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Abstract

Retrieval-based augmentations that aim to incorporate knowledge from an external
database into language models have achieved great success in various knowledge-
intensive (KI) tasks, such as question-answering and text generation. However,
integrating retrievals in non-knowledge-intensive (NKI) tasks, such as text clas-
sification, is still challenging. Existing works focus on concatenating retrievals
to inputs as context to form the prompt-based inputs. Unfortunately, such meth-
ods require language models to have the capability to handle long texts. Besides,
inferring such concatenated data would also consume a significant amount of com-
putational resources. To solve these challenges, we propose ReFusion in this paper,
a computation-efficient Retrieval representation Fusion with neural architecture
search. The main idea is to directly fuse the retrieval representations into the lan-
guage models. Specifically, ReFusion first retrieves the representations of similar
sentences and uses Neural Architecture Search (NAS) to seek the optimal fusion
structures. Experimental results demonstrate our ReFusion can achieve superior
and robust performance on various NKI tasks.

1 Introduction

Recent advances in language models (Khandelwal et al., 2020; Borgeaud et al., 2022; Guu et al.,
2020; Lewis et al., 2020; Li et al., 2022) have demonstrated that retrieval-based augmentations can
achieve remarkable performance on a variety of knowledge-intensive (KI) tasks. The basic idea of
retrieval-based augmentations is to first leverage a dense vector indexing to retrieve the top-k related
knowledge from an external database, then incorporate the retrieved knowledge into language models.
For KI tasks such as question-answering and text generation, they have an inherent retrieval-based
property (Chen et al., 2017; Karpukhin et al., 2020) as answers can be sourced or deduced from
external knowledge databases.

However, retrieval-based augmentations in non-knowledge-intensive (NKI) tasks, such as text classi-
fication, are still challenging. Different from KI tasks, NKI tasks often require understanding and
categorizing given sentences rather than generating new sentences (Wang et al., 2019). Previous
works (Guo et al., 2023; Izacard & Grave, 2021) treat retrievals as the context of inputs and concate-
nate retrievals with inputs. However, their methods demand language models to have the capability of
handling long sequence data. Figure 1(a) shows that concatenating more retrievals would significantly
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Figure 1: Impact of the number of retrievals on input sequence length and its effect on model’s
accuracy and FLOPs. CA refers to directly concatenating the retrievals with the input, while RF
refers to directly adding the retrieval representations to the representation of the [CLS] token. CA-A
and RF-A refer to the accuracy of context-augmentation and retrieval representation fusion. CA-F
and RF-F refer to the FLOPs of context-augmentation and retrieval-addition.

increase the length of inputs, but the number of retrievals would be limited by the max sequence
length of models. This limitation would result in a performance drop as shown in the red line in
Figure 1(b). Besides, processing such long sequence inputs would also consume a substantial amount
of computational resources as shown in the green line in Figure 1(b).

In this paper, we introduce ReFusion, a computation-efficient Retrieval representation Fusion frame-
work with neural architecture search. Different from previous retrieval-based augmentations (Izacard
& Grave, 2021; Guo et al., 2023), ReFusion directly fuses the representations of retrievals into
models. ReFusion consists of three major modules, i.e., the retrieval module for retrieving neighbor
representations, the fusion module for fusing the representations, and the search module for seeking
the optimal combination of different fusion schemes. Experimental results on 15 NKI tasks show
that ReFusion outperforms other comparisons and achieves superior and robust results. Codes are
available at 3.

The main contributions of this paper are:

• We are the first to propose fusing the representations of retrievals directly into models to
solve the performance and efficiency bottleneck of prompt-based techniques.

• Experimental results demonstrate that our ReFusion framework can significantly improve
models’ understanding capability, and achieve a superior and robust performance.

