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Abstract

Large Mixture of Experts (MoE) models could achieve state-of-the-art quality on
various language tasks, including machine translation task, thanks to the efficient
model scaling capability with expert parallelism (Fedus et al., 2021). However,
it has brought a fundamental issue of larger memory consumption and increased
memory bandwidth bottleneck at deployment time. In this paper, we propose
Mixture of Quantized Experts (MoQE) which is a simple weight-only quantization
method applying ultra low-bit down to 2-bit quantizations only to expert weights
for mitigating the increased memory and latency issues of MoE models. We show
that low-bit quantization together with the MoE architecture delivers a reliable
model performance while reducing the memory size significantly even without
any additional training in most cases. In particular, expert layers in MoE models
are much more robust to the quantization than conventional feedforward networks
(FFN) layers. In our comprehensive analysis, we show that MoE models with 2-bit
expert weights can deliver better model performance than the dense model trained
on the same dataset. As a result of low-bit quantization, we show the model size
can be reduced by 79.6% of the original half precision floating point (fp16) MoE
model. Combined with an optimized GPU runtime implementation, it also achieves
1.24X speed-up on A100 GPUs.

1 Introduction

The Mixture-of-Experts (MoE) architecture efficiently increase the number of model parameters,
while maintaining a sub-linear increase in computational requirements by activating only a few small
number of experts at a time (Lepikhin et al., 2020; Fedus et al., 2021; Kim et al., 2021; Artetxe
et al., 2021). As a result, MoE models could achieve higher quality compared to the dense models by
increasing the size of the model dramatically. In a large scale distributed training setting, this can be
efficiently scaled with expert parallelism(Fedus et al., 2021). However, during inference scenarios,
despite the sub-linear increase in computational load, there is a notable surge in memory bandwidth
requirement. Table 1 shows that how much memory bandwidth overhead is introduced, even when
employing just 32 experts without a corresponding increase in theoretical FLOPs, as implemented
with top-1 gating (Fedus et al., 2021) on an NVIDIA A100 GPU.
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Table 1: Inference speed measurements and model sizes of dense and MoE models. Both models run
with batch size of 24 and the throughput is measured with the number of sentences processed for one
second.

Model Throughput Model size % of MoE weights
(sentences/second) (fp16) in GB

Dense 14.02 1.18 -
MoE (32 experts) 5.37 9.91 92.8 %
Difference 0.38X 8.38X -

In spite of the progress on the training of MoE models, there have been only a few handfuls of studies
related to MoE model inference. Rajbhandari et al. (2022) designs a more efficient MoE architecture
and distributed runtime. Kudugunta et al. (2021) uses task specific information to reduce the size
of the model at deployment time by only loading task specific experts. Kim et al. (2021) prunes
some experts at deployment time to reduce the model size by trading-off model performance. Zoph
et al. (2022) uses knowledge distillation technique to distill a large MoE model into a smaller dense
model to reduce the memory consumption and improve the throughput. Even with all the proposed
techniques, there has not been a solution to accelerate the inference of MoE models while maintaining
the accuracy.

To effectively solve the problem, we empirically show that expert weights are highly robust to the
quantization, therefore they can be quantized to 3-bit without additional training or calibration data
and to 2-bit with Quantization Aware Training (QAT) which results in 79.6% reduction in memory
size. Also with a runtime optimization, we show that the method boosts the inference speed more
than 1.24X faster on A100 GPUs.

2 Quantization robustness of MoE layers

2.1 Numerical distribution of model weights

While quantizing matrices, outliers usually skew the range to be quantized and scaling factors get too
large and result in poor quantization quality. We investigate if outliers exist in MoE and other layers.

