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Instruction-Tuning Data Generation

Abstract

Instruction tuning has become pivotal in enhancing the adaptability and responsive-
ness of Large Language Models (LLMs) to human instructions. Despite its critical
role, current methods for generating instruction-tuning datasets exhibit significant
bottlenecks, primarily in terms of high cost and limited diversity. However, as
previously shown in the literature, the diversity of an instruction-tuning dataset is
crucial to LLM’s downstream performance. To address these challenges, we pro-
pose a Diffusion Language Model (DiffLM)-based technique to generate unlimited
diverse instructions at a low cost. Specifically, we have enhanced the variability of
instructions by strategically modifying the sampling process within the DiffLM.
Our method presents the opportunity to augment any existing instruction-tuning
dataset, thereby enriching its content and potential utility. Both automatic and
human evaluation show that our generated instructions achieve high quality and
better n-gram diversity than the original dataset. Instruction tuning of LLaMA on
the augmented dataset delivers better instruction following capability and superior
performance on a broad set of benchmarks, indicating the effectiveness of our
instruction generation method.

1 Introduction

Large Language Models (LLMs), particularly following the advent of ChatGPT, have seen a surge in
popularity due to their impressive performance capabilities [1, 2]. To maximize LLMs’ potential and
adapt pre-trained models to specific domains or downstream tasks, instruction tuning emerges as an
indispensable step [3, 4]. It involves the generation of bespoke datasets that guide Large Language
Models (LLMs) to respond more effectively to human instructions across varying tasks and domains.

Existing instruction-tuning techniques generally fall into two categories: human-labeled and machine-
generated approaches. Human-labeled methods [3–5] are highly accurate and contextually rich, but
is difficult to scale up and expensive to procure. Machine-generated techniques Wang et al. [6], Peng
et al. [7], Honovich et al. [8] are easily scalable but lack the necessary diversity, creating a gap
between the instructions in the dataset and real-world user prompts. Also, generating datasets by
querying commercial language models also involves costs, which could be substantial [9, 7] The
inherent limitations of existing instruction-tuning techniques underscore the need for a more effective,
scalable, and cost-efficient approach, forming our research’s central theme.

Given the aforementioned challenges, we propose DiffTune, a novel data generation technique
utilizing the Diffusion Language Model (DiffLM). The diffusion model, as a kind of generative
model, works by simulating a process of random walks from a simple initial distribution toward the
target distribution, resulting in nuanced and detailed data generation. Building upon this foundation,
DiffTune innovatively leverages the inherent properties of a Diffusion Language Model (DiffLM).
By replacing the original sampling strategy within the DiffLM with our topic diversity enhancing
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Existing Instruction-Tuning Dataset DIFFIT Dataset
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Cost Saving:

DiffTune Dataset Construction Process
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BART Encoder
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interesting recipe…

Output: Sure! Here's a recipe…

Figure 1: The dataset collection process of DiffTune.

sampling, DiffTune is imposed to generate high-quality instruction-tuning datasets with enhanced
diversity at a lower cost.

We put our novel DiffTune-generated dataset to the test by finetuning an accessible LLM, LLaMA [10].
Our methodology involved augmenting or replacing the original datasets with the instructions
generated by DiffTune. The LLaMA model, when finetuned with our DiffTune-generated dataset,
displayed a remarkable increase in its instruction-following capabilities in terms of higher validity
and human preference. This underscores the potential of DiffTune to optimize LLM performance
cost-effectively.

2 Data Collection for DIFFIT

This section introduces the fully automatic collection process of our instruction tuning dataset DIFFIT.
The overall data collection process is shown in Figure 1.

2.1 Diffision Language Model Training

Given an existing instruction-tuning dataset {(Xe
t , Y

e
t )}, where Xe

t and Y e
t are the instruction and

output of an instance in the dataset, we train a DiffLM on its instruction set {Xt} as described
previously. After this stage, we obtain a trained DiffLM, denote it MDiff. We can now sample from it:
1) sample a length from the empirical length distribution of the existing instruction set li ∼ L({Xt}),
and 2) sample a noise ZT ∈ Rli×d ∼ N (0, I). The generation MDiff(ZT ) is a sequence in the same
domain of the original instruction set {Xt}.

