
An efficient clustering algorithm for
self-supervised speaker recognition

Abderrahim Fathan, Xiaolin Zhu, Jahangir Alam.
Computer Research Institute of Montreal, Montreal (Quebec) H3N 1M3, Canada

abderrahim.fathan@crim.ca, alice.zhuxl@gmail.com, jahangir.alam@crim.ca

Abstract

Clustering-based pseudo-labels (PLs) are widely used to optimize speaker embed-
ding (SE) networks and train self-supervised speaker verification (SV) systems.
However, PL-based self-supervised training depends on high-quality PLs and
clustering performance relies heavily on time- and resource-consuming data aug-
mentation regularization. In this paper, we propose an efficient and general-purpose
multi-objective clustering algorithm that outperforms all other baselines used to
cluster SEs. Our approach avoids explicit data augmentation for fast training
and low memory and compute resource usage. It is based on three principles:
(1) Self-Augmented Training to enforce representation invariance and maximize
the information-theoretic dependency between samples and their predicted PLs
(2) Virtual Mixup Training to impose local-Lipschitzness and enforce the clus-
ter assumption (3) Supervised contrastive learning to learn more discriminative
features and pull samples of same class together and push apart samples of dif-
ferent clusters, while improving robustness to natural corruptions. We provide a
thorough comparative analysis of the performance of our clustering method vs.
baselines using a variety of clustering metrics and show that we outperform all
other clustering benchmarks, perform an ablation study to analyze the contribution
of each component including two other augmentation-based objectives, and show
that our multi-objective approach provides beneficial complementary information.
Moreover, using the generated PLs to train our SE system allows us to achieve
state-of-the-art SV performance.

1 Introduction

Speaker verification (SV) is the task of confirming, based on a speaker’s known utterances, that the
identity of a speaker is who they purport to be. In recent years, it has become a key technology for
personnel authentication in numerous applications [27]. Typically, utterance-level fixed-dimensional
embedding vectors are extracted from the enrollment and test speech samples and then fed into
a scoring algorithm (e.g., cosine distance) to measure their likelihood of being from the same
speaker. Classically, the i-vector framework has been one of the most dominant approaches for
speech embedding [13, 33] thanks to its ability to summarize the distributive patterns of speech in an
unsupervised manner and with relatively small training datasets. It generates fixed-sized compact
vectors that represent the speaker’s identity in a speech utterance regardless of its length. Besides,
in the past years, various deep learning-based architectures and techniques have been proposed to
extract embeddings [3, 32, 21]. They have shown great performance when large training datasets are
available, particularly with a sufficient number of speakers [51]. One widely employed architecture
for this purpose is ECAPA-TDNN [15], which has achieved state-of-the-art (SOTA) performance in
text-independent speaker recognition. The latter uses squeeze-and-excitation (SE), employs channel-
and context-dependent statistics pooling & multi-layer aggregation and applies self-attention pooling
to obtain an utterance-level embedding vector.
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Indeed, most of the deep embedding models are trained in a fully supervised manner and require
large speaker-labeled datasets for training. However, well-annotated datasets can be expensive
and time-consuming to prepare, which has led the research community to explore more affordable
self-supervised learning (SSL) techniques using larger unlabeled datasets. One common way to
solve this issue for SV systems is to use a one-stage "clustering-classification" scheme [31, 32, 21]
by employing clustering algorithms (e.g., K-means, agglomerative hierarchical clustering, spectral
clustering) or other SSL-based objectives (e.g., SimCLR, MoCo [59]) to generate Pseudo-Labels
(PLs) and train the speaker embedding network using these labels in a discriminative fashion. More
recently, better-performing ways have started to appear which are now widely adopted in the SV
domain. These frameworks are based on two-stage progressive/iterative “clustering-classification”
learning [46, 52]. The first stage consists of SSL training (e.g., contrastive InfoNCE loss [52]) to
train an encoder model to generate speaker embeddings, followed by a second stage of clustering
those embeddings to produce pseudo-labels in order to jointly train the encoder with a classifier in a
supervised manner. The two stages are repeated sequentially until no gains are obtained. Despite
the impressive performance of these PL-based Self-Supervised SV schemes, clustering performance
remains a bottleneck in all above approaches [52, 25] as downstream performance relies greatly on
accurate PLs since these are in general noisy and inaccurate due to the discrepancy between the
clustering objective(s) and the final SV task. Besides, even with iterative clustering-classification
paradigms, the erroneous information from the wrong PLs keeps propagating iteratively, which
degrades the final performance [52, 38]. Thus, the need for better-performing clustering algorithms
to generate less noisy and more accurate PLs. Rather than using SOTA deep clustering models
which rely on heavy domain-specific data augmentations, these approaches usually employ classical
clustering algorithms such as K-means or Spectral clustering as these are easier to use, faster, and less
resource-consuming in terms of memory and GPU/CPU resources to train. More discussion about
related research and the motivation of our work is available in Appendix A.

