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Abstract

Large language models (LLMs) are routinely pre-trained on billions of tokens, only
to restart the process over again once new data becomes available. A much cheaper
and more efficient solution would be to enable the continual pre-training of these
models, i.e. updating pre-trained models with new data instead of re-training them
from scratch. However, the distribution shift induced by novel data typically results
in degraded performance on past data. Taking a step towards efficient continual
pre-training, in this work, we examine the effect of different warm-up strategies.
Our hypothesis is that the learning rate must be re-increased to improve compute
efficiency when training on a new dataset. We study the warmup phase of models
pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train
on SlimPajama (downstream data, 297B tokens), following a linear warmup and
cosine decay schedule. We conduct all experiments on the Pythia 410M language
model architecture and evaluate performance through validation perplexity. We ex-
periment with different pre-training checkpoints, various maximum learning rates,
and various warmup lengths. Our results show that while rewarming models first
increases the loss on upstream and downstream data, in the longer run it improves
the downstream performance, outperforming models trained from scratch—even
for a large downstream dataset.

1 Introduction
Large pre-trained models have enabled massive performance improvements for many downstream
tasks in vision Kirillov et al. [2023], Oquab et al. [2023] and language [Brown et al., 2020, Zhao et al.,
2023]. However, training these foundation models is prohibitively expensive. Existing works aim to
reduce the cost of large-scale model development by enabling low-cost hyperparameter optimization
Yang et al. [2022] or providing guidelines for maximizing performance under a given compute budget
Hoffmann et al. [2022]. However, these works assume that models will be trained from scratch.

As the amount of data available for pre-training is ever-growing, new and improved datasets (e.g.
RedPajama and SlimPajama Together.xyz [2023], Soboleva et al. [2023], Touvron et al. [2023]) will
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continue to become available. Should practitioners always combine existing datasets (e.g. Pile Gao
et al. [2020]) and train from scratch to obtain the best performance? Doing so would quickly become
prohibitively expensive and fails to leverage existing pre-trained models.

Our approach circumvents the need for complete re-training by continuing to pre-train existing
models on new data. We refer to this as “continual pre-training” and the goal is to minimize the loss
on new data while maintaining low loss on previous data. Continual pre-training is a critical challenge
since it can lead to catastrophic forgetting French [1999]. Moreover, the potential long sequence
of training stages may make common continual learning techniques such as replay Rebuffi et al.
[2017], Ostapenko et al. [2022] or regularisation Kirkpatrick et al. [2017], Farajtabar et al. [2020]
not compute efficient enough Lesort et al. [2023]. A simple and – from a compute cost perspective –
scalable solution to limit forgetting in such situations is to (only) progressively decrease the learning
rate every time new data becomes available Mirzadeh et al. [2020], Winata et al. [2023]. However,
this solution is limited because repeatedly decreasing the learning rate would cause it to eventually
become too small if the number of training stages becomes high.

In this work, we take a step towards efficient continual pre-training by studying how to re-increase
a small learning rate to keep training a pre-trained language model on new data. We refer to this
as re-warming the model. Re-warming the model should improve learning efficiency by avoiding a
vanishing learning rate. We study warm-up strategies on Pythia 410M model with various amounts
of data, maximum learning rates and different pre-trained checkpoints. This would allow a model
trained initially on a large dataset to benefit from resuming training on a newer large dataset without
having to retrain from scratch. In order to simulate this setting, we fix our initial pre-training dataset
to be Pile and the newer dataset to be SlimPajama. We hope that this may guide the adaptation of
existing LLMs to future new datasets. Our results show that:

1. The length of the warmup phase does not appear to have a significant effect on the loss.
2. Adjusting the maximum learning rate can help trade-off between upstream and downstream

performance; increasing the maximum learning rate leads to stronger adaptation to the
downstream dataset (SlimPajama), while smaller learning rates preserve more performance
on the upstream dataset (Pile).