2.2 Diffusion Language Model Sampling

We sample from the trained MDiff to generate new, diverse, and high-quality instructions. Lovelace
et al. [11] demonstrated that DiffLM could generate diversified text sequences with low memorization
of its training set when using a noise sampled from N (0, I). In our method, we further increase the
diversity of our sampled instruction set by adopting an innovative sampling strategy to cover the rare
topics, concepts, and formats mapped to the long tail of the sampling noise distribution.

Inspired by the in-breadth evolving strategy mentioned in Xu et al. [12], we propose the topic diversity
enhancing sampling strategy. After sampling the noise from a standard Gaussian ZT ∈ Rli×d ∼
N (0, I), we randomly select 30% of the tokens and sample them from a distribution of a much
higher variance N (0, 10I). This strategy resembles the process of randomly inserting rare tokens
into the sequence. With the remaining 70% originally sampled tokens to control the overall format
and MDiff’s powerful BART decoder, the generation’s quality is only slightly compromised. The
post-processing step can mitigate the slightly lower generation quality.
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Dataset Size Avg len. #Unique Tokens↑ 4-gram Rep.↓ 4-gram SelfBLEU↓

Unnat. Inst. 68478 93.92 42455 0.61 0.85
Self-Instruct 82439 35.59 19920 0.70 0.90
Alpaca 52002 22.79 21027 0.43 0.69
GPT4-Alpaca 52002 22.79 21027 0.43 0.69
Code-Alpaca 20022 29.90 8671 0.55 0.79
OASST1 55668 25.09 36150 0.83 0.96
S.A.D. 52000 30.24 55455 0.19 0.51

DIFFIT 52000 28.64 49322 0.14 0.49

Table 1: Evaluation of existing similarly-sized datasets’ input instructions in terms of different
diversity metrics. S.A.D.: 52K instructions sampled from the concatenation of ShareGPT + Alpaca +
Dolly’s instruction set with stratified sampling. ↑: Higher is better. ↓: Lower is better. The best and
second-best results are labeled in bold and underline, respectively.

2.3 Instruction Post-Processing

In this step, we filter out the sampled instructions from MDiff with a perplexity threshold. We
use GPT2-Large to compute the perplexity. This simple yet effective post-processing strategy can
drastically decrease the average perplexity of the generated dataset by four times. However, since
perplexity computation largely depends on the evaluation model, which is not explicitly pre-trained on
the instruction domain, this process potentially filters out some valid but highly diversified instructions.
We leave developing a better post-processing strategy for this process as future work.

2.4 Instruction Output Generation

After obtaining a predefined number of valid instructions with the previous steps, we generate the
output by prompting an existing LLM. We iterate over all generated instructions, prompt the LM
with the instruction, and collect the LLM’s response. We filter out the instructions with an invalid
response (e.g., the LLM’s output contains no helpful information or deems the instruction as a not
self-contained sequence). The remaining instruction-output pairs form our instruction-tuning dataset.

3 Instruction Data Analysis

We apply the method introduced in Section 2 to the concatenation of three open-source datasets’
instruction sets: ShareGPT 1, Dolly [5] and Alpaca [13]. The combined dataset ShareGPT-Alpaca-
Dolly (S.A.D.) contains 107442 instructions. We sample 1000 instructions from it with stratified
sampling as the test set, while the remaining 106442 instructions are used for training DiffLM.

We sampled an instruction set with a DiffLM trained on the joint S.A.D.’s training set, using a
BART-Large as its decoder. The output for each instruction was collected with gpt-3.5-turbo. The
resulting dataset contains 52000 diverse instructions with high-quality outputs. We name our dataset
DIFFIT (Diffusion-based Instruction Tuning dataset).

We compare our dataset DIFFIT with several open-sourced instruction tuning datasets in Table 1 in
terms of instruction diversity. Among the similar-sized datasets, S.A.D. and our DIFFIT achieves the
highest unique token counts. Although DIFFIT has lower unique token counts compare to S.A.D.,
it achieves a better n-gram diversity in terms of 4-gram Repetition and 4-gram SelfBLEU. This
suggests that compared to DiffLM’s training instruction set, the sampled instructions from DiffLM
can cover more new complex concepts or phrases.

4 Instruction Tuning Experiments

We conduct instruction-tuning on a pre-trained LLM, LLaMA [10] with our sampled DIFFIT dataset.
In this section, we compare a LLaMA 7B fine-tuned on DIFFIT with LLaMA 7B finetuned on
similar-sized instruction-tuning datasets with the same training settings.