In this paper, we propose an efficient and general-purpose multi-objective clustering algorithm that
outperforms all other baselines used to cluster speaker embeddings. Our approach avoids using
explicit data augmentation for fast training and low memory and compute resource usage. It is
based on the combination of three principles: (1) Self-Augmented Training to enforce representation
invariance and maximize the information-theoretic dependency between samples and their predicted
pseudo-labels through the Information Maximizing Self-Augmented Training (IMSAT) clustering
framework [29](2) Virtual Mixup Training (VMT) [40] to impose local-Lipschitzness which enforces
the cluster assumption (3) Supervised contrastive learning [34] by leveraging on-the-fly generated
pseudo-labels, to pull samples of same class together and push samples of different clusters apart.
Instead of mixing up inputs or using contrastive loss for the sole goal of enforcing smoother model
responses and compactness of the embeddings, our method leverages successfully these predictions
as additional supervisory signals to better guide the cluster assignment for more robust, stable, and
better-performing data clustering.
The contributions of this paper are as follows:

• We propose a novel general-purpose multi-objective clustering algorithm for large-scale
datasets or/and a high number of clusters.

• We explore various recent SOTA SSL objectives for clustering where we show that multi-
objective clustering often provides beneficial complementary information.

• Our proposed method outperformed a large set of clustering baselines. Besides, using the
generated PLs to train our SV systems, we were able to achieve high SV performance.
Furthermore, employing augmentation-based SSL objectives, allowed us to achieve both
SOTA speaker embedding clustering and SV performance.

2 Our proposed clustering approach

Given a deep neural network-based clustering model f to train with a predefined number of clusters
C, our clustering approach constrains the output predictions of the model to remain unchanged under
local perturbations and implicit Virtual Mixup Training (VMT) [40] data augmentations LMixup

in an end-to-end fashion in order to improve robustness against perturbations and impose local-
Lipschitzness on the learned weights to favore the cluster assumption [23] (if samples are in the
same cluster, they come from the same class) which is a critical condition for successful clustering.
Besides, employing Information Maximizing Self-Augmented Training (IMSAT) LIMSAT [29]
maximises mutual information (MI) in an end-to-end fashion between data and their clustering
assignments by encouraging the prediction of the neural network to remain invariant under data
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perturbation/augmentation, while maximizing the information-theoretic dependency between data
and their predicted discrete representations. Additionally, leveraging the Supervised Contrastive
loss LSupCon [34] in an unsupervised way (using online generated pseudo-labels as labels and l2-
normalized logits as feature embeddings) allows us to leverage online clustering assignments so that
we use nearest-neighbors as positives rather than augmentations and clusters of points belonging to the
same class are pulled together in embedding (logit) space, while simultaneously pushing apart clusters
of samples from different classes. In our case, LSupCon helps us to learn more discriminative features
and has the advantage of improving robustness to natural corruptions and to out-of-distribution data
[34]. It intrinsically performs hard positive/negative mining, and does also allow for multiple positives
per anchor leveraging pseudo-label information, which can mitigate the risk of false positives during
clustering. This is especially suitable and even more critical in our approach which avoids any type
of external or domain specific transformations.
Our approach minimizes the following Ltotal objective:

Ltotal = LIMSAT + LMixup + LSupCon (1)

where LIMSAT = RSAT (θ, TV AT ) + λ(H(Y |X)− µH(Y )), (2)

and LMixup =
1

N

N∑
i=1

KL(αipi + (1− αi)pri ||f(αixi + (1− αi)xri)). (3)

N is the size of data (or mini-batches), ri ∈ {1, .., N} is a random index, and αi ∈ [0, 1] is the mixup
interpolation coefficient. KL(.||.) refers to the Kullback-Leibler divergence. pi = f(xi) ∈ R1xC ,
pri = f(xri) correspond to the predictions of data samples xi and xri . Figure 1 in Appendix D
shows a schematic diagram of our framework. Our aim is to harness these objectives as additional
supervisory signals to regularize the clustering model to produce consistent assignments. Moreover,
we follow the general training framework depicted in Figure 2. For lack of space, all remaining
mathematical details are included in Appendix E.

Table 1: An ablation study of our proposed clustering system including various SSL-based loss objec-
tives that do not employ data augmentation (only original data samples). C denotes the predefined
number of clusters. Results are reported in terms of Clustering metrics and the corresponding EER
(%) downstream SV evaluation performance when using the generated pseudo-labels to train our
studied SV system. Details about the clustering metrics can be found in Appendix B.

Model Clustering Metrics Speaker Verification
ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS EER (%)

LMixup (C: 10k) 0.013 0.016 0.432 10000 0.413 0.452 0.001 0.026 -0.019 1.001 17.633 9.767

LSupCon (C: 10k) 0.015 0.02 0.419 10000 0.404 0.434 0.001 0.027 -0.036 1.001 19.5 20.074

LV ICReg [4] (C: 5k) 0.018 0.082 0.27 4496 0.309 0.239 0.004 0.021 -0.134 1.001 18.031 11.612

LIMSAT (C: 5k) 0.578 0.731 0.822 5000 0.83 0.815 0.552 0.604 -0.033 1.002 26.56 4.507

LIMSAT (C: 5994) 0.600 0.743 0.833 5993 0.834 0.831 0.583 0.636 -0.074 0.999 23.915 4.295

LIMSAT (C: 10k) 0.621 0.754 0.844 9844 0.836 0.853 0.616 0.678 -0.122 0.999 16.897 4.438

LMixup + LSupCon (C: 10k) 0.015 0.034 0.354 9639 0.36 0.348 0.002 0.023 -0.133 0.999 15.563 12.54