2 ReFusion: A Computation-Efficient Retrieval Representation Fusion with
Neural Architecture Search

As shown in Figure 2(b), we propose a computation-efficient retrieval representation fusion framework.
Our framework can be adapted to any transformer-based architecture (Vaswani et al., 2017), or
any architecture that contains the attention module. The ReFusion contains three modules, i.e.,
the retrieval module for retrieving the representations of k similar sentences, the fusion module
containing different fusion schemes, and the search module for seeking the optimal combination of
different fusion schemes. Specifically, the retrieval module encodes the query texts and searches
for the representations of top-k similar sentences among billions of data. The fusion module in this
work involves different ranking schemes (e.g., a reranker-based scheme and an ordered-mask-based
scheme Rippel et al. (2014); Cui et al. (2023, 2020, 2021); Mao et al. (2022)) to rerank the retrievals
for different layers in LMs. Since it is difficult to tell which ranking scheme is better on each layer in
LMs, the search module leverages neural architecture search (NAS) techniques to select the optimal
ranking scheme or no ranking for each layer.

3https://anonymous.4open.science/r/ReFusion-173F
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Figure 2: Retrieval-augmented prompt-based fine-tuning.

3 Experiment

3.1 Experimental Setting

Experimental Settings Our experimental setting mainly follows the settings in LM-BFF (Gao et al.,
2021). We conduct comprehensive experiments across 15 NKI tasks, including 8 tasks from GLUE
benchmark(Wang et al., 2019), SNLI, SST-5, MR, CR, MNLI, MNLI-mm, Subj and TREC. We
measure the average performance of five different sampled Dtrain for each task with a fixed set of
seed Sseed = {13, 21, 42, 87, 100}, which follows the LM-BFF’s settings. Our models are based on
RoBERTa-large for fair comparison with LM-BFF.

To validate the effectiveness of our method, we compared ReFusion with several other models: (1)
LM-BFF: a prompt-based fine-tuning approach; (2) DART(Zhang et al., 2022): a differentiable
prompt-based model, which can automatically search for the optimal prompt; (3) KPT(Hu et al.,
2022): a prompt-based approach incorporating knowledge into the prompt verbalizer; and (4) CA-512:
a retrieval-augmented prompt-based method concatenating retrievals with inputs.

3.2 Main Results

Table 1 presents the main experimental results of our ReFusion and comparisons on 15 NKI tasks.
The results are shown in the form of means and variances, with the variance denoted by a subscript.

For tasks with single sentences (S-Task), ReFusion consistently demonstrates superior performance
across almost all benchmarks. ReFusion achieves state-of-the-art performance on 5 tasks over 8 tasks.
And ReFusion improves the average performance on the S-Task benchmark by about 2.1% than
LM-BFF. Specifically, on the TREC task, ReFusion (90.3%) exhibits the maximum improvements
over LM-BFF (84.8%).

For tasks consisting of pair sentences (P-Task), ReFusion continues to demonstrate strong perfor-
mance. ReFusion also achieves the state-of-the-art on 5 tasks over 7 tasks. And ReFusion can improve
the average performance on the P-Task benchmark by about 3.0% than LM-BFF. For instance, on
the QNLI and SNLI benchmark, ReFusion (73% for QNLI, 80.6% for SNLI) significantly exceeds
LM-BFF (64.5% for QNLI, 77.2% for SNLI).

The Avg-all represents the average performance of all 15 NKI tasks. For overall average performance,
ReFusion achieves a score of 74.3%, marginally surpassing LM-BFF’s 71.8%. This further highlights
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Table 1: Our main results with RoBERTa-large.

Methods SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg-S
LM-BFF 92.70.9 47.42.5 87.01.2 90.31.0 84.72.2 91.21.1 84.85.1 9.37.3 73.4
DART 93.50.5 - 88.21.0 91.80.5 - 90.71.4 87.13.8 - -
KPT 90.31.6 - 86.81.8 88.83.7 - - - - -

CA-512 91.31.4 46.71.1 85.11.4 88.31.7 76.92.8 88.01.9 82.24.4 7.43.3 70.7
ReFusion 93.40.6 49.81.4 87.91.1 91.70.3 86.71.1 92.50.8 90.33.7 11.44.1 75.5
Methods MNLI MNLI-m SNLI QNLI RTE MRPC QQP Avg-P Avg-all
LM-BFF 68.32.3 70.51.9 77.23.7 64.54.2 69.13.6 74.55.3 65.55.3 69.9 71.8
DART 67.52.6 - 75.81.6 66.73.7 - 78.34.5 67.83.2 - -
KPT 61.42.1 - - 61.52.8 - - 71.62.7 - -