1We use an open-source version of ShareGPT from https://hf.co/datasets/anon8231489123/
ShareGPT_Vicuna_unfiltered.
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MMLU GSM Codex-HumanEval TydiQA Avg.Model & Dataset 0-shot 5-shot Direct CoT Pass@1 Pass@10 GP CB

LLaMA 7B [10] 31.9 35.2 6.0 9.0 11.6 18.3 39.1 9.5 20.1

+ Unnat. Inst. [8] 42.9 38.1 3.5 5.0 10.3 19.8 36.3 6.5 20.3
+ Self-Instruct [6] 35.7 33.2 4.0 6.5 6.2 12.1 35.4 8.7 17.7
+ Alpaca [13] 41.5 40.3 7.0 10.0 13.2 22.0 31.2 7.2 21.6
+ GPT4-Alpaca [7] 42.6 38.3 6.5 10.0 13.2 25.0 23.6 5.8 20.6
+ Code-Alpaca [14] 34.7 34.5 6.5 7.5 16.5 29.2 36.7 10.5 22.0
+ OASST1 [15] 32.9 29.7 6.0 6.5 10.1 20.4 26.8 7.8 17.5

+ S.A.D. 37.4 27.3 5.5 14.0 12.4 20.0 23.5 8.2 18.5
+ DIFFIT 39.7 33.6 7.5 14.5 12.0 25.6 23.8 6.7 20.4

+ S.A.D. (2x Training) 38.7 30.5 4.5 13.5 12.9 15.0 32.5 7.5 19.4
+ S.A.D.+DIFFIT 40.6 32.7 6.5 14.5 12.6 22.6 35.4 6.4 21.4

Table 2: Automatic evaluation of instruction-tuned LLM’s general capabilities. S.A.D.: 52K
instructions sampled from ShareGPT + Alpaca + Dolly. S.A.D. (2x Training): Training S.A.D. for
double the total training steps to match the total training step with S.A.D. + DIFFIT. Baselines’ results
are from Wang et al. [16].
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Figure 2: GPT-4 evaluation on model’s win rate
against Davinci-003 for instruction following.
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ChatGPT

%Valid Response

Figure 3: Human evaluation on the validity of
model’s response for user instruction following.

The results on a suite of automatic evaluations on LLM’s general capability are shown in Table 2.
Instruction tuning on DIFFIT achieves better performance than instruction-tuning on similarly-sized
DiffLM training set S.A.D, and augmenting S.A.D. with the generated dataset can further improve
LLM’s general performance. This suggests that DiffTune can generate high-quality instructions that
can augment existing diverse instruction-tuning datasets to increase LLM’s general capabilities.

We show the automatic evaluation on AlpacaFarm in Figure 2. We find that although a mixture of
52K S.A.D. instructions is itself a diverse dataset,DIFFIT sampled by DiffTune further increases
the response quality by achieving a higher win rate against text-davinci-003. S.A.D. augmented by
DIFFIT achieves a 2.2% win rate increase compared to LLaMA trained on S.A.D. with the same
training steps. This shows the effectiveness of DiffTune as both an instruction-tuning generation
method and an instruction set augmentation approach.

Lastly, we conduct a human evaluation of the validity and helpfulness of LLM’s response to real-
world human instructions. In Figure 3, we illustrate the percentage of valid responses evaluated by
human evaluators. The original 52K S.A.D. dataset achieves better response validity when augmented
with DIFFIT, achieving an increase of 1.3 percentage points brought by our method.

5 Conclusion

We introduce DiffTune, a novel method for generating instruction-tuning datasets that overcome the
limitations of current techniques. By leveraging the capabilities of Diffusion Language Models and
revising the sampling strategy, DiffTune generates diverse, high-quality instruction-tuning datasets in
a cost-effective manner. The superior performance of the LLaMA model, when finetuned with our
DiffTune-generated dataset, emphasizes the efficacy of our approach. Both automatic and human
evaluations underscore the quality and diversity of the data generated by DiffTune, showcasing its
potential to optimize the performance of Large Language Models across varied tasks and domains.
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A Related Works