LIMSAT + LMixup + LV ICReg′variance + LV ICReg′covariance (C: 5k) 0.013 0.018 0.369 5000 0.367 0.371 0.001 0.017 -0.015 1.0 25.571 19.952

LIMSAT + LMixup + LSupCon + LV ICReg′variance + LV ICReg′covariance (C: 5k) 0.014 0.02 0.36 5000 0.361 0.359 0.001 0.017 -0.022 0.999 26.667 21.84

LIMSAT + LMixup (C: 10k) 0.628 0.764 0.852 9791 0.841 0.862 0.615 0.692 -0.149 1.0 17.297 4.321

LIMSAT + LSupCon (C: 5k) 0.497 0.688 0.784 4996 0.81 0.76 0.347 0.516 -0.065 0.999 24.809 4.623

LIMSAT + LSupCon (C: 5994) 0.514 0.697 0.793 5974 0.814 0.774 0.347 0.538 -0.117 0.999 22.164 4.475

LIMSAT + LSupCon (C: 10k) 0.548 0.717 0.813 9585 0.823 0.803 0.361 0.589 -0.138 1.001 15.941 4.348

LIMSAT + LMixup + LSupCon (C: 5k) 0.602 0.751 0.836 4999 0.842 0.831 0.579 0.632 -0.071 0.999 26.905 4.231
LIMSAT + LMixup + LSupCon (C: 5994) 0.619 0.761 0.846 5989 0.845 0.846 0.6 0.66 -0.125 1.002 24.301 4.321

LIMSAT + LMixup + LSupCon (C: 10k) 0.639 0.776 0.86 9685 0.847 0.873 0.642 0.71 -0.136 0.998 17.599 4.252

LIMSAT + LMixup + LSupCon + Laug (C: 10k) 0.714 0.834 0.894 7810 0.887 0.901 0.728 0.773 -0.129 0.999 19.768 3.377

LIMSAT + LMixup + LSupCon + Laug + LInfoNCE (C: 10k) 0.725 0.842 0.9 8500 0.89 0.91 0.746 0.792 -0.134 1.0 18.407 3.362

3 Results and Discussion
As input to all of our clustering algorithms, we employ 400-dim i-vectors. The compact i-vectors,
which are unsupervised speaker representations, allow us here to perform clustering in a more efficient
way and to avoid high dimensionality of the MFCC acoustic features.

In order to evaluate the performance of our proposed clustering approach and the generated PLs
for self-supervised speaker verification, we conducted a set of experiments based on the VoxCeleb2
dataset [9]. To train the embedding networks, we used the development subset of the VoxCeleb2
dataset, consisting of 1,092,009 utterances collected from 5,994 speakers. The evaluation was
performed according to the original VoxCeleb1 trials list [43], which consists of 37,720 trials of
4,874 utterances spoken by 40 speakers.

For our ECAPA-TDNN-based SV system, the acoustic features used in the experiments were 40-
dimensional Mel-frequency cepstral coefficients (MFCCs) extracted at every 10 ms, using a 25 ms
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Hamming window via Kaldi toolkit [47]. Moreover, to follow other SV works in training the ECAPA-
TDNN-based systems, we have used waveform-level data augmentations including additive noise
and room impulse response (RIR) simulation [51]. In addition to the waveform-level augmentations,
we have also applied augmentation over the extracted MFCCs feature, analogous to the specaugment
scheme [45].

In Table 1, we performed a large-scale ablation study to analyze the contribution of all components
of our system and the influence of the predefined number of clusters. We also study the VICReg
method [4] which comprises a term LV ICReg′variance that maintains the variance of each embedding
dimension above a threshold and a term LV ICReg′covariance that decorrelates each pair of variables.
Results show that there is complementary information between all loss terms in our proposed objective
and that each help to boost the performance of the overall clustering framework. We also observe
that choosing a much higher number of clusters than ground truth leads to improved clustering
performance across all studied systems. Additionally, compared to a large variety of 15 clustering
benchmarks in [21, Tab. 1], we can observe that our proposed method outperforms all other baselines
in terms of clustering metrics achieving 63.9% unsupervised clustering accuracy compared to 58.7%
for AHC which was the best performing method (8.9% relative improvement), while having a
compute time comparable to classical clustering models (3-4 days). Using our proposed system’s
generated PLs to train our speaker embedding system, also allowed us to achieve a very competitive
downstream SV EER performance outperforming all other benchmarks, except the AHC PLs which
lead to a slightly better performance. Moreover, using audio data augmentation by incorporating
Laug to push two augmented versions of the same sample closer and LInfoNCE for contrastive
learning helps to further boost both clustering and downstream SV performance better than all our
studied baselines, and shows that there is complementarity between our studied objectives. Details of
these objectives are included in Appendix F.
Furthermore, to improve generalization and mitigate the effect of noisy PLs during training of our
speaker embedding system, in Table 3 in Appendix C we extend our investigation to other recent
margin-based softmax losses. Unlike the widely used AAMSoftmax loss in speaker verification, to
our knowledge, our results indicate for the first time that variants such as OCSoftmax using one-class
learning instead of multi-class classification and not assuming the same distribution for all speakers
(which is more realistic in our case) or the recent AdaFace loss which emphasizes misclassified
samples according to the quality of speaker embeddings (via feature norms), perform consistently
better across all pseudo-labels and the ground truth labels. We could also observe, in the case of
IMSAT and our proposed system, that even if clustering performance is better when the predefined
number of clusters is high (10000), the speaker verification performance tends to be better when this
number is close to the ground truth 5994 (e.g., 5000).

