≤ i ≤ N − 1, whether
there exists 0 ≤ j < i such that qi ≡ kj , and if so, output vj .
Here, we define the interaction distance between the ith query qi and the matching
key kj as i− j. We then also assume that number of distinct interaction distances
is bounded by t.

It turns out that exploiting the information on these distances requires the use of auto-correlation [5],
which has an elegant underlying formulation. We will instead briefly introduce the relevant mathe-
matical machinery in the context of elucidating the data-dependent model that we seek to develop in
the sequel.

Auto-Correlations We introduce auto-correlations in the context of convolutions. Let ũ[t] :=
u[−t], then the cross correlation of two vectors u and v is given by

u ⋆ v ≜ ũ ∗ v.
The auto-correlation of a vector u ∈ Rn is the cross correlation of u with itself. Moreover, in
terms of polynomials, we have ũ(X) = Xn−1 · u(1/X). Thus, in analogy with our interpretation of
convolution in terms of polynomial multiplication, we characterize the auto-correlation of a vector
u ∈ Rn, given by w ∈ Rn as follows:

w = coeff (u(X) · ũ(X) mod Xn − 1) .

D.7.2 Coyote with kernels generated using Auto-Correlation
We are now ready to describe the model that solves the multiple-query associative recall problem
using data-dependent kernels derived using auto-correlations.

The Data-Dependent Kernels. Auto-correlation allows us to pick the top t distinct shifts, and we
then use this information to define the data-dependent kernels. That is, we assume there exists a
function Top such that Top (u ⋆ u, t) returns a list of the top t shifts {sℓ}ℓ∈[t]. We then use these top
t distances {sℓ}ℓ∈[t] to define the following two kernels:

hk(X) ≡
∑
ℓ∈[t]

Xsℓ+(ℓ−1)·N ,

hv(X) ≡
∑
ℓ∈[t]

Xsℓ−1+(ℓ−1)·N .
(12)

Here, we note that we only only have two kernels as we will assume N ′ = tN and the shift will be
done in "parallel." Obviously, one can instead define t distinct shift kernels but then there is a cost of
O(t) in the number of layers.

Indices and Projections. Now, note that the input for the multiple-query associative recall problem
u ∈ {0, 1}3N×d has designated indices for the keys, queries, and values in the sequence. We gather
these indices below:

K = {i ∈ {0, . . . , 3N − 1}| i ≡ 0 mod 3},
V = {i ∈ {0, . . . , 3N − 1}| i ≡ 1 mod 3},
Q = {i ∈ {0, . . . , 3N − 1}| i ≡ 2 mod 3}, .

(13)

The above help us define the following projections K,Q,V ∈ {0, 1}3N×d of the input that we shall
use below.

K[i, :] :=

{
u[i, :] if i ∈ K,
0d otherwise

,

Q[i, :] :=

{
u[i, :] if i ∈ Q,
0d otherwise

,

V[i, :] :=

{
u[i, :] if i ∈ V,
0d otherwise

,

(14)

Finally, we present the BASECONV model that solves the multiple-query associative recall problem
with data-dependent kernels using O(1) layer and O(t ·Nd)-many parameters.

5Our arguments do need c = d. However we do not need d = N but we made this simplification for ease of
presentation.

30

Theorem D.29. There exists a BASECONV model with gated data-dependent convolutions that
solves the multiple-query associative recall problem on inputs from {0, 1}3N×c with the total number
of distinct interaction distances bounded by t in O(1) layers and O(t ·Nc) total parameters.