Instruction-Tuning Datasets Recently, instruction tuning on LLMs has been a hot research area in
NLP [3, 4, 17, 18]. The dataset used for LLM instruction tuning has to be diverse to cover various
tasks, scenarios, and input formats. To guarantee the diversity requirement of the dataset, previous
literature generates their instruction data from a variety of existing NLP datasets [3, 4, 17, 19, 20],
various online forums [21], human labelling [5], crowdsourcing [15, 22], and generation by existing
(proprietary) LLMs [6, 13, 7, 8, 12, 23]. However, LLM-generated instruction tuning datasets
frequently suffer from lower diversity and less authenticity than human-generated datasets, and human-
labeled datasets have a high cost for dataset generation. Although crowd-sourcing-based instruction
tuning datasets achieve better variety and can best reflect real-world user prompts, collecting a large
set of user inputs is still costly. This paper introduces a cost-effective method of instruction-tuning
dataset generation that can construct or augment an existing dataset with crowdsourcing-level quality
and diversity with no extra human labeling.

Diffusion Model for Language Generation Different from the mainstream auto-regressive lan-
guage models (ARLM) [1, 10] which generates texts token by token, diffusion language models
(DiffLM) fall into the category of non-auto-regressive language models (NARLM), which generate
all tokens in parallel. Diffusion LM was first introduced by Li et al. [24], where the authors trained a
diffusion model in the token embedding space. DiffLM has been applied to contollable text genera-
tion [24, 25], unconditional text generation [26–28] and sequence-to-sequence tasks [29–32]. On the
task of unconditional generation, compared to ARLM, DiffLM can achieve more robust and efficient
text sequence generation [33] and higher generation diversity [11]. This paper adopts the DiffLM
proposed by Lovelace et al. [11] for diverse and high-quality instruction generation.

B Backgrounds on Diffusion Language Models

Diffusion models [34, 35] aim to approximate a target distribution p(x) by learning a reversible
transition between it and a Gaussian distribution. The forward process takes a sample from the
target distribution (z0 := x ∼ p(x)), and sequentially adds noise to produce a Markov chain:
{z0, z1, . . . , zT}, where q(zt+1|zt) = N (

√
1− βtzt, βtI) with some variances βt. The inversion

of the forward process is called denoising, where one samples from Gaussian distribution (zT ∼
N (0, I)) and sequentially produces a chain of less noisy samples {zT, zT−1, . . . , z0}, where the
final element z0 is a sample from the target distribution p(x). For that, one trains the denoising
neural network x̂θ = fθ(zt, t), which approximately recovers the original sample from target
distribution, x, from its noisy version zt. Specifically, for any x ∼ p(x) and any time step t,
one generates the noisy sample q(zt|x) with a forward process, and recovers it so that x̂θ ≈ x.
When the denoising network is trained, one can generate samples from the target distribution using
the denoising Markov chain described above. Going from zt to zt−1 requires sampling from the
distribution p(zt−1|zt) := N (µt(zt, x̂θ), σ

2
t I), where µt(zt,x) has a closed form solution.

Applying diffusion models to NLP is not straightforward because of the discrete nature of language.
We use the model suggested by Lovelace et al. [11], where they modeled the latent space of the
encoder-decoder language model with diffusion. In particular, they used BART [36], because it was
trained with the denoising objective on the latent representation. Hence, the approximate samples
from the diffusion model would be meaningfully decoded. Instead of learning to generate a sample
from the latent space, one needs to sample a sequence of vectors, which would be ideally decoded
into a valid sentence. For that, given a length from the length distribution of the sequences in training
set li ∼ L({Xt}) and a sampled noise ZT ∈ Rli×d ∼ N (0, I), the denoising XT is a sequence in
the target domain.

C Instruction Data Generation Analysis

We apply DIFFTUNE to different existing instruction tuning datasets, different DiffLM decoder size
and different sampling strategies. We analyze these three aspects of instruction generation settings
one by one in the following subsections.
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DiffLM Dec. Sampling 4-gram Rep. ↓ 4-gram SelfBLEU ↓ Diversity ↑ Mem. ↓ MAUVE ↑ Ppl. ↓
BART-Base Std Gaussian .037 ± 10−5 .239 ± 10−5 .565 ± 10−5 .159± 10−5 .756 ± 10−4 70.3± 2.7

BART-Base Student T .031 ± 10−5 .226 ± 10−4 .577 ± 10−4 .151 ± 10−4 .739 ± 10−4 70.9 ± 0.3

BART-Base 30% Higher Var. .023 ± 10−6 .201 ± 10−5 .578 ± 10−6 .128 ± 10−6 .709 ± .003 77.1 ± 0.1