Table 2: Some recent SOTA SSSV approaches in EER (%) compared to our simple SV system
trained with our PLs. All models are based on ECAPA-TDNN. Results are reported on the original
VoxCeleb1 test set (Voxceleb1_O).

SSL Objective EER (%)
MoBY [59] 8.2

InfoNCE [52] 7.36
MoCo [8] 7.3

ProtoNCE [59] 7.21
PCL [59] 7.11

CA-DINO [26] 3.585
i-mix [20] 3.478
l-mix [20] 3.377

Iterative clustering [52] 3.09

Our approach (without data augmentation) 3.924
Our approach (with data augmentation) 3.001

Finally, Table 2 shows a comparison of our approach (w/ and w/o augmentation) for Self-Supervised
SV (SSSV) training using our system-based PLs compared to recent SOTA SSSV approaches
employing diverse SSL objectives with the same ECAPA-TDNN model encoder. The results show
clearly that our approach provides very competitive performance while being simple and fast. Besides,
when employing augmentations, our approach outperforms all the baselines, which suggests that
regularization through data augmentation is still crucial and that further gains can be made by simply
improving the clustering modules of current self-supervised speaker recognition systems.
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4 Conclusion
In this paper, we propose a general-purpose and multi-objective clustering method. Our approach
avoids using explicit data augmentation for fast and efficient training. It is based on three principles:
(1) Self-Augmented Training to enforce representation invariance and maximize the information-
theoretic dependency between samples and their predicted pseudo-labels (2) Virtual Mixup Training
to impose local-Lipschitzness which enforces the cluster assumption (3) Supervised contrastive
learning by leveraging on-the-fly generated pseudo-labels to pull samples of same class together and
push samples of different clusters apart. Moreover, we explored various recent SOTA SSL objectives
for clustering, including two data augmentation-based objectives, where we showed that our multi-
objective approach provides beneficial complementary information. Our approach outperformed all
other baselines used to cluster speaker embeddings and provided very competitive speaker verification
performance outperforming all the benchmarks.
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A Background and Related Work
Diverse methods for clustering have been proposed. For instance, classical models include K-
means [28], Gaussian mixture model (GMM), BIRCH [63], CURE [24], Agglomerative Hierarchical
Clustering (AHC) [12], etc. However, these methods can only fit linear boundaries between data
representations. Recently, the powerful representative ability of deep networks has been leveraged to
model the non-linearity of complex data and to scale to large datasets. For instance, Deep Embedded
Clustering (DEC) [60] proposed to use deep models to simultaneously learn feature representations
and cluster assignments, while DeepCWRN [10] approach employs an autoencoder to simultaneously
learn feature representations and embeddings suitable for clustering by encouraging the separation of
natural clusters in the embedding space. Besides, other deep models have been proposed based on
generative models [16, 30] or dynamic architectures [48].

While data augmentation remains a crucial component to regularize deep neural networks for clus-
tering and unsupervised representation learning in order to model the invariance of learned repre-
sentations [17], augmentation has the downside of increasing the training set which can lead to
severalfold more training time, especially for large-scale datasets and neural networks. Besides, using
blind augmentations can have a negative effect on the task of speaker verification/recognition as
transformations like pitch perturbation or spectral augmentation can alter the identity of a speaker,
leading sometimes to the creation of misleading data samples. Moreover, for real-world tabular data
applications [2] such as genomics and clinical data, generating additional augmented views is not an
obvious task and can be prohibited.

B Clustering Evaluation Metrics

Following the commonly used evaluation metrics for clustering, we evaluate our clustering models
by thoroughly assessing the quality of their generated pseudo-labels from different perspectives.

We employ a list of 7 supervised metrics that are based on both the PLs and true labels (Unsupervised
Clustering Accuracy, Normalized Mutual Information [19], Adjusted MI [61], Completeness score
[49], Homogeneity score [49], Purity score, and Fowlkes-Mallows index [22]). Among the criteria
that these metrics assess, we can list the following: clustering accuracy and mutual information
as measures of the consistency between the true labels and the generated PLs, homogeneity, com-
pleteness, and purity of clusters, and precision and recall. Additionally, we compute 3 unsupervised
metrics (Silhouette score [50], Calinski-Harabasz score [6], and Davies-Bouldin score [11]) that are
solely based on the generated PLs and the data samples, and which allow us to measure how compact
or scattered are the clusters (e.g., intra-class dispersion, between-cluster distances, nearest-cluster
distance).