Proof. We note that we have the input dimension d = c. Now, for any input sequence u ∈
{0, 1}3N×d, we get the data-dependent kernels as in (12) using auto-correlation of the input. We will
now outline the following computations for the BASECONV layers:

y = LinearQ(u)⊙
(
hK ∗ LinearK(u)

)
= Q⊙

(
hK ∗K

)
(15)

z = LinearE(y)⊙
(
hV ∗ LinearV(u)

)
= E⊙

(
hV ∗V

)
, (16)

where we have the linear projections LinearQ(u) = Q, LinearK(u) = K, LinearV(u) = V
and LinearE(y) = E defined as

E[i, :] := LinearE(y)[i, :] =

{
1d if ∃ j ∈ [d] such that y[i, j] = 1

0d otherwise
. (17)

Here, we will first present the argument for the special case when we have t = 1 as that will help us
elucidate the general case. To this end, as the kernels from (12) for t = 1 are given by

hk(X) ≡ Xs1 ;

hv(X) ≡ Xs1−1,
(18)

we observe that convolving with these kernels h ∗ y is equivalent to operating with the following
primitives (Appendix D.3):

shift_down(y, s1);
shift_down(y, s1 − 1).

(19)

We note that we shift down instead of shifting up as the index of the top-left entry is (0, 0). We can
then write down the computations performed in (15) and (16) as follows:

y = Q⊙ shift_down(K, s1) (20)
z = E⊙ shift_down(V, s1 − 1), (21)

We begin by examining y below:

y[i, :] = (Q⊙ shift_down(K, s1)) [i, :]

= Q[i, :]⊙ shift_down(K, s1)[i, :] (22)

=

({
u[i, :] if i ∈ Q
0d otherwise

)
⊙
({

u[i− s1, :] if i− s1 ∈ K,
0d otherwise

)
(23)

=

{
u[i, :]⊙ u[i− s1, :] if i ∈ Q and i− s1 ∈ K,
0d otherwise

Here, we use the fact that the Hadamard product is row-independent in (22), and the definitions of
the projections from (14) in (23). Examining the jth entry, we get

u[i, j]⊙ u[i− s1, j] =

{
1 if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1 ≡ ej
0 otherwise.

That is, we can express

y[i, :] =

{
ej if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1 ≡ ej
0d otherwise

. (24)

Consequently, as per the definition in (17), we get

E[i, :] =

{
1d if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1

0d otherwise
(25)

31

We can now finally specify the output z from (21) as follows:

z[i, :] = (E⊙ shift_down(V, s1 − 1)) [i, :]

= E[i, :]⊙ shift_down(V, s1 − 1)[i, :] (26)

=

({
1d if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1

0d otherwise

)
⊙
({

u[i− s1 + 1, :] if i− s1 + 1 ∈ V,
0d otherwise

)
(27)

=

{
u[i− s1 + 1, :] if i ∈ Q, i− s1 ∈ K, i− s1 + 1 ∈ V and qi ≡ ki−s1

0d otherwise

=

{
vi−s1 if qi ≡ ki−s1

0d otherwise
(28)

Again, we use the fact that the Hadamard product is row-independent in (26), and the definitions of
the projections from (14) in (27). Overall, we have solved associative recall for all queries that have
interaction distance exactly equal to s1.

In order to generalize this to arbitrary t ≤ N , we first increase the internal dimension so that the input
to the kernels u′ ∈ R(3N ·t)×d in (12) and the projections K′,Q′,V′ ∈ R(3N ·t)×d are given by

u′ ≡



0d

...

0d

u


,K ′ ≡



0d

...

0d

K


,Q′ ≡



Q

...

Q

Q


,V′ ≡



0d

...

0d

V


,

We then observe that for hk
ℓ (X) := Xsℓ and hv

ℓ (X) := Xsℓ−1, we have

hk(X) ≡
∑
ℓ∈[t]

hk
ℓ (X) ·X(ℓ−1)·N ,

hv(X) ≡
∑
ℓ∈[t]

hk
ℓ (X) ·X(ℓ−1)·N .

32

In analogy with (19), we can then equivalently write

(
hK ∗K

)
≡



hK
t

...

hK
2

hK
1


∗



0d

...

0d

K



≡



hK
t ∗K

...

hK
2 ∗K

hK
1 ∗K



≡



shift_down(K, st)

...

shift_down(K, s2)

shift_down(K, s1)


.