BART-Base 100% Higher Var. .022 ± 10−5 .200 ± 10−5 .568 ± 10−5 .116 ± 10−5 .637 ± .001 80.6 ± 0.1

BART-Large Std Gaussian .037 ± 10−5 .228 ± 10−5 .565 ± 10−4 .163 ± 10−6 .737 ± 10−4 64.3 ± 0.1

BART-Large Student T .031 ± 10−5 .217 ± 10−5 .573 ± 10−5 .154 ± 10−5 .707 ± .001 65.5 ± 1.1

BART-Large 30% Higher Var. .025 ± 10−6 .190 ± 10−4 .583 ± 10−5 .124 ± 10−6 .660 ± .006 73.9 ± 0.3

BART-Large 100% Higher Var. .023 ± 10−6 .187 ± 10−5 .584 ± 10−6 .119 ± 10−5 .625 ± .002 74.9 ± 0.7

S.A.D. Test Set .087 .239 .550 .406 - 158.7

Table 3: The comparison of sample diversity and quality among different DiffLM decoder selection
and DiffLM sampling strategies based on 1000 sampled instructions. ↑: Higher is better. ↓: Lower
is better. The setting with the highest performance for each metric is labeled in bold, while the
second-highest is labeled in underline.

C.1 Experiment Details

To maximize the diversity of the sampled new instructions from DiffLM, we train our DiffLM on the
concatenation of the following open-source datasets’ instruction set: 1) ShareGPT. It is collected
from publically-shared real-world user dialogues with ChatGPT. We filtered the dataset only to
contain first-round user inputs with a valid response from ChatGPT. The filtered dataset contains
40428 instructions. 2) Dolly. It contains 15011 instructions created by Databricks employees. 3)
Stanford Alpaca. It is generated with an modified self-instruct strategy [6] using text-davinci-003,
containing 52002 instructions.

The combined dataset ShareGPT-Alpaca-Dolly (S.A.D.) contains 107442 instructions. We sam-
ple 1000 instructions from it with stratified sampling as the test set, while the remaining 106442
instructions are used for training our DiffLM.

In this section, we train two DiffLMs with different DiffLM decoder sizes: BART-Base or BART-
Large. After training, we test four different sampling strategies:

1. Standard Gaussian. We sample from the DiffLM with ZT ∈ Rli×d ∼ N (0, I).

2. Student T. We sample from the DiffLM with ZT ∈ Rli×d ∼ t2. The noise distribution puts
a higher probability on the long tail compared to the original strategy.

3. 30% Higher Variance. We apply the sampling strategy introduced in DIFFTUNE.

4. 100% Higher Variance. We sample from a Gaussian with a higher variance for all tokens:
ZT ∈ Rli×d ∼ N (0, 10I).

We sample 1000 instructions from each configuration with beam search. The sampled instruction set
will be evaluated with the following metrics:

1. Repetition [37] measures generation diversity by the proportion of repetitive n-grams:
repn = (1− uniquen−grams(x̂)

totaln−grams(x̂) ).

2. n-gram Diversity [37] measures generation diversity by considering different n-gram
repetitions: div =

∏4
n=2

(
1− repn

100

)
.

3. SelfBLEU [38] measures generation diversity by computing the average of each generated
instance’s BLEU score against all others.

4. Memorization [11] measures generation diversity by computing the proportion of 4-grams
from the generated sequences that exist in the training set.

5. MAUVE [39] measures generation quality by considering the token distribution closeness
between the generated and reference sets. We compute the MAUVE score against S.A.D.’s
test set.

6. Perplexity (ppl) measures generation quality by how likely a language model can generate
the sequence. We compute ppl with GPT2-Large.
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C.2 Comparisons of Training Settings

We sample 1000 instructions from each setting with an applied perplexity threshold of 150, which
aligns with our final instruction generation process. We compare the diversity and quality of the
generated instruction set with S.A.D.’s test set. The results are shown in Table 3.

DiffLM’s decoder model size. When the instructions are sampled from standard Gaussian, using
a smaller BART-Base as DiffLM’s decoder achieves slightly on-par or better diversity and quality
across all metrics except for perplexity, which aligns with the observation from Lovelace et al. [11].
However, when using a different sampling strategy, using a larger decoder illustrates a different trend.