CA-512 66.21.0 67.81.3 71.62.2 66.93.2 66.63.1 73.56.9 64.01.9 68.1 69.5
ReFusion 69.31.5 70.91.5 80.61.4 73.01.1 70.92.3 77.03.6 68.93.3 72.9 74.3

The results of LM-BFF, DART refer to their original paper. The results of KPT refer to Chen et al.
(2022). The numbers are the average results. The subscript numbers are the standard deviation
results.

ReFusion’s consistent and superior performance. Besides, ReFusion surpasses other models like
DART, CA-512 and KPT, delivering superior or comparable results. Notably, the standard deviation
of ReFusion is considerably smaller than that of other models, indicating that ReFusion produces
stable results and offers superior robustness.

3.3 Ablation Study

We conduct ablation experiments on six representative tasks to show the contributions of each module
to the overall performance. On all tasks, ReFusion tends to produce better results than those just
applying the retrieval fusion module. The results of methods using NAS demonstrate that NAS can
significantly boost performance. Specifically, compared to the baseline, two ranking schemes can
bring different but significant improvements. This reveals that it is necessary to combine different
ranking schemes on different tasks. After using NAS, the performance of each ranking scheme is
also significantly improved. This suggests these two ranking schemes are not always suitable for
every layer in LMs, thus we need to disable the fusion module at some layers. Finally, our ReFusion
integrating all effective candidate fusion modules using NAS achieves the best performance on three
tasks. We can infer that the combination of all candidate modules harnesses their strengths.

Table 2: Ablation studies on different modules.

Methods MPQA SUBJ TREC SNLI QNLI RTE
Roberta-Large 83.62.5 90.32.8 83.85.2 73.55.2 65.03.0 64.12.0

Reranker 84.22.2 91.31.3 85.04.2 74.34.6 68.81.4 65.63.1
Ordered Mask 83.31.9 90.81.4 83.05.8 74.94.0 68.31.4 65.83.1

NAS with Reranker 86.91.3 92.41.3 90.82.5 80.31.9 73.51.8 69.22.4
NAS with Ordered Mask 87.01.5 92.40.7 90.73.0 80.31.3 73.01.0 70.42.5

ReFusion 86.71.1 92.50.8 90.33.7 80.61.4 73.01.1 70.92.3

The numbers are the average results. The subscript numbers are the standard deviation results.

4 Conclusion

In this paper, we aim to solve the bottleneck of prompt-based techniques by directly fusing retrieval
representations into models. We propose a computation-efficient retrieval representation fusion
framework with neural architecture search, ReFusion. ReFusion uses NAS to fuse retrievals refined
by different ranking schemes on each layer in LMs. Experimental results demonstrate our fusion
framework outperforms baselines and is robust on various tasks.
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A Templates on All Tasks

Table 3 provides an overview of the manual templates and selected label words used for each dataset
in our experiments. These templates and label words were created following LM-BFF (Gao et al.,
2021).

Table 3: Templates and label words that we used in our experiments.

Task Prompts Label word
SST-2 [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
SST-5 [CLS] x It was [MASK]. [SEP] “0”:“terrible”,“1”: “bad”,

“2”: “okay”,“3”: “good”,“4”: “great”
MR [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
CR [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
MPQA [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
SUBJ [CLS] x This is [MASK]. [SEP] “0”:“subjective”, “1”:“objective”
TREC [CLS] [MASK] x [SEP] “0”:“Description”,“1”:“Entity”,“2”:“Expression”,

“3”:“Human”,“4”:“Location”,“5”:“Number”
CoLA [CLS] x It was [MASK]. [SEP] “0”:“incorrect”, “1”:“correct”
MNLI [CLS] x1 ? [MASK], x2 [SEP] “contradiction”: “No”,“entailment”:“Yes”,

“neutral”: “Maybe”
MNLI-m [CLS] x1 ? [MASK], x2 [SEP] “contradiction”: “No”,“entailment”:“Yes”,