Figure 1 shows weight distribution box plots of linear layers in the MoE model’s FFN blocks. We
use a normal two layer FFN block from the Transformer paper (Vaswani et al., 2017). Following
the widely used practice, an MoE layer is in every other layer (Lepikhin et al., 2020; Fedus et al.,
2021; Kim et al., 2021). Even number layers {0, 2, ...} are expert FFN layers and odd number layers
{1, 3, ...} are normal dense FFN layers. From the plot, dense FFN layers have a much larger range
than MoE FFN layers. This indicates that dense FFN layers have more outliers than MoE FFN layers.
This phenomenon is more prevalent in the second linear layers sometimes reaching down to −8.0
which is shown in Figure 1b.
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Figure 1: FFN weight distribution across layers. Even number layers {0, 2, ...} are expert FFN layers
and odd number layers {1, 3, ...} are normal dense FFN layers. (a) shows the first linear layer in FFN
and (b) shows the second linear layer in FFN.
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2.1.1 Robustness of expert layers to quantization

To better understand how applying quantization on different parts of an MoE model affects the
accuracy, we conduct a set of experiments with various quantization bits. We divide an MoE model
into four parts: (i) expert FFNs, (ii) dense FFN layers, (iii) self-attention layers and (iv) cross-attention
layers. Based on the observation that linear quantization works better with lower bits, we use it for
this set of experiments.

Figure 2 shows evaluation BLEU 2 scores which is one of the quality metrics for machine translation
when quantizing different parts of the MoE model. We observe that quantizing expert FFN layers
to 2-bit does not seriously impact the overall model quality. However, quantizing other parts of the
model into 2-bit hurts the output quality significantly. Quantized cross-attention and self-attention
blocks still can maintain the quality with 3-bit quantization, but their performance gets impacted
with 2-bit quantization. On the other hand, dense FFN layers get significant impact with lower bit
quantization of 2-bit and 3-bit. With 3-bit quantization, the model score drops 23 % of original score,
and 2-bit quantization on dense FFN layers gives almost zero score. We also include the same study
on a dense model in Appendix D, the similar pattern with 2 and 3 bit quantization is observed.
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Figure 2: Quantization impact on different MoE model parts (channel-wise linear quantiztation
without any additional training).

3 Experiments

Given the observations from the previous section, we aggressively apply low-bit quantization on
MoE weights only which result in MoQE (Mixture-of-Quantized-Experts). We use multilingual
machine translation task for our experiments. The details of the datasets, quality metrics and model
architectures are described in Appendix B

3.1 MoQE performance results

We apply MoQE quantization recipe to an MoE model and compare the performance with the baseline
MoE model in Table 2. For a reference, a dense model is also trained on the same dataset as the MoE
model. For the MoE model, various quantization settings ranging from 8-bit to 2-bit are measured
together with the original fp16 performance. For 2-bit quantization, additional QAT is applied.

First of all, the MoE model achieves 2.87% improvement on the BLEU score while increasing the
model size to 8.38X of the original dense model. When 4-bit post-training quantization is applied, it
still maintains 2.11% higher BLEU score than the original dense model. This reduces the memory
consumption by 68% and while speeding up inference 1.24X faster than fp16 MoE model. With 2-bit
QAT, the MoE model can still maintain 1.88% higher quality than the original dense model, but the
model size is now only 1.71X of the original dense model.

2https://github.com/mjpost/sacrebleu
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Table 2: The model performance comparison. All the models are trained on same data up to the
convergence with 200,000 update steps. The baseline is the FLOPs equivalent dense model’s BLEU
score and speed.

Model type Precision Average BLEU Throughput Size
(difference %) (X times) (X times)

Dense fp16 45.06 (0) - -
MoE Baseline fp16 46.35 (+2.87) 1.00X 1.00X

MoE 5.3B (32 experts)
int8 46.34 (+2.85) 1.16X 0.54X
int4 46.18 (+2.49) 1.24X 0.32X

MoQE int3 46.01 (+2.11) Not optimized 0.26X
int2 45.90 (+1.88) Not optimized 0.20XQAT

3.2 Robustness comparison between MoE and dense models

We compare robustness against low-bit quantization between MoE and dense models using the
post-training quantization without any QAT. For the dense model, quantization with different bits
is applied to the even numbered FFN layers. Appendix D shows this is the best layer selection for
the dense model. We use two different datasets to verify the proposed quantization method works in
different model settings.
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Figure 3: Quantization performance comparison between MoE and dense models. 10 different
language pair scores are averaged.