3. Continual pre-training with the latest pre-trained checkpoint improves performance.

2 Setup
In our setup, the upstream (or pre-training) dataset is the Pile Gao et al. [2020]. The downstream (or
fine-tuning) dataset is SlimPajama Soboleva et al. [2023]. SlimPajama is an extensively deduplicated
version of RedPajama Together.xyz [2023] which is built based on the LLama dataset Touvron et al.
[2023]. In this work, we use fine-tuning and downstream continual pre-training interchangeably.
However, in our continual pre-training setting, we note that the downstream dataset is on the scale of
the previous pre-training dataset (i.e. very large, unlike many fine-tuning datasets).

The SlimPajama dataset is built from similar sources as the Pile but with a higher quantity of data.
Therefore, some upstream data may be repeated during downstream pre-training. Our experimental
setup is comparable to the setup of Ash and Adams [2020], where they train a classifier on half of
the samples of a dataset first, and fine-tune it later on all samples. They show that warm starting
for image classification is challenging. Using a model pre-trained on the Pile and continuing the
pre-training on SlimPajama, we follow an analogous setup for causal language modeling.

Datasets – We use the Pile with the same weights as Black et al. [2022] for validation. We shuffle and
randomly sample the SlimPajama dataset Soboleva et al. [2023] to form the ∼297B token training
dataset and ∼316M validation token dataset. We do not use replay. We use the same tokenizer as
Black et al. [2022] that is trained specifically on the Pile.

Model – We use the 410M Pythia pre-trained on the Pile [Biderman et al., 2023], i.e. GPT-NeoX
Black et al. [2022] models. We do not use flash attention [Dao et al., 2022].

3 Continual Warm-up
3.1 How long to warm up?
In the literature, warm-up is usually conducted on at most 1% of the data Zhao et al. [2023]. In this
experiment, we investigate if the results are sensitive to this hyper-parameter.
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Setup: We experiment with different warm-up lengths for a schedule of 297B tokens: 0%, 0.5%,
1%, and 2% of the data and measure the performance after the first 50B tokens. From a different
perspective, we could see this experiment as running a 1% warm-up on different amounts of data. We
hypothesize that warming up for a larger number of iterations could lead to a smoother transition
with subsequent performance improvements.

Results: The results of this experiment are provided in Fig. 1. They show that the amount of data used
for warming up the learning rate does not significantly influence the perplexity on the downstream
task (learning) or the upstream task (forgetting). These results invalidate our hypothesis that using
more tokens for warm-up can smooth the transition and show that linear warmup does not help in this
setting. Indeed, the length of the warmup phase does not appear to have a significant effect on the
Pile and SlimPajama validation losses. This is in spite of the model trained without any progressive
warm up experiencing an initial choatic phase causing a spike in the loss in its first few iterations of
training – this phenomenon is also referred to as stability gap [Lange et al., 2023, Caccia et al., 2022].
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Figure 1: (a) Evolution of perplexity on SlimPajama while fine-tuning with various amounts of
tokens for warm-up. (b) perplexity on the same experiments on the Pile validation set (upstream).
MaxLR = 3 · 10−4, MinLR = 0.1 · MaxLR. This figure shows that at that scale, the length of the
warm-up phase does not significantly influence results.

3.2 How high to warm up?
One objective of re-warming the learning rate is to enable compute-efficient continual pre-training. A
learning rate that is too small may lead to inefficient learning on the downstream dataset, whereas,
a learning rate that is too large may lead to catastrophic forgetting of the upstream dataset. One
important aspect of re-warming the learning rate is to decide how high to increase it. Therefore, in
this experiment, we vary the maximum learning rate to assess its effect on performance.