Similarly, we also have

(
hV ∗V′) ≡



shift_down(V, st − 1)

...

shift_down(V, s2 − 1)

shift_down(V, s1 − 1)


.

33

That is, the argument for t = 1 now applies to each of the t shifts as we now have (cf. (15))

y′ ≡ Q′ ⊙
(
hV ∗V

)

≡



Q

...

Q

Q


⊙



shift_down(V, st − 1)

...

shift_down(V, s2 − 1)

shift_down(V, s1 − 1)



≡



Q⊙ shift_down(V, st − 1)

...

Q⊙ shift_down(V, s2 − 1)

Q⊙ shift_down(V, s1 − 1)



≡



yt

...

y2

y1


,

where, for each ℓ ∈ [t], we have (cf. (24))

yℓ[i, :] ≡
{
ej if i ∈ Q, i− sℓ ∈ K and qi ≡ ki−sℓ ≡ ej ,

0d otherwise
.

We then analogously get E′ as follows:

E′ ≡ LinearE(y
′) ≡



LinearE(yt)

...

LinearE(y2)

LinearE(y1)


≡



Et

...

E2

E1


,

where, for each ℓ ∈ [t], we have (cf. (25))

Eℓ[i, :] =

{
1d if i ∈ Q, i− sℓ ∈ K and qi ≡ ki−sℓ

0d otherwise

34

The output in the general case is then given by

z′ ≡ E′ ⊙
(
hV ∗V′)

≡



Et

...

E2

E1


⊙



shift_down(V, st − 1)

...

shift_down(V, s2 − 1)

shift_down(V, s1 − 1)



≡



Et ⊙ shift_down(V, st − 1)

...

E2 ⊙ shift_down(V, s2 − 1)

E1 ⊙ shift_down(V, s1 − 1)



≡



zt

...

z2

z1


,

where, for each ℓ ∈ [t], we have (cf. (28))

zℓ[i, :] ≡
{
vi−sℓ if qi ≡ ki−sℓ

0d otherwise

Finally, we define the last output layer to compute zout ≡ Linearsum(z
′) ≡

∑
ℓ∈[t] zℓ so that we

have

zout[i, :] ≡
{
vi−sℓ if qi ≡ ki−sℓ for some ℓ ∈ [t]

0d otherwise

To recall, we retrieved the top t interaction distances of the input u using auto-correlation and defined
the corresponding convolution kernels ((12)). We then shifted djown the keys K using the first kernel
and gated with the corresponding queries Q so that we got a match exactly when there exists a key
that is at sℓ interaction distance from the corresponding query. After “smearing” this match to get E,
we used it as a mask to retrieve the value in the next layer. Overall, since we have t atomic kernels
that perform t shifts with each of these kernels using O(Nd) parameters, we can conclude that the
output solves the associative recall problem for all queries with exactly ℓ interaction distance from the
corresponding keys for all ℓ ∈ [t] using O(1) layers and O(t ·Nc) parameters as we have d = c.

35

Table 3: Hyena [16] Training Settings
72M 158M 358M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.98

Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) (1e-5, 8e-4)

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 8 18 24
Hidden Size 768 864 1024
FFN Width 2

Position Embeddings None
Weight Tying True

Short Conv. Filter Size 3
Exp. Mod. Decay (Fast, Slow) 0.3, 1.2

Filter Sine Freq. (w) 14
Filter Order 64

Filter Inner MLP 2
Filter Weight Decay 0

Table 4: Hyena FLOPs Computation
Equation

Input Layer B × V ×N ×D

Sequence Mixer Input Projection B ×N ×D ×D × 3 +B ×N × 9×D
Sequence Mixer Long Convolution 10×N × log(N)×D ×B
Sequence Mixer Short Convolution 3×B ×N ×D

Sequence Mixer Implicit MLP (Order 64) D × 64
Sequence Mixer Output Projection B ×N ×D ×D

