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Abstract

Scaling the size of language models to tens of billions of parameters has led to
impressive performance on a wide range of tasks. At generation, these models
are used auto-regressively, requiring a forward pass for each generated token, and
thus reading the full set of parameters from memory. This memory access forms
the primary bottleneck for generation and it worsens as the model size increases.
Moreover, executing a forward pass for multiple tokens in parallel often takes
nearly the same time as it does for just one token. These two observations lead to
the development of speculative sampling, where a second smaller model is used to
draft a few tokens, that are then validated or rejected using a single forward pass
of the large model. Unfortunately, this method requires two models that share the
same tokenizer and thus limits its adoption. As an alternative, we propose to use
parallel decoding as a way to draft multiple tokens from a single model with no
computational cost, nor the need for a second model. Our approach only requires an
additional input token that marks the words that will be generated simultaneously.
We show promising performance (up to 30% speed-up) while requiring only as few
as O(demb) additional parameters.

1 Introduction

Since the Transformer architecture was proposed (Vaswani et al. [2023]), large language models have
achieved impressive results across natural language processing benchmarks (Brown et al. [2020]).
However, these remarkable achievements were only made possible because of dramatic increases
in the number of parameters or model sizes (Brown et al. [2020], Wei et al. [2022]), resulting in
considerable memory requirements and greater processing times. This problem is further exacerbated
by the fact that, at inference time, transformers are used auto-regressively: a new model call is
needed for each generated token. This is especially problematic due to the memory-bandwidth cost
of recurrently loading the model parameters and the past keys and values tensors (Shazeer [2019]).

Recently, several works (Chen et al. [2023], Leviathan et al. [2023]) have proposed to reduce inference
time by leveraging a smaller model to approximate generation from a larger model at a faster pace.
The small model produces a few potential tokens, and the larger model evaluates all of the tokens
at once in a single forward step. Importantly, the generation quality of the original large model
is guaranteed by the rejection scheme that keeps only tokens that are generated with an identical
distribution than the large model (Chen et al. [2023], Leviathan et al. [2023]). While effective in
practice, this approach requires to deploy simultaneously two models that share the same vocabulary,
creating memory and running time bottlenecks.

An alternative solution is to directly leverage the large model to generate multiple tokens at once,
instead of generating them auto-regressively. This solution, called parallel decoding, can be imple-
mented as a masked language model (Ghazvininejad et al. [2019]) or by copying the encoder input
in the decoder in the context of encoder-decoder architectures (Gu et al. [2018]). These solutions
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have the advantage over speculative sampling of avoiding the need for a second model, but they
require substantial changes to the Transformer architecture that make them not suitable as such for
accelerating the decoding of a given pre-trained language model.

In this work, we propose to combine the best of both directions in a variant of the speculative sampling
that we call Parallel Speculative Sampling (PaSS). The idea is to generate candidate tokens via parallel
decoding by adding a small number of “look-ahead embeddings” and generate output for each of
these additional embeddings. This solution does not require a second model, nor modifications to
the large language model. By design, our approach also generates at each step at least one token
auto-regressively, guaranteeing the same loss-less quality of generations as speculating sampling
methods. The memory overhead of adding the extra embeddings is O(demb) new weights, that need
to be trained. This is several orders of magnitude smaller than any small model added by existing
speculative sampling solutions. The most similar works to ours are Stern et al. [2018] and Cai
et al. [2023] where they add look-ahead classification heads instead of embeddings, leading to a
worse memory overhead of O(dembK) where K is the vocabulary size. Additionally, Stern et al.
[2018] focus solely on greedy decoding, and Cai et al. [2023] do not guarantee a loss-less decoding.
Similarly, Zhang et al. [2023] also drop the second model, but still decode auto-regressively.

2 Method

First, in section 2.1, we briefly review the existing speculative sampling algorithm, as introduced by
Chen et al. [2023] and Leviathan et al. [2023]. We then introduce our approach in section 2.2.

2.1 Speculative Sampling

The goal of speculative sampling is to speed up the inference time of a target LLM. The core idea
behind this algorithm is that it is significantly faster to compute a single forward pass on n tokens
in parallel than n forward passes sequentially. To fulfil this objective, a second smaller and faster
model, the drafter, is used to generate a candidate sequence of tokens. The length of the sequence is a
hyper-parameter of the algorithm. The target LLM is then presented with all of the candidate tokens
at once, in a single pass. The rejection scheme proposed by Chen et al. [2023] and Leviathan et al.
[2023] guarantees that the distribution of the drafted tokens is the same as if they were generated in
the first place by the target LLM. Additionally, due to the rejection scheme, one more token can be
sampled after the sequence of accepted tokens from the logits gathered during the iteration model
call. This ensures that, even if all draft tokens were rejected, the model call would still be of use. The
steps are presented in detail in algorithm 2 of the Appendix.