Figure 3 presents the experiment with the model trained with 20 direction multilingual translation
dataset. It shows the average BLEU scores with different quantization precision for both MoE
and dense models. The MoE model can maintain accuracy within -0.3 down to 3-bit and -1.82
for 2-bit. On the other hand, the dense model can preserve the accuracy only down to 4-bit, but
starts to lose significant accuracy more than 2 BLEU scores when it goes down to 3-bits. In case of
2-bits, dense model loses most of capability by -42.96 BLEU scores. Table 6 in Appendix shows
the score differences by quantization for both MoE and dense models on 10 different language pairs
translations.

4 Conclusions and limitations

This paper shows how much MoE models are robust to the low-bit quantization with various experi-
ments. By analyzing component-wise sensitivity and various quantization design choices, we present
an efficient and effective way to reduce the model size which results in 4.9X model size reduction.
With an optimized runtime, 4-bit quantized model can run 1.24X faster than the fp16 model.

Even with the interesting findings, the study has a few limitations. First of all, there does not
exist an optimized implementation for lower than 4-bit quantization, yet. This is a good potential
future research direction. Secondly, 2-bit quantization still requires QAT while 3-bit or higher bit
quantization does not. Lastly, there could be a hybrid approach to mix different quantization precisions
between MoE layers and the other layers which can result in more optimal model performance.
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A Quantization algorithms

A.1 Quantization techniques

We try two quantization techniques, they are (i) linear quantization which is mapping quantized integer
values and the original float value uniformly and (ii) log-based quantization from Aji & Heafield
(2020) which maps integer and float ranges in a log scale. In both cases, we choose channel-wise
quantization over matrix-wise quantization based on the experiment in Appendix C.

Linear quantization with absolute maximum. The first technique is linear quantization which,
given a matrix A and b bits, it encodes A as follows:

sj =
2×max(|A:,j |)

2b − 1

Q:,j = int(
A:,j

sj
)

where s is the scaling factor which can be chosen per channel as shown or per the whole tensor. At
inference time, the quantized Q is dequantized back to A

′
with the scaling factor s as follows:

A
′

:,j = Q:,j × sj

Log-scale quantization. The second technique is log-scale quantization where 1 bit is kept for the
sign and (b− 1) bits are used to encode the log-scaled values. Given a matrix A, the quantization
formula is as follows:

P = sign(A)

T = clip(
|A|
s

, 1, 21−2b−1)

Q = ⌈log2(
2

3
T )⌉

where s can be chosen in two ways, either (i) the absolute maximum or (ii) the optimal value to
minimize the mean squared error (MSE) between the quantized and original values which is described
in Aji & Heafield (2020). We use the second algorithm which we observe a better accuracy with the
quantization. At inference time, the quantized weight values are dequantized based on the formula as
follows:

A
′
= P × s× 2Q
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Figure 4: Linear quantization vs log-scale with optimal s quantization.

B Experimental setup

Task. We use multilingual machine translation task for our experiments with two different dataset
which are 20 language directions and 10 language directions respectively. We use sacrebleu 3 on the
detokenized output to measure the accuracy of the models. A single NVIDIA A100 running inside

3https://github.com/mjpost/sacrebleu
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a docker container running Ubuntu 20.04 and CUDA 11.6 is used for all experiments, and all code
is compiled with nvcc and gcc/g++ 9.3. We measure end-to-end runtime of the inference for the
evaluation dataset.

Datasets. We use two different datasets described below. For the larger dataset setting, we use
internally collected dataset consists of 6 different languages which are German (de), French (fr),
Italian (it), Spanish (es), Dutch (nl) and English (en). They are crawled from web, and each language
pair has at least several hundred million sentences. We use 128,000 sub-words vocabulary built with
sentencepiece4 library. The number of training sentences is included in Appendix F.
For the smaller dataset setting, we use WMT-10 benchmark dataset widely used for public benchmarks
(Wang et al., 2020; Kim et al., 2021). There are 32.5 million sentence pairs for English-centric 20
language pairs including French (fr), Czech(cs), German (de), Finnish (fi), Latvian (lt), Estonian (et),
Romanian (ro), Hindi (hi), Turkish(tr) and Gujarati (gu).