More details and discussion are available at [21], which found a very high correlation between
these metrics and SV performance. Additionally, using the 3 unsupervised clustering metrics allows
us to assess objectively our clustering performance and avoid arbitrary techniques such as t-SNE
visualizations [54]. To compute these metrics, we use available implementations from the scikit-learn
toolkit. Details of the clustering metrics are as follows:

• Unsupervised Clustering Accuracy (ACC): measures the consistency between the true
labels and the generated PLs. ACC = max

m

∑N
i=1 1{yi=m(ci)}

N where yi is the true label, ci
is the generated PL assignment, and m is a mapping function which ranges over all possible
one-to-one mappings between true labels and assignments. The optimal mapping can be
efficiently computed using the Hungarian algorithm [37].

• Normalized Mutual Information (NMI) [19]: NMI(Y,C) = I(Y,C)
1
2 [H(Y )+H(C)]

where Y
and C denote the ground-truth labels and the clustering assignments, respectively. H is the
entropy function and I denotes the MI metric. NMI is the harmonic mean between below
homogeneity and completeness scores.

• Adjusted MI (AMI) [61]: Since the NMI measure is not adjusted for chance, including the
adjusted MI score might be preferred for comparison in some of our cases.

• Completeness score [49]: A clustering assignment satisfies completeness if all the data
points that are members of a given class are elements of the same cluster. The scores are
between 0 and 1, where 1 stands for perfectly complete assignment.
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• Homogeneity score [49]: A clustering assignment satisfies homogeneity if all of its clusters
contain only data points that are members of a single class. The score is between 0 and 1,
where 1 stands for perfectly homogeneous assignment.

• Purity score: Each cluster is assigned to the class that is most frequent in the cluster,
and then the accuracy of this assignment is measured by counting the number of correctly
assigned samples and dividing by number of samples N. Cluster purity measures how pure
clusters are. If a cluster is composed of members of the same class, then it is completely
pure.

• Fowlkes-Mallows index (FMI) [22]: Measures the similarity of two clusterings by comput-
ing the geometric mean between the precision and recall. A higher score indicates a good
similarity between two clusters.

• Silhouette score [50]: The Silhouette score is calculated using (a) the mean intra-cluster dis-
tance and (b) the mean nearest-cluster distance for each sample. The Silhouette Coefficient
for a sample is (b−a)

max(a,b) .

• Calinski-Harabasz score (CHS) [6]: Taking into account the data samples and the PLs
(regardless of the original labels), CHS is defined as the ratio of the sum of between-cluster
dispersion and of within-cluster dispersion. It is commonly used to compare assignments of
different methods and numbers of clusters. The higher the value, the better is the assignment.

• Davies-Bouldin score (DBS) [11]: The average similarity measure of each cluster with
its most similar cluster, where similarity is the ratio of within-cluster distances to between-
cluster distances. Thus, clusters that are farther apart and less dispersed will result in a better
score. Lower values indicate better clustering.

C Study of various maximum margin-based softmax loss objectives

In order to improve performance on previously unseen data and to generalize to out-of-domain speech
samples, in this section we study various maximum margin-based softmax variants based on different
objectives. Indeed, softmax suffers from several drawbacks such as that (1) its computation of inter-
class margin is intractable [18] and (2) the learned projections are not guaranteed equi-spaced. Indeed,
the projection vectors for majority classes occupy more angular space compared to minority classes
[39]. To solve these problems, several alternatives to softmax have been proposed [14, 57, 64, 35, 58].
For instance, AM Softmax loss applies an additive margin constraint in the angular space to the
softmax loss for maximizing inter-class variance and minimizing intra-class variance. To provide a
clear geometric interpretation of data samples and enhance the discriminative power of deep models,
AAMSoftmax (angular additive margin softmax) objective (aka ArcFace) introduces an additive
angular margin to the target angle (between the given features and the target center). Due to the exact
correspondence between the angle and arc in the normalized hypersphere, AAMSoftmax can directly
optimize the geodesic distance margin, thus its other name ArcFace. Additionally, CosFace (large
margin cosine loss) reformulates the softmax loss as a cosine loss by L2 normalizing both features
and weight vectors to remove radial variations, based on which a cosine margin term is introduced
to further maximize the decision margin in the angular space. On the other hand, OCSoftmax uses
one-class learning instead of multi-class classification and does not assume the same distribution for
all classes/speakers. More recently, AdaFace loss has been proposed which emphasizes misclassified
samples according to the quality of speaker embeddings (via feature norms).

Table 3 summarizes our results using different predefined numbers of clusters and different clustering-
based pseudo-labels.

Our experimental results show clearly that our adopted softmax variants are very effective in im-
proving the generalization of our speaker verification systems. In particular, unlike the widely used
AAMSoftmax loss in speaker verification, to our knowledge, our results indicate for the first time that
variants such as OCSoftmax (does not assume the same distribution for all speakers which is more
realistic in our case) or the recent AdaFace loss, perform consistently better across all pseudo-labels
and the ground truth labels. Indeed, AAMSoftmax is susceptible to massive label noise [14]. This is
because if a training sample is a noisy sample, it does not belong to the corresponding positive class.
In AAMSoftmax, this noisy sample generates a large wrong loss value, which impairs the model
training. This partially explains the underperformance of AAMSoftmax compared to other variants
when using pseudo-labels for training.
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Figure 1: The pipeline of our proposed clustering method depicting the data flow and the different
losses employed for clustering.

