
QDyLoRA: Quantized Dynamic Low-Rank
Adaptation for Efficient Large Language Model

Tuning

Hossein Rajabzadeh1,2, Mojtaba Valipour1,2, Marzieh Tahaei2,
Hyock Ju Kwon1, Ali Ghodsi1, Boxing Chen2, and Mehdi Rezagholizadeh2

1University of Waterloo
2Huawei Noah’s Ark Lab

{hossein.rajabzadeh, mojtaba.valipour, hjkwon, ali.ghodsi}@uwaterloo.ca,
{mehdi.rezagholizadeh, marzieh.tahaei, boxing.chen}@huawei.com

Abstract

Finetuning large language models requires huge GPU memory, restricting the
choice to acquire Leger language models. While the quantized version of the
Low-Rank Adaptation technique, named QLoRA, significantly alleviates this issue,
finding the efficient LoRA rank is still challenging. Moreover, QLoRA is trained on
a pre-defined rank and, therefore, cannot be reconfigured for its lower ranks without
requiring fine-tuning steps. This paper proposes QDyLoRA-Quantized Dynamic
Low-Rank Adaptation-, as an efficient quantization approach for dynamic low-rank
adaptation. QDyLoRA combines the advantages of QLoRA with Dynamic LoRA
to efficiently finetune LLMs on a set of pre-defined LoRA ranks. QDyLoRA
enables fine-tuning Falcon-40b for ranks 1 to 64 on a single 32GiG V100-GPU
through one round of fine-tuning. Experimental results show that QDyLoRA is
competitive to QLoRA and outperforms when employing its optimal rank.

1 Introduction

The popularity of adopting Large Language Models (LLMs) across a diverse range of downstream
tasks has rapidly increased over the past two years. Fine-tuning LLMs has become necessary to
enhance their performance and introduce desired behaviors while preventing undesired outputs .
However, as the size of these models increases, fine-tuning costs become more expensive. This has
led to a large body of research that focuses on improving the efficiency of the fine-tuning stage Liu
et al. [2022], Mao et al. [2021], Hu et al. [2021], Edalati et al. [2022], Sung et al. [2022].

Low-rank adapter (LoRA) Hu et al. [2021] is a well-known, parameter-efficient tuning (PET) method
that reduces memory requirements during fine-tuning by freezing the base model and updating a
small set of trainable parameters in form of low-rank matrix multiplication added to matrices in
the base model. However, the memory demand during fine-tuning remains substantial due to the
necessity of a backward pass through the frozen base model during stochastic gradient descent.

Recent research has thus focused on further reducing memory usage by designing new parameter-
efficient modules that can be tuned without necessitating gradients from the base models Sung
et al. [2022]. Alternatively, researchers have explored combining other efficiency strategies with
parameter-efficient tuning methods Kwon et al. [2022], Dettmers et al. [2023].

Among these approaches, QLoRA Dettmers et al. [2023] stands out as a recent and highly efficient
fine-tuning method that dramatically decreases memory usage. It enables fine-tuning of a 65-billion-
parameter model on a single 48GB GPU while maintaining full 16-bit fine-tuning performance.

37th Conference on Neural Information Processing Systems - ENLSP (NeurIPS 2023).



QLoRA achieves this by employing 4-bit NormalFloat (NF4), Double Quantization, and Paged
Optimizers as well as LoRA modules.

However, another significant challenge when utilizing LoRA modules is the need to tune their rank
as a hyperparameter. Different tasks may require LoRA modules of varying ranks. In fact, it is
evident from the experimental results in the LoRA paper that the performance of models varies a
lot with different ranks, and there is no clear trend indicating the optimal rank. On the other hand,
any hyperparameter tuning for finding the optimal rank contradicts the primary objective of efficient
tuning and is not feasible for very large models. Moreover, when deploying a neural network on
diverse devices with varying configurations, the use of higher ranks can become problematic for
highly sensitive devices due to the increased parameter count. To address this, one typically has to
choose between training multiple models tailored to different device configurations or determining
the optimal rank for each device and task. However, this process is costly and time-consuming, even
when using techniques like LoRA.