Model architecture. For all the experiments with large dataset, we use 24 transformer (Vaswani
et al., 2017) encoder layers and 12 transformer decoder layers following the deeper encoder and
shallower decoder practice (Kim et al., 2019; Kasai et al., 2021) to be more efficient at auto-regressive
decoding. The embedding dimension is 1, 024 and FFN hidden dimension is 4, 096. For the
positional information encoding to the hidden state, we use Transformer with Untied Positional
Encoding (TUPE) proposed in Ke et al. (2021) instead of the conventional sinusoidal positional
embedding. Another design choice is the location of layer normalization. For the training stability,
we use pre-layer normalization proposed in Xiong et al. (2020) instead of the original post-layer
normalization from (Vaswani et al., 2017). We train MoE and dense models for the comparison. The
model architecture choices mentioned here are common for both models. The only difference between
dense and MoE models is the number of experts. We use 32 experts for the MoE model trained
with the larger web data. We use beam search decoding with beam size of 5. For the experiments
with smaller dataset, we use 12 transformer encoder layers and 6 transformer decoder layers. The
embedding dimension is 768 and FFN hidden dimension is 3, 072. In this setting, we use MoE layers
with 128 experts at every other layer.

MoE architecture. For the MoE model specific settings, we use top-1 learned gating from Fedus
et al. (2021) and use an MoE layer at every other layer which are even numbered layers (Lepikhin
et al., 2020; Fedus et al., 2021; Kim et al., 2021). During the training of MoE models, we use jittering
noise and balancing loss (ratio of 0.01) suggested in Lepikhin et al. (2020); Fedus et al. (2021) to
more uniformly distribute expert utilization. To prevent overfitting and better regularize the model,
we use gating dropout (0.2) (Liu et al., 2022) as well.

C Channel-wise vs matrix-wise quantization

Scaling factors are calculated by the quantization algorithm and stored in half precision floating-point
(fp16) numbers to dequantize the matrices with. These factors can be chosen on the channel scale or
the whole matrix scale. As shown in figure 5, channel-wise quantization gives quite higher scores
than tensor-wise especially for low precision. Additional parameters to store channel-wise scaling
factors is small, because only one value is needed for a channel and less than 1% of total parameters
in a matrix. Therefore, we use channel-wise quantization for all the quantization experiments.

D Quantization of different layers in a dense model

In the paper, we compare a dense model and an MoE model in terms of quantization robustness. To
make a fair comparison, we consider quantizing only half of the dense transformer blocks’ FFNs,
because we quantize expert weights only which exist only in every other block (even numbered).
We compare three different configurations - (1) quantizing even numbered blocks’ FFNs only, (2)
quantizing odd numbered blocks’ FFNs only and (3) quantizing all FFN layers. As can be seen in
Figure D, quantizing even numbered blocks’ FFNs affects the accuracy the least, and quantizing
all FFN layers give the worst result. Based on this experiment, we quantize only even numbered
transformer blocks’ FFNs for the dense model in all the experiments and comparisons.

4https://github.com/google/sentencepiece
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Figure 5: Linear quantization of expert FFNs with channel-wise and matrix-wise scaling factors.
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Figure 6: Quantization impact of different layers in a dense model.

E Skewness of weight matrices in MoE and dense models

In the analysis of model weight distribution in Section 2, we observe that dense models’ FFN layers
tend to have more outliers than MoEs’ expert FFN layers. We measure the skewness of weight
distribution of those in Table 3.