“neutral”: “Maybe”
SNLI [CLS] x1 ? [MASK], x2 [SEP] “contradiction”: “No”,“entailment”:“Yes”,

“neutral”: “Maybe”
QNLI [CLS] x1 ? [MASK], x2 [SEP] “not entailment”:“No ”,“entailment”:“Yes”
RTE [CLS] x1 ? [MASK], x2 [SEP] “not entailment”:“No ”,“entailment”:“Yes”
MRPC [CLS] x1 [MASK], x2 [SEP] “0”:“No”, “1”:“Yes”
QQP [CLS] x1 [MASK], x2 [SEP] “0”:“No”, “1”:“Yes”

B Results on Full Training Set

We conduct experiments on several tasks under the prompt-based setting with the full training set. As
shown in Table 4, across all datasets, ReFusion generally demonstrates either comparable or superior
performance compared to LM-BFF. The average performance across all tasks in ReFusion surpasses
that of LM-BFF by 1.4%. This suggests that ReFusion’s performance superiority is consistent and
not dependent on the size of the dataset. This implies that ReFusion is robust and can generalize well
across varying amounts of data.

Table 4: Full training set results compared with LM-BFF.

Methods SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA RTE
LM-BFF 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6 80.9
ReFusion 95.6 61.0 92.3 91.4 84.4 97.1 97.6 62.8 85.2

C Technique Details

C.1 The Online Retrieval Module

In the retrieval module, there is a query encoder for encoding query texts and a task-agnostic retriever
built offline over billions of dense vectors. The retriever consists of an efficient indexing like
FAISS (Johnson et al., 2019) or ScaNN (Guo et al., 2020), and a compressed key-value store database
that contains all texts and embeddings. The retrieving process in our framework is online performed,
which means that for every forward, the query encoder first passes the representation hx of the input
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Figure 3: Two different ranking schemes used in the fusion module.

text x to the retriever, then the retriever returns the representations HZ = {hz1 , . . . , hzk} of top-k
similar sentences Z = {z1, . . . , zk} to the fusion module. For efficient retrieving, especially for the
training, the retrieval module maintains an in-memory cache for the input text x and corresponding
representations HZ of similar sentences.

C.2 The Retrieval Fusion Module

The retrieval fusion module can be wrapped with any modules in the language models (LMs). It takes
the representations of top-k similar sentences and the hidden representations of existing modules
as inputs, and outputs the fused representations. Specifically, we introduce two effective ranking
schemes as shown in Figure 3.

C.2.1 Reranking the Retrievals

In the retrieval module, the retrievals are ranked by a task-agnostic similarity metric, e.g., L2
norm. Directly adding the representations to the hidden representations would not improve LMs’
performance. That is because 1) The retrievals are not optimally ranked for the existing module
in LMs, which may introduce noise or irrelevant information; 2) The models should pay different
attention to those retrievals in case of overemphasizing less relevant information. Therefore, we aim
to propose a learnable reranker to learn the ranking distribution tailored to each module in LMs. As
shown in the top of Figure 3, the significance of retrievals is re-assigned after reranking.

Specifically, the reranker is a 1D learnable vector of k dimensions, i.e., R = {r1, . . . , rk}. It is first
normalized and then multiplied by the retrievals. Finally, the averaged representation of all reranked
retrievals is added to the sentence representation, e.g., [CLS] token in BERT-like models (Liu et al.,
2019b; Devlin et al., 2019). The formal steps are as follows,

ri =
exp(ri)∑
j exp(rj)

(1)

hy[CLS] = hx[CLS] +
1

k

∑
ri · hzi (2)

where hx[CLS] , hy[CLS] are the sentence representations of inputs and outputs.

C.2.2 Ordered Mask Over Retrieval Representations

Rippel et al. (Rippel et al., 2014) proposed a nested dropout that directly drops the representation
units from the sampled index I , thus yielding an inherent importance ranking of the representation
dimensions. This nested dropout can be implemented by a mask with leading I ones then zeros.
Based on the nested dropout, recent works (Cui et al., 2023, 2020, 2021; Mao et al., 2022) proposed
the ordered mask that modeled the dropping process with a chain of Bernoulli variables and made it
differentiable using the re-parameterization trick.