D System description

D.1 Our proposed clustering method

Figure 1 depicts the framework of our proposed clustering method based on the combination of the
proposed Self-Supervised Learning-based objectives that do not employ explicit or domain-specific
data augmentation.

D.2 Our clustering-based self-supervised speaker embedding framework

Figure 2 shows a schematic diagram of our general clustering-based self-supervised speaker veri-
fication process that we follow throughout the paper. During our work, we try to explore various

Table 3: A study of various margin-based softmax losses for better generalization of our speaker
verification system, using different pseudo-labels.

Pseudo-labels No. of clusters AAMSoftmax [14] AMSoftmax [57] OCSoftmax [64] AdaFace [35] CosFace [58] Softmax
True labels 5,994 1.437 1.522 1.416 1.326 1.463 3.489

GMM 5,000 5.429 4.851 4.682 5.095 4.862 8.425

AHC 5,000 3.621 3.664 3.584 3.526 3.6 6.479

IMSAT
5,000 4.507 4.141 3.881 3.807 4.083 7.206

5,994 4.146 3.961 3.892 4.008 3.696 7.333

10,000 4.438 4.024 4.003 4.046 4.072 7.370

LIMSAT + LSupCon

5,000 4.623 4.401 4.396 4.576 4.48 7.179

5,994 4.475 4.502 4.491 4.443 4.427 7.179

10,000 4.348 4.221 4.189 4.343 4.173 7.174

LIMSAT + LMixup + LSupCon

5,000 4.231 4.046 3.924 4.056 4.332 7.391

5,994 4.321 4.146 4.024 4.125 4.199 7.28

10,000 4.252 4.03 4.146 4.21 4.093 7.259

LIMSAT + LMixup + LSupCon + Laug 10,000 3.377 3.287 3.293 3.399 3.298 5.695

LIMSAT + LMixup + LSupCon + Laug + LInfoNCE 10,000 3.362 3.001 3.006 3.043 3.181 5.801
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Figure 2: General process for training our clustering generated pseudo-label-based self-supervised
speaker embedding networks.

clustering algorithms and conduct different analyses on the impact of pretraining, in particular clus-
tering, on speaker verification performance. We employ ECAPA-TDNN as our speaker embedding
network and angular additive margin softmax (AAMSoftmax) objective loss to train our systems
using pseudo-labels generated by the various clustering algorithms.

D.3 Clustering-based pseudo-label generation

For clustering, we have extracted i-vector [13, 33] using the Kaldi toolkit [47], which is a statistical
unsupervised fixed-dimensional representation from each training utterance and performed clustering
on top of them. After training the clustering algorithms, we selected the aligned cluster for each
utterance and used the cluster-id as pseudo-label. With the clustering-based pseudo-labels, we can
train the speaker embedding network via softmax-based objectives, analogous to supervised learning.

For all of our clustering benchmarks, we have set the number of clusters to be 5000 which [32] found
to lead to the best results (except self-organizing maps (SOM) where number of clusters was set to be
the size of the map 71*71=5041).

D.4 Input features and datasets

As input to all of our clustering algorithms, we employ 400-dim i-vectors. The compact i-vectors,
which are unsupervised speaker representations, allow us here to perform clustering in a more efficient
way and to avoid high dimensionality of the MFCC acoustic features.

In order to evaluate the performance of our proposed clustering approach and the generated PLs
for self-supervised speaker verification, we conducted a set of experiments based on the VoxCeleb2
dataset [9]. To train the embedding networks, we used the development subset of the VoxCeleb2
dataset, consisting of 1,092,009 utterances collected from 5,994 speakers. The evaluation was
performed according to the original VoxCeleb1 trials list [43], which consists of 37,720 trials of
4,874 utterances spoken by 40 speakers.

For our ECAPA-TDNN-based SV system, the acoustic features used in the experiments were 40-
dimensional Mel-frequency cepstral coefficients (MFCCs) extracted at every 10 ms, using a 25 ms
Hamming window via Kaldi toolkit [47]. Moreover, to follow other SV works in training the ECAPA-
TDNN-based systems, we have used waveform-level data augmentations including additive noise
and room impulse response (RIR) simulation [51]. In addition to the waveform-level augmentations,
we have also applied augmentation over the extracted MFCCs feature, analogous to the specaugment
scheme [45].

D.5 Clustering models and training details

To improve generalization, we also use additive angular margin softmax (AAMSoftmax) objective
[14] to train our self-supervised speaker embedding network (with scale factor s = 30 and angular
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margin m = 0.1). Cosine similarity was used as a backend for verification scoring between enrollment
and test embeddings.