2.2 Parallel Speculative Sampling

We propose a modified version of speculative sampling based on parallel decoding, that does not
require a second model. The steps of our method are detailed in algorithm 1, but, importantly, each
iteration of our algorithm requires two calls of the LLM:

• Drafting phase: we call the model once to produce multiple tokens simultaneously using
parallel decoding through look-ahead embeddings (see Sec. 2.2.1). The first generated token
is not part of the draft to match the distribution in case of rejection.

• Validation phase: we call the model a second time to validate the draft (see Sec. 2.1). We
sample a new token at the end of the sequence of accepted tokens, with no new model call.

The key behind our algorithm is that every call to the LLM adds at least one token to the final
sequence of generated tokens. This guarantees that the algorithm is at least as fast as generating
from the LLM directly, and it also guarantees that we produce a correct sequence of tokens even
in the case where additional tokens are rejected. On top of this, our algorithm can produce and
accept at each iteration, multiple additional tokens, leading to a guaranteed speed up. Overall, the
standard auto-regressive wall time of the target LLM is a lower bound to our method, while the
upper bound is a speed-up of (L+ 2)/2×, where L is the number of tokens generated in the drafting
phase. Our approach leverages the fact that the time required to process a single token or a small
sequence of tokens does not differ significantly. This is because auto-regressive generation is mostly
memory-bound, and processing additional tokens is thus negligible.
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Algorithm 1 Parallel Speculative Sampling (PaSS) with Parallel Look-ahead Embeddings
Given L look-ahead tokens [LA]1, . . . , [LA]L and minimum target sequence length T .
Given auto-regressive target model q(.|.) and initial prompt sequence x0, . . . , xt.
Initialise n← t.
while n < T do

In parallel, sample the next token xn+1 and L draft tokens x̃1, . . ., x̃L:

xn+1 ∼ q(x|x1, . . . , xn), x̃1 ∼ q(x|x1, . . . , xn, [LA]1), . . . , x̃L ∼
q(x|x1, . . . , xn, [LA]1, . . . , [LA]L)

Set n← n+ 1
In parallel, compute L+ 1 sets of logits from drafts x̃1, . . ., x̃L:

q(x|x1, . . . , xn), q(x|x1, . . . , xn, x̃1), . . . , q(x|x1, . . . , xn, x̃1, . . . , x̃L)

for t = 1 : L do
Sample r ∼ U [0, 1] from a uniform distribution.

if r < min

(
1,

q(x̃t|x1, . . . , xn−1, . . . , xn+t−1)

q(x̃t|x1, . . . , xn−1, [LA]1, . . . , [LA]t)

)
then

Set xn+t ← x̃t and n← n+ 1
else

Sample

xn+t ∼ (q(x|x1, . . . , xn−1, . . . , xn+t−1)− q(x|x1, . . . , xn−1, [LA]1, . . . , [LA]t))+

and Exit for loop.
end if

end for
If all L tokens xn+1, . . . , xn+L are accepted, sample extra token xn+L+1 ∼ q(x|x1, . . . , xn+L) and set
n← n+ 1.

end while

2.2.1 Look-ahead embeddings

The target LLM is not trained to predict multiple tokens at once, and expect as input, the previously
generated token. In order to build this ability in the target LLM, we introduce “look ahead” tokens,
[LA]i for each look ahead position i for 1 to L. A sequence of these tokens is added at the end of the
input sequence and defines the number of steps that the model will predict ahead. In other words, we
replace the original input sequence of tokens (w1, . . . , wT ) by a sequence with L additional tokens,
that is (w1, . . . , wT , [LA]1, . . . , [LA]L). This sequence is then processed with a single forward pass
of the target model and produces for each new position a token from the original dictionary, i.e.,
without the extra [LA]i tokens. This approach only requires learning the embeddings associated with
the new tokens on a small training dataset and has a memory overhead of Ldemb parameters.

3 Experiments

We test our method on two tasks: text and code completion. For each task, we use different non-
overlapping datasets for the training of the look-ahead embeddings and the evaluation of our approach
(Sec. 3.1). We also briefly describe baselines in Sec. 3.2 and report main results in Sec. 3.3. All the
experiments are run with a re-implementation of the 7B LLaMa model (Touvron et al. [2023]).

3.1 Data

We use the 2023/02/20 English Wikipedia dump (Wikimedia Foundation) for text completion and
the Python split of The Stack corpus (Kocetkov et al. [2022]) for code completion. We divide each
dataset into training and test split. For the evaluation, we randomly sample 200 examples from the
test split and use the 32 first tokens as prompts. The maximum length for the generation is fixed at
512 tokens for all our experiments. We use TOP-K SAMPLING, with k = 10 and a temperature of 0.8
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Table 1: Time for generating a sequence of length 512 tokens, given a prompt of 32 tokens, as a
function of temperature (left) and number of look-ahead tokens (right). We use 4 look-ahead tokens
unless said otherwise. The results reported in the right table are on The Stack data.