DyLoRA Valipour et al. [2022], is a recent PET method that aims to address theses challenges by
employing dynamic Low-Rank Adapter (DyLoRA). Inspired by nested dropout, this method aims to
order the representations of the bottleneck at low-rank adapter modules. Instead of training LoRA
blocks with a fixed rank, DyLoRA extends training to encompass a spectrum of ranks in a sorted
manner. The resulting low-rank PET modules not only provide increased flexibility during inference,
allowing for the selection of different ranks depending on the context, but also demonstrate superior
performance compared to LoRA, all without imposing any additional training time.

In this paper, we employ the DyLoRA PET method in conjunction with the quantization scheme
utilized in the QLoRA work, resulting in QDyLoRA. QDyLoRA has all the aforementioned benefits
of DyLoRA but with significant memory reduction both during training and at inference through
4-bit quantization. We utilize QDyLoRA for efficient fine-tuning of LLaMA-7b, LLaMA-13b, and
Falcon-40b models across ranks ranging from 1 to 64, all on a single 32GB V100 GPU. Once tuned,
we determine the optimal rank by inferring the model on the test set. Our results reveal that the
optimal rank can be quite low, yet it outperforms QLoRA.

1.1 Related Work

Low-rank PET methods These methods aim to fine-tune pre-trained LLMs for specific tasks while
minimizing computational and memory resources. Low-rank adaptation techniques were inspired
by Aghajanyan et al. [2020], demonstrating that pre-trained language models possess a low intrinsic
dimension. Since then, several works have explored the incorporation of trainable parameters in
the form of low-rank up-projection/down-projection during fine-tuning. In Houlsby et al. [2019],
the Adapter module includes a down projection, a non-linear function, an up projection, and a
residual connection. These modules are sequentially inserted after the feed-forward network (FFN) or
attention blocks. Additionally, He et al. [2021] extends the Adapter concept by introducing trainable
modules that run in parallel (PA) with the original PLM module. As a result of this extension, PA has
demonstrated improved performance compared to the original Adapter method. One notable approach
among these techniques is LoRA Hu et al. [2021], which introduces low-rank up-projection/down-
projection into various matrices within a PLM. This method offers efficient inference by seamlessly
integrating the adapter module into the original model’s weight matrices.

Quantization aware PET methods Alpha-Tuning Kwon et al. [2022], aims to combine parameter-
efficient adaptation and model compression. Alpha-Tuning achieves this by employing post-training
quantization, which involves converting the pre-trained language model’s full-precision parameters
into binary parameters and separate scaling factors. During adaptation, the binary values remain fixed
for all tasks, while the scaling factors are fine-tuned for the specific downstream task.

QLoRA Dettmers et al. [2023] is a more recent quantization-aware PET that combines a low-rank
adapter with 4-bit NormalFloat (NF4) quantization and Double Quantization (DQ) of the base model
to optimize memory usage. NF4 ensures an optimal distribution of values in quantization bins,
simplifying the process when input tensors have a fixed distribution. DQ further reduces memory
overhead by quantizing quantization constants. To manage memory during gradient checkpointing,
QLoRA employs Paged Optimizers, utilizing NVIDIA’s unified memory feature for efficient GPU
memory management. These techniques collectively enable high-fidelity 4-bit fine-tuning while
effectively handling memory constraints.

2



Dynamic PET methods DyLoRA paper Valipour et al. [2022] introduces a novel approach for
training low-rank modules to work effectively across a range of ranks simultaneously, eliminating the
need to train separate models for each rank. Inspired by the concept of nested dropout, the authors
propose a method for organizing the representations within low-rank adapter modules. This approach
aims to create dynamic low-rank adapters that can adapt well to various ranks, rather than being fixed
to a single rank with a set training budget. This is achieved by dynamically selecting ranks during
training, allowing for greater flexibility without the need for extensive rank searching and multiple
model training sessions.