Following IMSAT setup, we use the same MLP-based d-S-S-C architecture, where d = 400 and C
are input and output dimensionality, respectively. S = 20800 neurons is the width of the network.
We use RELU for all the hidden activations, apply batch normalization to hidden layers, and use
softmax in the output layer. Regarding optimization, we use the Momentum algorithm with an initial
learning rate of 0.01, a momentum of 0.9, and an exponential rate decay of 0.996. λ = 0.5, µ = 3.5.
We use a batch size of 10240 i-vectors, and inputs are normalized independently along the samples
axis to unit l2-norm to avoid losing speaker information. We use alpha=1 as the coefficient of the
Beta distribution used for mixup interpolation. We ran experiments for 150 epochs using 64 CPU
cores for each clustering algorithm. Besides, all speaker verification experiments have been run for 7
days using a single RTX2080Ti GPU, with a batch size of 200 MFCC samples. All code and methods
in our experiments are based on Tensorflow.

E Mathematical details of our equations

In this section, we provide additional mathematical details of our proposed method above. Indeed,
inspired from the Regularized Information Maximization method [36], and based on Self-Augmented
Training (SAT) regularization, RSAT (θ;T ) = 1

N

∑N
n=1 RSAT (θ;xn, T (xn)) is a loss term that

allows the representations of the augmented samples to be further pushed close to those of the original
samples while also regularizing the complexity of the network against local perturbations using Virtual
Adversarial Training (VAT) [42]. RSAT (θ;x, T (x)) = −

∑C
c=1

∑1
yc=0 pθ̂(yc|x)logpθ(yc|T (x)).

Where pθ̂(yc|x) is the prediction of sample x, and θ̂ the current parameters of the network.
TV AT (x) = x + r is the augmentation function using local perturbations to enforce invariance
where r = argmax

r′
{RSAT (θ̂;x, x + r′); ∥r′∥2 ≤ ϵ} is an adversarial direction. H(.) and H(.|.)

are the marginal and conditional entropy, respectively, and their difference represents the MI be-
tween input X and label Y that we maximize. H(Y ) = h(pθ(y)) = h( 1

N

∑N
i=1 pθ(y|x)), and

H(Y |X) = 1
N

∑N
i=1 h(pθ(y|xi)), where pθ(y|x) is our probabilistic classifier modeled by param-

eters θ of a deep network, and h(p(y)) = −
∑

y′ p(y′) log p(y′) is the entropy function. Hyper-
parameters λ, µ ∈ R control the trade-offs between the complexity regularization of the model
(through RSAT ) and the MI maximization, and between the two entropy terms, respectively. Basi-
cally, increasing the entropy H(Y) amounts to encouraging the cluster sizes to be uniform and prevent
collapsing into degenerate solutions, while minimizing the conditional entropy H(Y |X) enables less
ambiguous cluster assignments and forces the classifier to be confident on the training samples [5].
During our experiments, we find the LIMSAT loss to be critical for good clustering performance. For
more details, please refer to [42, 29].
Moreover, as the LSupCon loss requires labels, the novelty of our usage is to use online predictions
of our model as input labels, which allows us to use it in a completely unsupervised fashion without
the need for ground-truth labels. As the performance of our clustering gradually improves, the online
PLs are progressively more reliable, thus helping to generate better and more compact clusters.
Finally, inspired from VMT [40] regularization method which encourages the model to behave linearly
in-between training points, this allows us to enforce representation smoothness during clustering and
enforce consistent predictions between the surrounding and training points. Indeed, mixup [62] which
is a strategy to augment data by interpolating different data samples alongside their labels, often leads
to better generalization to out-of-set samples. Mixup was also found by [21] to lead to better general-
ization of self-supervised speaker verification systems when the clusters are not compact or not well
distanced as it can dilute label noise and induce better class separation. Following the work of [40],
instead of directly mixing probabilities in the LMixup loss, we perform mixup over logits, followed
by softmax for better training and to prevent early information loss during the mix of probabilities.
During experiments, we found this to considerably improve results and convergence compared to
mixup on probabilities. We follow the general training framework depicted in Figure 2. Code of our
clustering framework is available at https://github.com/fathana/CAMSAT_clustering.
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F Details of our augmentation-based SSL objectives

The following list provides the description details of the augmentation-based SSL objectives used in
our experiments:

• Data augmentation loss Laug: Laug forces the predicted representations of augmented
samples to be close to those of the original data points by minimizing the KL-divergence
between both predictions, as follows:

Laug =
1

N

N∑
i=1

KL(p
augri
i ||pi) (4)

with J = {aug1, ..., aug|J|} is the ensemble of available data augmentations and ri ∈
{1, .., |J |} refers to a random augmentation from J . KL(.||.) refers to the Kullback-
Leibler divergence, and N is the size of data (or mini-batches). pi = f(xi) ∈ R1xC , and
p
augj
i = f(x

augj
i ) correspond to the predictions of data sample xi and its augmented version

x
augj
i , respectively.

• Contrastive Self-Supervised Learning (InfoNCE): InfoNCE [44], where NCE stands for
Noise-Contrastive Estimation, is a type of contrastive loss function used for self-supervised
learning in SimCLR [7], also known as the NT-Xent loss (Normalized Temperature-scaled
Cross-Entropy). The goal is to maximize the similarity between the representations of
two augmented versions of the same input, i.e., Zi and Zj while minimizing it to all other
examples in the batch.
In short, the InfoNCE loss compares the similarity of Zi and Zj to the similarity of Zi to
any other representation in the batch by performing a softmax over the similarity values.
The InfoNCE loss li,j for pair (i,j) can be written as follows:

li,j = −log
exp sim(Zi,Zj)/τ∑2N

k=1 1k ̸=i exp sim(Zi,Zk)/τ
.