As shown in the bottom of Figure 3, we apply the ordered mask over k retrievals on each representation
dimension. This means that different from the reranker, the ordered mask trusts the ranking produced
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by the retriever and refines the ranking with training data. Specifically, let hz1 , . . . , hzk be the top-k
D-dimensional retrieval representations. For each dimension of retrieval representation (e.g., the
dimension d), the ordered mask is modeled by a chain of Bernoulli variables V = {vd1 , . . . , vdk},
where vdi ∼ Bernoulli(πi) indicates whether drop the d-th representation unit of the i-th retrieval.
Following the property of nested dropout, the variable vdi is conditioned on vdi−1, thus we can obtain
the marginal distribution p(vd

i ) of vdi .

After that, the ordered mask uses the re-parameterization trick, e.g., choosing the Gumbel Softmax
distribution Jang et al. (2017) as the tractable variational distribution q(vd

i ). With Gumbel Softmax
distribution, if cd ∼ Gumbel(β, τ), then vdi = 1− cumsumi(cd), where cd is a sample choice of the
dropped index over k retrievals on the dimension d, and cumsumi(cd) =

∑i−1
j=0 c

d
j . In the Gumbel

Softmax distribution, β is a learnable parameter in the differentiable function vdi = g(ϵi;β) and τ is
the temperature variable that controls the smoothness of the step at the dropped index.

Finally, we obtain the different ordered mask V 1, . . . , V D over representation dimensions. We use
it to mask the retrievals in a fine-grained way. Then, the masked retrievals would be fused into the
sentence representations in the same way as Reranker. The formal steps are as follows,

cd ∼ Gumbel(β, τ) (3)

vdi = 1− cumsumi(cd) (4)

ĥd
zi = vdi · hd

zi (5)

hy[CLS] = hx[CLS] +
1

k

∑
ĥzi (6)

where ĥd
zi is the d-th masked representation unit of i-th retrieval.

C.3 The Architecture Search Module

As shown in Figure 3, it is difficult to tell which ranking scheme is better on each layer in LMs.
Therefore, we propose an architecture search module, aiming to leverage neural architecture search
(NAS) techniques to search to select the optimal ranking scheme.

C.3.1 Search Space

In this work, we do not search for a totally new neural network architecture like previous NAS
works (Liu et al., 2019a) do. Instead, we keep the main structure of transformer-based models
unchanged and only replace several modules with our search modules.

A search module consists of multiple fusion modules with different ranking schemes and the original
module. For example, taking the linear module in LMs as an example, we replace the linear module
with our linear search module, which includes three modules, the fusion module with reranker-based
scheme, the fusion module with ordered-mask-based scheme, and the original linear module.

Although the number of candidate modules in the search module is small, the whole search space is
quite large. Given a transformer-based language model with N hidden layers, assume that we only
replace the linear module for the key and value in every attention module, we have at least 3× 3 = 9
candidate modules and thus at least 9N different retrieval-augmented transformer-based language
models. Taking the RoBERTa-large as an example, which has 24 layers, the search space can be
septillion-level large.

C.3.2 Searching Details

We follow the same searching strategies used in DARTS (Liu et al., 2019a). Specifically, let
α = {α1, . . . , αl} be the architectural weights, where l is the number of candidate modules in each
search module. To make the search space continuous, we also relax the categorical choice of a
particular candidate module to a softmax over all possible candidate modules within the search
module,

ô(h) =
∑
i

exp(αi)∑
j exp(αj)

oi(h) (7)
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where oi(h) represents the output of the i-th candidate module oi(·) taking the hidden states h as
input, ô(·) indicates the output of the search module.

The goal of architecture searching is to jointly optimize the architectural weights α and the weights ω
of all modules with LMs. We update the weights ω based on the training loss, and the architectural
weights based on the validation loss. The updates of these two types of weights are done alternatively.
After training, we only choose the candidate module with the largest architectural weights for the
inference.
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