Algorithm 1 QDyLoRA - Training and Inference
Require: r ∈ [rmin,rmax]; i: the number of training iterations; α: a scaling factor; pB : probability

distribution function for rank selection; X ∈ Rd×n : all input features to LoRA; W0 ∈ Rm×d

the original frozen pre-trained weight matrix, Wdw ∈ Rr×d; Wup ∈ Rm×r; Q: Quantizer; LDY
↓b :

objective function given truncated weights
Initialization:
WNF4

0 = Q(W0) // Quantize W0 to NF4
Iterations:
while t < i do:

Forward:
b ∼ pB(.) // sample a specific rank, during test is given
Wdw↓b = Wdw[:b,:] // truncate down-projection matrix
Wup↓b = Wup[:,:b] // truncate up-projection matrix

WDDequant−NF4
0 =

WNF4
0

cFP8
2 /cFP32

1
// dequantized the chunks of the parameters that are needed

h = WDDequant−NF4
0 XBF16 + α

bW
BF16
up↓b WBF16

dw↓b XBF16 // calculate the LoRA output
Backward:
WBF16

dw↓b ←WBF16
dw↓b − η∇WBF16

dw↓b
LDY
↓b

WBF16
up↓b ←Wup↓b − η∇WBF16

up↓b
LDY
↓b

end while

2 Proposed Method: Quantized DyLoRA

Following DyLoRA notations Valipour et al. [2022], we define a truncated weight W↓b ∈ Rr×d as
W [: b, :]. Assume we have a set of input features X ∈ Rd×n, a set of pre-trained weights W0, and a
given range of desired ranks represented by r ∈ [rmin,rmax] that we want the model to operate with,
and a dynamic objective function LDY

↓b that can evaluate a truncated sub-model. Then we can use the
following equation to calculate the forward pass of the model at each iteration.

h = WDDequant−NF4
0 xBF16 +

α

b
WBF16

up↓b WBF16
dw↓b xBF16 (1)

where α is the LoRA scalar, and b is the chosen rank by the pB(.) during training stage.

Following QLoRA Dettmers et al. [2023], we used 4-bit Normal Float (NF4) for storing the double
quantized pre-trained weights. As all the computations need to be calculated in BFloat16 precision,
DDequant-NF4 will dequantize the stored data. Similar to Dettmers et al. [2023], we have:

WDDequant−NF4
0 =

WNF4
0

cFP8
2 /cFP32

1

(2)

where cFP32
1 and cFP8

2 are quantization constants introduced in Dettmers et al. [2023]. After this
process, we can update the dynamic LoRA parameters using:

WBF16
dw↓b ←WBF16

dw↓b − η∇WBF16
dw↓b
LDY
↓b

WBF16
up↓b ←Wup↓b − η∇WBF16

up↓b
LDY
↓b

(3)

3



Table 1: A comparison between QLoRA and QDyLoRA on the MMLU benchmark, reporting 5-shot
test results for LLMs of varying sizes. QDyLoRA is evaluated on ranks [1,2,4,8,16,32,64] and the
best rank is reported in brackets.

Dataset LLaMA-7b LLaMA-13b Falcon-40b
QLoRA QDyLoRA QLoRA QDyLoRA QLoRA QDyLoRA

Alpaca 38.8 [64] 39.7 [16] 47.8 [64] 47.6 [8] 55.2 [64] 57.1 [4]

OASST1 36.6 [64] 36.8 [16] 46.4 [64] 47.2 [8] 56.3 [64] 56.7 [4]

Self-Instruct 36.4 [64] 37.2 [8] 33.3 [64] 41.6 [4] 51.8 [64] 51.1 [4]

FLAN-v2 44.5 [64] 45.9 [4] 51.4 [64] 52.1 [8] 58.3 [64] 60.2 [4]

Table 2: Comparing the performance of QLoRA and QDyLoRA across different evaluation ranks.
Both models receives the same training settings. Maximum LoRA rank is set to 64. Falcon-40b is
adopted as the base LLM. Exact matching and Bleu-score are used as evaluation measurements for
GSM8k and Web-GLM, respectively.

Data Method Rank
1 2 4 8 16 32 64

Web-GLM QLoRA 19.9 19.9 19.9 33.8 35.2 52.7 54.3
QDyLoRA 43.3 56.0 54.9 53.3 53.3 50.5 50.2

GSM8k QLoRA 8.9 8.91 8.9 15.1 20.5 22.6 28.1
QDyLoRA 21.4 25.3 28.2 30.6 29.8 28.5 27.4

Algorithm 1 describes the workflow of our proposed QDyLoRA in detail.