For generation quality, when using the same sampling strategy, BART-Large settings always achieve
a lower perplexity compared to its BART-Base counterpart. The higher generation quality from a
BART-Large decoder is also observed during our case studies. For generation diversity, when using
a sampling distribution distant from a standard Gaussian, using BART-Large generally achieves a
higher diversity gain.

DiffLM’s sampling strategy. Although all tested settings achieve a higher diversity across all
metrics compared to S.A.D.’s test set, we found that using a noise distribution other than standard
Gaussian always achieves a more diversified instruction generation. Although sometimes the gener-
ated instructions include grammatical errors or unknown concepts, they can be denoised in the output
generation process by larger LLMs and can better resemble real-world user inputs, where the prompts
are not always perfect.

We provide a simple case study of using different percentages of high-variance noises in Table 4. We
begin with a noise matrix ZT ∼ N (0, I), and gradually substitute a specific percentage of its column
vectors with sampled vectors from N (0, I) and observe the decoded output. We keep sampling until
the generation achieves a perplexity below 150, which takes around 2 rounds of generation.

We observed that the generated sequences are all in the format of instructions, while a higher
percentage of vectors sampled with higher variance is more likely to introduce grammatical errors
(e.g., “i am”) or unknown concepts (e.g., “Iafkenhoek”). This phenomenon resembles real-world user
inputs since similar grammatical errors and typos are common in ShareGPT’s instruction set. In our
dataset generation process, we adopt the setting of using a BART-Large decoder and a 30% Higher
Var sampling strategy.

% Tokens Sampled
With Higher Var. DiffLM Generation

0% Could you list few 10 most important things to prepare for the entrance examination?
Think about the factors in order to determine your aptitude. Please write in English
language.

10% I am an employee at a large endo wraping company in Hengshui, China. Give me
some suggestions for a new cover letter and resume. I would love to have a good job
description.

30% Make me a list of things for the course i should do and be prepared. I’m doing a user
design course, i am preparing for a class, but I don’t know what to do about it.

50% Write a poem in the style of Iafkenhoek explaining how humans will overcome a number
of factors of mental and emotional goals, which may or may not be attainable. Create a
short film about your dreams for humanity.

Table 4: A sample from DiffLM trained on S.A.D.’s instruction set with a BART-Large decoder.
We begin with a noise matrix ZT ∼ N (0, I), and gradually substitute column vectors of ZT with
vectors sampled from N (0, 10I) and observe the corresponding changes for its decoded generation.
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Statistics
# of data 52000
# of unique input tokens 49322
# of unique output tokens 74079
Avg. input length (in words) 24.4
Avg. output length (in words) 80.7

Table 5: Basic statistics of the DIFFIT dataset.
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Figure 4: The most common root verb-noun combinations in DIFFIT’s instruction set. The inner
circle illustrates the root verbs, while the outer circle illustrates the corresponding direct nouns.

D Statistics of DIFFIT

D.1 Basic Statistics

We include the basic statistics of DIFFIT in Table 5.

D.2 Verb-Noun Analysis

Following previous practices of instruction diversity analysis [6, 7], we analyze the most common
verb-noun combinations in the sampled instructions. We extract the root verb and their corresponding
direct-object noun of each instruction and plot the verb-noun combinations with a frequency higher
than 10 in Figure 4. We observe a large variety in the verbs used in the dataset, with the instructions
covering different generation types, including story, code, table, list, etc. It is also worth noticing that
the verb “use” appears frequently in the instructions, which is usually intended to add specifications
to the task scenario (e.g., use a specific library or use a particular tool), which resemble typical
real-world user inputs to LLMs.
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Dataset Size Cost

Self-Instruct 82K $600
Unnatural Instructions 68K $1370
Alpaca 52K $500
GPT4-Alpaca 52K $456

DIFFIT 52K $27.8
Table 6: Dataset construction cost of several existing open-source instruction-tuning datasets with
similar sizes.
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Figure 5: Human preference for two pairs of models.

D.3 Data Generation Cost

We compare DIFFIT’s total construction cost with that of several open-source instruction-tuning
datasets in Table 6.

A DiffLM with a BART-large decoder is easy to train and implement on consumer-level servers
or computers. Compared to self-instruct [6], our method substitutes the LLM-based instruction
generation step with DiffLM sampling, reducing the dataset construction cost while enhancing the
dataset’s diversity in different aspects. Thanks to the low cost of gpt-3.5-turbo’s API call, we further
reduce the cost of output generation.