Table 3: Expert vs non-expert FFN layers parameters distribution skewness

Parameter skew
encoder expert 15 FFN fc1 layer 0 -0.002
encoder expert 15 FFN fc2 layer 0 -0.190
encoder expert 15 FFN fc1 layer 6 -0.002
encoder expert 15 FFN fc2 layer 6 -0.002

encoder non-expert FFN fc1 layer 1 -0.019
encoder non-expert FFN fc2 layer 1 -10.729
encoder non-expert FFN fc1 layer 7 0.003
encoder non-expert FFN fc2 layer 7 -1.574

encoder expert FFN fc1 mean 0.00
encoder expert FFN fc2 mean -0.63
decoder expert FFN fc1 mean 0.00
decoder expert FFN fc2 mean 0.48

encoder non-expert FFN fc1 mean 0.00
encoder non-expert FFN fc2 mean -1.84
decoder non-expert FFN fc1 mean 0.00
decoder non-expert FFN fc2 mean -0.09
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F Machine translation dataset summary

Table 4 shows the number of parallel sentences used to train dense and MoE models. All languages
have at least 300 million sentences and the differences in the number among languages are less than
two times.

Table 4: The number of parallel sentences including backtranslation data.

Language Number of parallel sentences (million)
xx → English English → xx

DE (German) 505 411
ES (Spanish) 448 407
FR (French) 448 376
IT (Italian) 447 303
NL (Dutch) 302 378

G Detailed BLEU score differences with quantization applied to the model
trained on public WMT dataset

Table 5 shows individual BLEU score changes with various quantization bits for MoE and dense
models trained on public WMT dataset.

H Detailed BLEU score differences with quantization applied to 5.3B model.

Table 6 shows individual BLEU score changes with various quantization bits for MoE and dense
models measured with the internal validation dataset. Table 7 shows the same model’s evaluation
performance on two WMT public dataset.
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Table 5: The BLEU score differences in percentage (%) after quantization on different language pairs
in WMT dataset. The rows with fp16 show the baseline BLEU scores.

Bits Model en-cs en-de en-et en-fi en-fr en-gu en-hi en-lv en-ro en-tr Avg.(en-xx)
fp16 Dense 23.89 31.46 17.80 18.75 28.54 10.34 11.98 22.29 27.22 15.81 20.81

(BLEU) MoE 26.09 34.36 18.27 22.17 31.34 13.04 12.16 23.26 27.95 16.89 22.55

8-bit Dense -0.39 -0.09 -0.32 0.60 0.01 -0.80 0.61 -0.26 0.17 -0.09 -0.05
MoE 0.01 -0.15 0.64 -0.33 0.19 0.86 0.02 -0.04 -0.15 -0.03 0.05

4-bit Dense -1.11 -1.91 -3.15 -1.50 1.03 -7.08 -4.44 -2.38 -1.65 -1.89 -1.90
MoE -0.30 -0.62 0.30 -0.62 -0.13 -0.97 1.53 -0.81 -0.82 -0.22 -0.36

3-bit Dense -10.87 -7.86 -12.87 -11.70 -3.96 -32.03 -24.76 -11.16 -7.05 -12.74 -11.24
MoE -0.84 -1.06 -1.79 -1.97 0.35 -2.80 -0.70 -1.98 -1.05 -1.64 -1.21

2-bit Dense -97.44 -86.29 -91.79 -91.02 -85.75 -98.26 -96.48 -94.14 -87.30 -95.02 -91.21
MoE -8.84 -9.15 -17.06 -13.24 -5.62 -25.24 -16.38 -16.11 -11.04 -14.48 -12.34

Bits Model cs-en de-en et-en fi-en fr-en gu-en hi-en lv-en ro-en tr-en Avg.(xx-en)
fp16 Dense 29.48 35.62 23.43 23.91 31.89 16.54 14.97 26.25 35.68 18.52 25.63

(BLEU) MoE 31.25 38.21 23.67 25.64 32.59 19.55 15.89 25.22 34.80 20.27 26.71

8-bit Dense 0.02 -0.02 0.10 -0.33 -0.15 -0.37 -0.40 0.33 -0.34 0.14 -0.09
MoE 0.07 0.12 0.08 0.06 -0.10 0.14 -0.49 -0.03 0.05 -0.17 0.00

4-bit Dense -0.24 -0.78 -3.74 -1.72 -1.69 -4.58 -0.56 -1.97 -0.15 -1.84 -1.53
MoE 0.44 0.01 -1.00 0.25 -0.03 0.07 1.06 -0.98 0.67 -0.56 0.01