The Stack Wikipedia

Temperature 0.8 0.5 0.2 0.8 0.5 0.2

Auto-regressive 12.52 12.69 12.72 12.45 12.30 12.55
[UNK] look-ahead 12.25 12.43 12.26 12.30 12.16 11.88
PaSS 9.79 9.46 8.96 10.23 9.78 9.43

# LA tokens Time

2 10.03
4 9.79
6 9.66
8 9.94

unless said otherwise. For code completion, we also evaluate on the HumanEval benchmark [Chen
et al., 2021], to validate that, as expected, our algorithm does not degrade the quality of generation.

3.2 Baselines

We compare our method with two baselines. Autoregressive generation: this baseline consists of
autoregressively generating tokens from the LLM. We sample one token at a time using the KV cache
for speedup. [UNK] as look-ahead token: we apply our method with a fixed [UNK] token instead of
trained look-ahead embeddings. We use the KV cache and update it after every model call according
to the number of drafted tokens and the number of accepted tokens.

3.3 Results

Impact for different sampling schemes. On the left panel of Table 1, we compare the running time
of our approach with the two baselines for different sampling schemes. We vary the temperature of the
sampler from high variance in the generations (high temperature) or low variance (low temperature).
As expected, the speed-up is more important for lower temperatures, where the distribution of tokens
is more peaky and easier to predict with an approximated scheme like PaSS. We observe almost no
gain compared to auto-regressive generation when using [UNK]. Compared to the speed-up provided
by PaSS, this shows that the finetuning of the look-ahead embeddings captures important information
to predict future tokens.

Impact of the number of look ahead embeddings. On the right panel of Table 1, we measure the
impact of the number of look-head steps on our approach. Running time decreases steadily up to 6
look-ahead steps, but more look-ahead steps annihilate the benefits of this approach.

Impact of PaSS on final performance. Finally, in Table 2, we confirm that our decoding does not
impact the performance of the model on 2 different generating tasks. We only observe changes in
performance that are below the margin of error, while improving the running time by up to 30%.

Table 2: Average time for generating one completion on the HumanEval dataset, as well as the
PASS@N metric. Following previous work, we use a temperature of 0.1 for PASS@1 and a temperature
of 0.8 for PASS@10. We use k = 25 for PASS@10. For PaSS, we use 4 look-ahead tokens.

PASS@1 PASS@10
Time Perf. Time Perf.

Auto-regressive 10.52 sec 13.2 % 10.15 sec 22.5 %
PaSS 7.17 sec 13.4 % 8.17 sec 22.5 %

4 Conclusion

We presented the parallel speculative sampling (PaSS) algorithm, a variant of the speculative sampling
algorithm that does not require a second draft model: tokens are drafted in parallel through the use
of masked-decoding via fine-tuned look-ahead embeddings. We showed that our method achieves
significant speed-ups (up to 30%) by only learning as little as O(demb) additional weights. In future
work, we want to explore how to improve the quality of parallel generation with look-ahead tokens,
as we believe this is the most promising direction to improve performance of the PaSS algorithm.
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5 Supplementary Material

5.1 Speculative Sampling Algorithm

Algorithm 2 Speculative Sampling (SpS) with Auto-Regressive Target and Draft Models
Given look-ahead L and minimum target sequence length T .
Given auto-regressive target model q(.|.), auto-regressive draft model p(.|.) and initial prompt
sequence x0, . . . , xt.
Initialise n← t.
while n < T do

for t = 1 : L do
Sample draft auto-regressively x̃t ∼ p(x|x1, . . . , xn, x̃1, . . . , x̃t−1)

end for
In parallel, compute L+ 1 sets of logits from drafts x̃1, . . ., x̃L:

q(x|x1, . . . , xn), q(x|x1, . . . , xn, x̃1), . . . , q(x|x1, . . . , xn, x̃1, . . . , x̃L)
for t = 1 : L do

Sample r ∼ U [0, 1] from a uniform distribution.
if r < min

(
1, q(x̃t|x1,...,xn+t−1)

p(x̃t|x1,...,xn+t−1)

)
then

Set xn+t ← x̃t and n← n+ 1
else

Sample xn+t ∼ (q(x|x1, . . . , xn+t−1)− p(x|x1, . . . , xn+t−1))+ and exit for loop.
end if

end for
If all tokens xn+1, . . . , xn+L are accepted, sample extra token xn+L+1 ∼ q(x|x1, . . . , xn+L)
and set n← n+ 1.

end while

5.2 Training details

For all our trainings (and evaluations), we load models in bfloat16. We freeze all the models
parameters except for the new embeddings. For each batch, we randomly select a position where to
insert the look-ahead embeddings and compute the loss only on the corresponding outputs. Before
training, we initialize the new embeddings with the UNK token embedding. We use the AdamW
optimizer, with a learning rate of 0.01 and a batch size of 8 sequences. We train for 10k additional
steps, with 2k warmup steps and a cosine learning rate schedule.

6


	Introduction
	Method
	Speculative Sampling
	Parallel Speculative Sampling
	Look-ahead embeddings


	Experiments
	Data
	Baselines
	Results

	Conclusion
	Supplementary Material
	Speculative Sampling Algorithm
	Training details