3 Experiments and Evaluation

This section evaluates the efficiency and efficacy of QDyLoRA through several instruct-fine-tuning
tasks. The first experiment compares QDyLoRA with QLoRA on Massively Multitask Language
Understating (MMLU) benchmark Hendrycks et al. [2020], consisting of more than 50 different tasks,
spanning from fundamental mathematics and U.S. history to computer science and law. As shown in
Table 11, we finetune LLaMA-7b, LLaMA-13b, and Falcon40b on different datasets, Alpaca Taori
et al. [2023], OASST1 Köpf et al. [2023], Self-Instruct Wang et al. [2022], and FLAN-v2 Chung et al.
[2022], using QLoRA and QDyLoRA techniques. We use the same training budget and maximum
LoRA rank 2 for each technique. The results show that QDyLoRA achieves a superior performance
by finding the optimal rank.

The second experiment provides a more in-depth comparison between QLoRA and QDyLoRA. In
particular, we fairly finetuned Falcon-40b on WebGLM Liu et al. [2023] and GSM8k Cobbe et al.
[2021] benchmarks, and compared their test performances across different ranks. As described in
Table 2, QDyLoRA attains superior performance, notably when employing its optimal ranks (Rank 2
for Web-GLM and Rank 8 for GSM8k). Furthermore, QDyLoRA exhibits consistent superiority over
QLoRA, particularly at lower ranks.

4 Conclusion

QDyLoRA offers an efficient and effective technique for LoRA-based fine-tuning LLMs on down-
stream tasks. Eliminating the need for fine-tuning multiple models to find the optimal LoRA rank
and offering the possibility of fine-tuning larger LLMs are two main advantages of QDyLoRA. The
experimental results demonstrated that the optimal rank for QDyLoRA can be surprisingly low, yet
it consistently outperforms QLoRA. QDyLoRA provides greater flexibility for deploying LLMs in

1The same settings as the original QLoRA work are applied here.
2The maximum LoRA rank is fixed to 64. While QLoRA’s rank is always fixed, QDyLoRA can split the

training across ranks in range 1 to 64.

4



various contexts and represents a promising step towards making fine-tuning large language models
more accessible and efficient.

References
Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and

Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Information Processing Systems, 35:12991–13005,
2022.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong Park,
Byeongwook Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. Alphatuning: Quantization-
aware parameter-efficient adaptation of large-scale pre-trained language models. arXiv preprint
arXiv:2210.03858, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations–democratizing large language model alignment. arXiv preprint arXiv:2304.07327,
2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

5



Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong,
and Jie Tang. Webglm: Towards an efficient web-enhanced question answering system with human
preferences. arXiv preprint arXiv:2306.07906, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

5 Supplementary Material

5.1 Hyperparameters

This section provides an overview of the hyperparameters and experimental configurations, detailed
in Table 3.

6



Model Parameter Value

BERT-Base

Optimizer AdamW
Warmup Ratio 0.06

Dropout 0.1
LR Scheduler Linear

Batch Size 32 (RoBertA) / 8 (Bert)
Epochs 30 (RoBertA) / 3,6 (Bert)

Learning Rate (LR) 2e-5 (RoBertA / 6e-6 (Bert)
Weight Decay 0.1

Max Sequence Length 512
Seeds [10, 110, 1010, 42, 4242]
GPU Tesla V100-PCIE-32GB

MobileNetV2

Model "google/mobilenet_v2_1.4_224"
Optimizer AdamW

LR Scheduler Linear
Batch Size 128

Seeds 4242
Epochs 60 ×# Models
GPU 8 × Tesla V100-PCIE-32GB

cPreResNet20

Optimizer SGD
Criterion Cross Entropy

LR Scheduler cosine_lr
Batch Size 128

Seed 40
Momentum 0.9

Weight Decay 0.0005
LR 0.1

Epochs [200,400,600,800]
Gradient Accumulation [1,2,3,4]

Table 3: All the hyperparameters that have been used throughout our study for different experiments.
If we didn’t mention a parameter specifically, it means we utilized the default value of the Hugging-
Face Transformers v’4.27.0.dev0’. 4. Otherwise, we highlighted any exception in the main text.

7


	Introduction
	Related Work

	Proposed Method: Quantized DyLoRA
	Experiments and Evaluation
	Conclusion
	Supplementary Material
	Hyperparameters