Setup: We fix the length of the warm-up phase to the default amount of 1% of the training data
and vary the maximum learning rate. We experiment with the default value of 3 · 10−4 used for
pre-training Pythia 410M Biderman et al. [2023], 1.5 · 10−4, and 6 · 10−4. For the post-warmup
cosine decay phase, we set the final learning rate to 10% of the maximum learning rate. The learning
rate schedule we used decays to the minimum learning rate at 240B tokens and is constant thereafter.
The runs are reported to the end of 240B tokens (the end of decay period).
Results: The results of this experiment are provided in Fig. 2 (with an additional plot in the appendix
Fig. 6). We observe, at the end of training, that larger maximum learning rates improve performance
on downstream data, while they hurt performance on upstream data. Conversely, a smaller maximum
learning rate improves performance on upstream data, while limiting adaptation to downstream
data, causing decreased performance. These findings show that altering the maximum learning rate
can be an effective way to trade-off between downstream and upstream performance. Additionally,
we observe a general trend: fine-tuning on SlimPajama, causes the model to forget what has been
learned on the Pile, leading to an increase in the Pile validation perplexity. Generally, rewarming
then decaying the learning rate appears necessary to learn well on the downstream task. Moreover,
while keeping a constant learning is initially advantageous on Pile, this advantage vanishes when
training long enough on SlimPajama. Finally, a model trained from scratch only on SlimPajama
performs worse on SlimPajama than models pretrained on Pile in spite of being optimised solely for
the downstream task, highlighting positive transfer between the two datasets.

3.3 Comparing with from Scratch Training
In this experiment, we compare continually pretrained models with models trained from scratch.
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Figure 2: Evolution of loss on (a) SlimPajama and (b) Pile for different maximum learning rates. The
blue curve reports a model trained from scratch. Growing the maximum learning rate consistently
decreases the final loss on downstream data but increase it on the upstream data. At convergence,
the models being continually pre-trained outperform the scratch and constant LR baselines on
SlimPajama. However, the constant learning rate model achieves best performance within the first
100B tokens. The from-scratch baseline consistently improves its performance on Pile, while being
trained on SlimPajama, showing the significant synergy between both datasets.

Setup: We train a model from random initialization using the same cosine decay schedule as the
MaxLR = 3 · 10−4 model in 3.2.

Results: As we can see in Fig. 2, all the continually pretrained models with a warm-up perform better
than the model trained from scratch. This shows that continually pretraining instead of retraining
might improve performance even when the downstream dataset is on the scale of the upstream dataset
and overlaps with the upstream dataset. We also observe that, after 200B tokens, the model trained
from scratch performs better than the model continually pretrained using a constant learning rate.

3.4 Re-warming on the same data
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Figure 3: Pile validation loss while fine-tuning
again on the Pile. Warm-up phenomenon observed
in Sec. 3.2 is also observed applied to fine-tuning
again on the same data distribution. Warm-up
length=1% downstream tokens, MinLR = 0.1 ·
MaxLR.

In the previous experiments we saw that contin-
ually pretraining on new data leads to a quick
increase of loss on past data, that decrease later.
The increase is higher when the max learning
rate is bigger. One hypothesis for the increase
in loss is that the distribution shift between up-
stream and downstream data disturbs the train-
ing process. To assess this hypothesis, we apply
our warm-up policy in a setting with no distribu-
tion shift. That is, we replicate our experiments
from figures 2b and 6 by fine-tuning on Pile.

Setup: In this experiment, instead of fine-
tuning on SlimPajama data, we fine-tune on
50B tokens of the Pile data with the same
parametrization of the warm-up policy as
Sec. 3.2 experiments.

Results: Fig. 3, shows that re-warming the learning rate while continuing to pre-train on the Pile has
a similar effect as re-warming on SlimPajama data Fig. 2b when looking at the downstream validation
loss. This suggests that the distribution shift between Pile and SlimPajama is not solely to blame for
the negative impact of re-warming the learning rate observed in sec. 3.2, and that the optimization
dynamics also plays a role in this increase of loss.