E Human Preference Evaluation

We show human preference results in Figure 5. LLaMA 7B instruction-tuned on dataset augmented
by DiffTune is favored 42.9% of the times when compared to the counterpart model tuned only
on S.A.D, which is only favored 25.4% of the time. Although LLaMA 7B instruction-tuned on
S.A.D.+DIFFIT is still far from comparable with ChatGPT, our generated responses are still favored
18.4% of the time, despite the large discrepancy of model size and training cost.

F Instruction Tuning Experiment Details

Our evaluation closely follows previous general-purpose LLM’s settings [40, 6, 22, 41, 16], where
the evaluation covers different aspects of LLM’s general ability as well as instruction-following
capability.

Evaluations on LLM’s general capability. We compare the same LLM finetuned on different
instruction tuning datasets on the following benchmarks: 1) MMLU [42] for factual knowledge
evaluation, which contains multiple-choice questions from 57 subjects covering different difficulties.
2) GSM [43] for mathematical reasoning, which contains grade school-level math problems. 3)
TyDiQA [44] for multilingual evaluation, which contains machine reading comprehension or question-
answering tasks in 11 typologically diverse languages. 4) Codex-HumanEval [45] for coding
evaluation, which requires the model to generate code given a docstring.

For all benchmarks, we follow the evaluation setting of [16], except that we use Alpaca’s dialogue
template instead of Tülu’s.
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Hyperparameter Value

#Trainable Params 214M
Max Seq Length 64
Diffusion Steps 1000
Noise Schedule Linear
Regression Loss L1
DiffLM Transformer Layers 12
DiffLM Transformer Dim. 768
Optimizer AdamW [2019]
Learniing Rate 1e-4
Batch Size 64
Warmup Steps 1000
Learning Rate Schedule Cosine Decay
Weight Decay 1e-6
Dropout 0.0
Gradient Clipping 1.0
EMA Decay 0.9999
Iterations 300K

Table 7: Hyperparameter settings for training and sampling DiffLM.

Evaluations on LLM’s instruction-following capability. We evaluate LLM’s instruction-
following capability by comparing different model’s outputs to real-world user inputs. Both automatic
and human evaluations are conducted to evaluate the helpfulness and validity of LLM’s response: 1)
AlpacaFarm [41] for automatic evaluation on instruction-following capabilities, which uses GPT-4
to compare an LLM’s generation with text-davinci-003’s generation on 805 instructions. 2) VicunaE-
val [22] for human evaluation on instruction-following capabilities, which contains 80 instructions
covering a wide range of scenarios.

Human Evaluation. Human evaluation on VicunaEval covers two aspects: 1) Answer validity,
where we ask evaluators to decide whether an LLM’s response is acceptable; and 2) Pairwise
comparison, where we ask evaluators to compare two LLM’s response to the same instruction, then
score their preference based on a 5-level scale to decide if one response is much better, slightly better
or on-par compare to the other.

The instruction for human evaluation comes from Vicuna’s evaluation set [22], which contains 80
instructions covering multiple daily scenarios. We generate responses from LLaMA 7B + S.A.D.
(2x), LLaMA 7B + S.A.D. + DIFFITand ChatGPT for each instruction, and ask human evaluators
to 1) Evaluate the validity of the model’s response, and 2) Select the preferred response from two
different model’s generations. We conduct two pairs of preference evaluations: LLaMA 7B + S.A.D.
+ DIFFITv. LLaMA 7B + S.A.D. (2x), and LLaMA 7B + S.A.D. + DIFFITv. ChatGPT.

The evaluation is conducted with Google Forms. We split each pair of comparisons into two forms,
with 40 instructions in each form. In each form, the ordering of the questions and the responses
are totally randomized. We recruited 12 experienced annotators who are fluent in English and hold
bachelor’s degrees or above. Each form will be assigned to three different evaluators.

We show an example of our evaluation form in Figure 6.

G Experiment Details for DiffLM Training

For all DiffLM experiments, we train the DiffLM on S.A.D.’s training set using the hyperparameter
settings shown in Table 7. The generation configuration for the BART decoder is shown in Table 8.
Each setting is trained on a single NVIDIA V100 32G.
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Setting Value

max_length 64
min_length 8
num_beams 10
do_sample False
no_repeat_ngram_size 2
repetition_penalty 4.0

Table 8: Generation configuration for DiffLM’s BART decoder.