3-bit Dense -7.25 -7.11 -10.44 -10.36 -6.44 -18.67 -16.68 -11.52 -7.39 -10.39 -9.68
MoE -0.86 -0.14 -2.04 -1.10 1.02 -2.55 1.11 -2.11 -1.45 -2.91 -1.01

2-bit Dense -81.78 -74.17 -83.08 -85.13 -72.44 -94.23 -89.54 -81.50 -80.54 -85.70 -81.33
MoE -6.12 -7.69 -16.78 -11.29 -2.16 -20.14 -16.42 -15.82 -12.34 -17.61 -11.54

Table 6: The BLEU score differences in percentage (%) after quantization on different language pairs.
The rows with fp16 show the baseline BLEU scores.

Quantization Bits Model de-en es-en fr-en it-en nl-en Avg. (xx-English)
fp16 Dense 40.31 53.09 49.13 44.03 46.23 46.56

(Baseline BLEU) MoE 41.49 53.79 50.26 46.97 47.53 48.01
8-bit Dense -0.03 -0.08 -0.02 0.01 -0.05 -0.04

(% difference) MoE -0.10 -0.06 0.00 -0.02 0.03 -0.03
4-bit Dense -0.78 0.29 -0.23 -0.93 -0.20 -0.37

(% difference) MoE -0.50 -0.11 -0.10 -0.39 -0.02 -0.22
3-bit Dense -6.36 -2.51 -4.24 -5.93 -2.67 -4.34

(% difference) MoE -0.92 0.26 -0.26 -1.26 0.29 -0.38
2-bit Dense -95.44 -94.42 -95.51 -95.10 -93.31 -94.76

(% difference) MoE -4.35 -1.00 -2.64 -7.01 -0.70 -3.14
en-de en-es en-fr en-it en-nl Avg. (English-xx)

fp16 Dense 38.74 46.44 50.82 40.09 41.69 43.55
(Baseline BLEU) MoE 39.90 47.47 52.45 41.25 42.36 44.69

8-bit Dense -0.04 -0.07 0.02 -0.05 0.09 -0.01
(% difference) MoE 0.05 -0.01 -0.03 0.00 0.00 0.00

4-bit Dense -0.76 -1.11 -0.29 -0.70 -0.26 -0.62
(% difference) MoE 0.31 -0.90 -0.74 -0.45 -0.68 -0.49

3-bit Dense -5.82 -4.79 -3.96 -5.41 -4.54 -4.91
(% difference) MoE -0.21 -2.12 -1.41 -0.87 -0.89 -1.10

2-bit Dense -97.28 -96.16 -95.52 -96.68 -94.83 -96.09
(% difference) MoE -5.24 -6.19 -5.19 -5.30 -4.48 -5.28
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Table 7: The BLEU score differences in percentage (%) of 5.3B MoE model after quantization on
different language pairs on WMT datasets. The rows with fp16 show the baseline BLEU scores.

Quantization Bits Model de-en fr-en Avg. (xx-English)
fp16 Dense 50.11 42.98 46.54

(Baseline BLEU) MoE 52.73 44.04 48.39
8-bit Dense 0.04 0.11 0.07

(% difference) MoE 0.09 -0.04 0.03
4-bit Dense -0.59 -1.27 -0.91

(% difference) MoE -0.47 -0.36 -0.42
3-bit Dense -5.75 -6.17 -5.94

(% difference) MoE -1.15 -0.90 -1.03
2-bit Dense -96.88 -95.59 -96.28

(% difference) MoE -5.37 -3.68 -4.60
en-de en-fr Avg. (English-xx)

fp16 Dense 50.90 44.47 47.68
(Baseline BLEU) MoE 52.90 45.51 49.21

8-bit Dense 0.00 0.02 0.01
(% difference) MoE -0.05 0.23 0.08

4-bit Dense 0.24 -1.31 -0.48
(% difference) MoE -0.93 0.25 -0.39

3-bit Dense -5.86 -7.53 -6.64
(% difference) MoE -1.41 -0.69 -1.08

2-bit Dense -97.77 -96.22 -97.05
(% difference) MoE -6.34 -6.15 -6.25
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