4 Conclusion
Our experiments demonstrate that warming up to higher maximum learning rates helps models
pre-trained on the Pile adapt to SlimPajama, while a smaller maximum learning rater preserves
performance on the Pile. In both cases, however, models that are rewarmed can improve over models
trained from scratch or without rewarming then redecaying the learning rate. These results motivate
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the use of continual pre-training on new datasets rather than restarting training from scratch. More
research is needed, however, to establish similar results for larger model scales, different distribution
shifts, and verify that this strategy can be applied repeatedly to update models. We discuss limitations
of this work in more details in C.
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A Methodology

A.1 Dataset Composition

Table 1: Token counts and train data weights for our subsampled version of SlimPajama.
Dataset Sampling % Train Val

StackExchange 2.0 9.95B 13.08M
Arxiv 2.5 13.77B 22.73M
Wikipedia 4.5 11.78B 15.79M
Book 4.5 14.22B 22.04M
Github 4.5 15.41B 22.42M
C4 15.0 78.49B 72.49M
Commoncrawl 67.0 153.25B 147.28M

Totals 100 296.86B 315.83M

A.2 Hyperparameters

Hyperparameters – We use the AdamW optimizer with β1 = 0.9, β2 = 0.95, ϵ = 10−8, and a
weight decay of 0.1. The maximum learning rate is varied in our experiments {1.5 ·10−4, 3 ·10−4, 6 ·
10−4}. We use cosine learning rate decay to a minimum of 0.1 · MaxLR. All warmup lengths are
calculated based on the full downstream dataset size (297B tokens). We note that our cosine decay
schedule reaches the minimum learning rate at 240B tokens and is constant thereafter. We set gradient
clipping to 1.0. Training is conducted at half-precision (FP16), without dropout.

B Related Work

Large Language Models: LLMs are usually trained with Adam (e.g., GPT3 [Brown et al., 2020],
BLOOM [Scao et al., 2022], Gopher [Rae et al., 2021], Pythia Biderman et al. [2023]) or AdamW
(e.g., Chinchilla [Hoffmann et al., 2022], LLaMA [Touvron et al., 2023]). In all the aforementioned
models, the learning rate schedule consists of a warm-up followed by a cosine decay to 10% of the
maximum learning rate.

Unsupervised Continual Learning: In this paper, we investigate various warm-up strategies for the
continual pre-training of LLMs. Continual pre-training uses a similar type of training objectives as
continual self-supervised training. Self-supervised pre-training was also studied in vision datasets
for image generation Seff et al. [2017], Lesort et al. [2019], Zhai et al. [2019], Nguyen et al. [2018],
Davari et al. [2022] or representation learning Fini et al. [2022], Madaan et al. [2021], Rao et al.
[2019]. In language, continual pre-training was studied under the name of domain adaptation pre-
training Ke et al. [2023a], Scialom et al. [2022], Gururangan et al. [2021], Qin et al. [2022] where the
new dataset comes from a new domain. Another setting is where different datasets are generated at
different points in time Han et al. [2021], Jin et al. [2022], Jang et al. [2021, 2022], Loureiro et al.
[2022]. In our setup, the scenario is closer to domain adaptation pre-training, because we do not take
into account the temporality of data.

Monitoring Learning Rate for Continual Training of Language Models: In continual learning
(CL), models are trained on sequences of datasets. Therefore, the data is not independent and
identically distributed which can lead the model to lose plasticity or forget. In such situations,
particular monitoring of the learning rate schedule can be beneficial.

In CL of language models Caccia et al. [2021], Ke et al. [2023a], Loureiro et al. [2022], Han et al.
[2021], Loshchilov and Hutter [2018], Scialom et al. [2022], Winata et al. [2023] different approaches
have been evaluated: constant learning rate Ke et al. [2023a], Scialom et al. [2022], progressive
decrease Winata et al. [2023] or warm-up then decrease Caccia et al. [2021].