H Examples from the DIFFIT Dataset

We show some of the instances from the DIFFIT Dataset in Table 9. Please note that the table includes
examples that collect hallucinating results from ChatGPT, although the answer’s format is aligned
with our instruction-tuning objective.
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Instruction Output

Tell me about the advantages and dis-
advantages of different programming
languages. Add a bulletbind summary
explaining the pros and cons of each
language.Give me a brief explanation
of the difference between Swift and
Objective-C. Show me how to use C#
instead of C++. Tell me why.

Different programming languages have unique advantages and disad-
vantages. For example, C++ is fast and flexible, but difficult to learn.
Java is platform-independent, but slower than some languages. Python
has simple syntax, but is slower compared to other languages. Swift is
faster than Objective-C, but still somewhat new and has limited library
support. C# is a cleaner version of C++ with better memory manage-
ment, but it is not as fast as C++. To use C# instead of C++, you would
need to download and install Microsoft’s Visual Studio, a software
development environment. C# is often used for web, Windows, and
game development.

act as a middle school teacher write a
script for a sci-fi/fantasy film set in the
future make an edgy movie series

Title: "Galactic Rift" In a distant future, humanity has mastered space
travel and colonization across multiple galaxies. But as the population
soars, a powerful cult arises, vowing to cleanse the universe of all
non-believers and establish a new order. Our protagonist, a small group
of renegade fighters led by a young woman named Nova, must travel
to the cult’s stronghold and stop their plans before it’s too late. Along
the way, they will face alien creatures, rogue robots, and the cult’s elite
army. As they progress, they discover that the cult is not what they seem
- it’s led by ancient beings who seek to resurrect their god and conquer
all life in the universe. Nova and her group must decide whether to
continue their mission or join forces with the unlikely allies they meet
along the way. Through action-packed battles, moral quandaries, and
unexpected twists, "Galactic Rift" explores themes of power, faith, and
the true meaning of humanity. This edgy sci-fi/fantasy series is perfect
for middle schoolers who want an adventure that will leave them on
the edge of their seats.

Assume you are an AI concept teacher,
and you can use it in generating busi-
ness. How to explain the concept as
well as how to connect it with value
working with workplace?How to talk
about your experience of using AI con-
cepts:

As an AI concept teacher, I explain that AI refers to the simulation
of human intelligence in machines to perform tasks that typically re-
quire human cognitive abilities. AI can help businesses streamline
processes, make data-driven decisions, and improve customer experi-
ences. AI-powered tools can be integrated into a workplace to enhance
productivity, automate repetitive tasks, and improve the accuracy of
decision-making. As an AI concept user, I have successfully leveraged
AI to automate data analysis and improve customer segmentation for a
retail client, resulting in a 20% increase in sales.

How to prepare a job resume for a Chi-
nese independent IT consultant and an
IT contractor who works for the USA
as a CPA consultant in China.

To prepare a job resume for a Chinese independent IT consultant or IT
contractor working for the USA as a CPA consultant in China, highlight
relevant certifications, degrees, and experience in the technology and fi-
nance industry. Emphasize strong communication skills, understanding
of Western business practices, and proficiency in Chinese and English.
Showcase prior project success, specific technical skills, and collabo-
ration abilities. As an IT consultant or contractor, showcase relevant
project management experience and expertise in the latest technologies
that support business solutions. Additionally, mention how you have
developed and scaled businesses in both the US and China markets. Be
brief and clear about your most significant accomplishments, abilities,
and contributions to companies you have worked with.

You are an expert Instructor. Please
show me the steps step by step to gener-
ate required code to learn Kuolang. You
respond with me as if you are the world
that know everything about Python and
how to use it. Then give me a tutorial
on how I can learn and learn everything.
Give me

Sure, to learn Kuolang, you need to start by downloading an IDE that
supports the language, such as VS Code. Then, you can learn the
basics of the language, such as its syntax and data types. There are
many resources available, including online courses, documentation,
and tutorials. Once you have a basic understanding of the language,
practice coding exercises to reinforce your skills. Finally, when you
feel confident, try building a project from scratch to solidify your
knowledge. Good luck!

Table 9: Samples from the generated DIFFIT dataset.
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Figure 6: The form used for human evaluation.
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