Channel Mixer (FFN Width 2) B ×D ×D × 2× 2×N

Language Modeling Head B × V ×N ×D

36

Table 5: Attention Training Settings
73M 125M 360M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) 8e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 6 12 24
Hidden Size 704 768 1024
FFN Width 4

Position Embeddings Rotary
Weight Tying True

Number of Heads (H) 8 12 16

Table 6: Attention FLOPs Computation
Equation

Input Layer B × V ×N ×D

Sequence Mixer Q,K,V Projections B ×N ×D ×D × 3
Sequence Mixer Attention B ×H ×H ×D +H ×N ×N +B ×N ×N ×D

Sequence Mixer Output Projection B ×N ×D ×D

Channel Mixer (FFN Width 4) B ×D ×D × 8× 2
3 ×N

Language Modeling Head B × V ×N ×D

Table 7: RWKV [15] Training Settings
72M 169M 351M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.999

Optimizer eps 1e− 8
Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) 1e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1
Weight Tying False

Num Layers 6 12 20
Hidden Size 624 768 984

Position Embeddings None
Initialization From Reference Impl.

37

Table 8: Simple Long Convolution [10] Training Settings
76M 128M 360M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Precision BFloat16

Learning rate decay Linear
Learning rate (min, base) 8e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 6 12 24
Hidden Size 704 864 1024
FFN Width 4

Position Embeddings -
Weight Tying True

Channels 1
Lam 0.001

Kernel Dropout 0.1
Kernel LR 5e− 5
Activation GeLU

Exponential Modulation True

Table 9: Simple Long Convolution FLOPs Computation
Equation

Input Layer B × V ×N ×D

Sequence Mixer Long Convolution 10×N × log(N)×D ×B
Sequence Mixer Output Projection B ×N ×D ×D

Channel Mixer (FFN Width 4) B ×D ×D × 8× 2
3 ×N

Language Modeling Head B × V ×N ×D

38

Table 10: BASECONV Training Settings
168M 354M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) 8e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 30 48
Hidden Size 852 1080
FFN Width 2

Position Embeddings -
Weight Tying True

Short Conv. Filter Size 3
Exp. Mod. Decay (Fast, Slow) 0.3, 1.2

Filter Sine Freq. (w) 14
Filter Order 64

Filter Inner MLP 2
Filter Weight Decay 0

Table 11: BASECONV FLOPs Computation
Equation

Input Layer B × V ×N ×D

Sequence Mixer Long Convolution 10×N × log(N)× 0.5(D)×B
Sequence Mixer Short Convolution B ×N × 0.5(D)

Sequence Mixer Implicit MLP (Order 64) 0.5(D)× 64
Sequence Mixer Linear Projection B ×N ×D ×D

Channel Mixer (FFN Width 2) B ×D ×D × 2× 2×N

Language Modeling Head B × V ×N ×D

39

	Introduction
	Identifying the associative recall problem
	Fine-grained analysis of downstream quality
	Defining the problem: Multi-Query Associative Recall

	Explaining the associative recall problem
	BaseConv: a minimal gated convolution operator
	Theoretical analysis of gated convolution capacity and associative recall
	Empirical analysis of gated convolution capacity and associative recall

	Conclusion
	Experimental Details
	Models
	Input-Dependence Implementations

	Extended Results
	Extended Discussion of Mqar
	Details on Theoretical Analysis
	Preliminaries and Notation
	Notation
	Summary of the Results

	Gated Convolution Models
	The Hyena Layer
	BaseConv

	Primitives
	BaseConv-Hyena Equivalence

	Linear Arithmetic Circuits
	General Arithmetic Circuits
	The Multiple-Query Associative Recall Problem
	Introduction
	Trivial Solution via Attention
	Initial Attempt: A Sequential Algorithm
	Algorithm via Parallel Binary Search
	Correctness and Complexity
	Conversion to Arithmetic Circuit
	The Resulting BaseConv Model

	Data-Dependent Convolutions
	Introduction
	Coyote with kernels generated using Auto-Correlation