However, to the best of our knowledge, no existing work studies specifically the influence of the
warm-up phase in the context of continual pre-training for large language models.
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C Limitations

Data similarity and overlapping: In our experimental setup, upstream and downstream data have
a high similarity, notably because of data overlap. Since in continual learning, different types of
shifts can lead to variations in performance Lesort et al. [2021], our results may not generalize to
setups with different distribution shifts, such as language domain adaptation pre-training setups Xu
et al. [2019], Gururangan et al. [2020], Ke et al. [2023a], Chakrabarty et al. [2019], Ke et al. [2023b].
Nevertheless, comparing Fig. 6 and Fig. 7, we see that the results are not identical when fine-tuning
on the Pile or when fine-tuning on SlimPajama. A possible explanation is that even a slight shift in
data distribution can lead to a significant perturbation of the learning dynamics. For example, in the
context of image classification, Igl et al. [2020] show how a sudden transition of 10 to 20 % of the
labels in the dataset can have a significant impact on the downstream performance (see Fig. 5 of [Igl
et al., 2020]).

Experiments Scale: As described in Sec. 2, our investigation explores models of size 410M and
fine-tuning dataset of size 297B tokens. While this is a preliminary study, in future work, we plan to
verify whether our conclusions hold at different model scales (e.g., 3B or 7B) and different dataset
scales (e.g., 100B and 600B). Moreover, we plan to test our models throughout using benchmarks
such as HELM [Liang et al., 2022] or Harness [Gao et al., 2021] instead of only loss or perplexity, as
these benchmarks can provide important insight into the evolution of model capabilities.

D Upstream loss when fine-tuning various checkpoints.
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Figure 4: Pile validation loss of models trained from the fully converged checkpoint, the upstream
saturation point, and 1/2 of the upstream saturation point. The experiments for this figure are
described in Sec. F.
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Figure 5: Training from a pre-trained checkpoint achieves lower Pile and SlimPajama validation loss
faster than training from scratch.
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E Perplexity on Pile vs SlimPajama

Fig. 7 shows that the training first increases perplexity on both the Pile and SlimPajama data but
reduces after on both. Interestingly, Fig. 7 show a linear relationship between SlimPajama perplexity
and the Pile perplexity when fine-tuning on the Pile, while it was not the case while fine-tuning on
SlimPajama (Fig. 2b).
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Figure 6: Perplexity downstream vs perplexity upstream, RP fine-tuning. Green points refer to the
ends of the warm-up phases. The red point represents the perplexity before starting the downstream
fine-tuning. Increasing the maximum learning rate improves performance on the downstream data,
but causes forgetting on the upstream. This plot reports the same results as Fig. 2.
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Figure 7: Perplexity on the Pile vs perplexity on SlimPajama when fine-tuning on the Pile with
various maximum learning rates. Warm-up token=1% downstream tokens, MinLR = 0.1 · MaxLR.
Green points refer to the end of the warm-up phase.

F Evaluating Earlier Checkpoints

Setup: We select three checkpoints from model pre-training to test if warm-up strategies benefit from
starting with non-converged checkpoints. Our hypothesis is that selecting checkpoints farther from
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convergence may benefit adaptation to the downstream task as these checkpoints may be located at
more favorable points in the loss landscape.

To select significantly different checkpoints, we compare the last pre-training checkpoint (i.e. Pythia
410M after 143, 000 iters), to an earlier checkpoint achieving a Pile validation loss near the maximum
Pile validation loss attained by all models in Fig. 2 (bottom) (∼ 2.5), and a third checkpoint in
between the two other checkpoints.
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Figure 8: Pile validation loss of models trained from the fully converged checkpoint, the upstream
saturation point, and 1/2 of the upstream saturation point. Black colour designs for the earlier
checkpoint, red colour the latest checkpoint and blue colour the in-between one.

Results: The evolution of the validation losses on SlimPajama are provided in Fig. 8 and the evolution
of the validation losses on the Pile is provided in appendix D. We see in Fig. 8 that, in our setup,
selecting earlier checkpoints for later fine-tuning does not lead to improvement in downstream
performance. Therefore, selecting the latest checkpoint is the best option. We can conclude that the
pre-training did not lead the model into a loss of plasticity that would make the model difficult to
re-warm.
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