1k ̸=i ∈ {0, 1} is an indicator function evaluating to 1 iff k ̸= i, and τ = 1 denotes the
temperature parameter. The final LInfoNCE loss is computed across all positive pairs,
both (i, j) and (j, i), in a mini-batch (a sample and its augmented version). The default
similarity metric that is used is cosine similarity, defined as: sim(Zi, Zj) =

Zi
T .Zj

∥Zi∥∥Zj∥ . We
also studied KL-divergence as a distance metric in the appendix but the results were worse
than cosine distance.

• Supervised Contrastive Loss (SupCon):
LSupCon from [34] extends the self-supervised batch contrastive approach of the NT-Xent
loss (Normalized Temperature-scaled Cross Entropy) [7] to the fully-supervised setting,
allowing us to effectively leverage label information. For that, clusters of points belonging
to the same class are pulled together in normalized embedding space, while simultaneously
pushing apart clusters of samples from different classes. The SupCon extension allows for
multiple positives per anchor instead of a single sample in addition to many negatives, and
draws from samples of the same class as the anchor, rather than being data augmentations
of the anchor, as done in previous works. It showed benefits for robustness to natural
corruptions and is more stable to hyperparameter settings such as optimizers and data
augmentations.
Since the SupCon loss requires labels, the novelty of our usage is to use online generated
labels as input labels to the SupCon loss function, which allows us to use it in a completely
unsupervised fashion without the need for ground-truth labels. Additionally, our framework
does not rely on any additional modules such as a projection network or a separate encoder.
We use the implementation from https://github.com/wangz10/contrastive_loss/
blob/master/losses.py with temperature=1 and base_temperature=1.

• Variance-Invariance-Covariance Regularization (VICReg): VICReg [4] aims to max-
imize the agreement between representations of augmented views of the same instance
while preventing the collapse problem. It uses two regularization terms (1) a term
LV ICReg′variance that maintains the variance of each embedding dimension above a thresh-
old, (2) a term LV ICReg′covariance that decorrelates each pair of variables. VICReg loss is
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composed of a variance, invariance and covariance loss terms that are added to each other as
follows: LV ICReg = λs(Z,Z ′) + µ[v(Z) + v(Z ′)] + ν[c(Z) + c(Z ′)]

The variance regularization term is: v(Z) = 1
C

∑C
j=1 max(0, γ − S(Zj , ϵ)) where

S(x, ϵ) =
√
V ar(x) + ϵ and γ = 1 is a constant target value for the standard deviation. Zj

denotes the vector composed of all values at dimension j in all logit vectors in batch matrix
Z and ϵ = 0.0001 is a small scaler for stability. The covariance regularization term is com-
puted as follows: c(Z) = 1

C

∑
i ̸=j [C(Z)]2i,j . With C(Z) = 1

N−1

∑N
i=1(Zi−Z)(Zi−Z)T

and Z = 1
N

∑N
i=1 Zi. Zi denotes the logits of sample i. The invariance criterion is simply:

s(Z,Z ′) = 1
N

∑
i ∥Zi − Z

′

i∥22
In our implementation, we use λ = 1, µ = 1, and ν = 0.5. Additionally, Since the
covariance matrix requires large memory usage, we set the batch size to 640 samples and
use C = 5000 clusters.

G Discussion of our multi-objective clustering approach

Our approach in this paper tries to extend/improve the IMSAT method by incorporating and studying
in a multi-objective fashion additional SSL objectives to the current available framework. Our
study tries to investigate useful self-supervised objective losses for the purpose of speaker clustering
and recognition. Our aim is to harness these objectives as additional supervisory signals during
clustering to regularize the clustering model to produce consistent feature representations. Besides,
this can increase the model’s expressiveness via various inductive biases, maximize the amount of
information learned per sample, and help it learn weights that can better disambiguate hard/complex
data examples, be able to self-correct its early mislabelling, and reduce the likelihood of learning
spurious features since in that case the weights are constrained to simultaneously satisfy all the
training objectives (i.e. assume the simplest hypothesis). Our work also analyzes the complementary
information between these objectives using our large MLP-based architecture, without interference
from other architectural biases.

The IMSAT framework, which is the backbone of our clustering approach helps to avoid degenerate
solutions, that other clustering methods are susceptible to, by been rigorously grounded in information
theory. Indeed, due to the entropy maximisation component within MI, the loss objective is not
minimised if all inputs are assigned to the same class. At the same time, it is optimal for the model
to predict for each input a single class with certainty (i.e. one-hot) due to the additional conditional
entropy component that we minimize. Hence, we avoid clusters disappearing during training or a
single cluster starts dominating the predictions. During our experiments, we find the LIMSAT loss to
be critical for good clustering performance.

Inspired from VMT [40] regularization method which encourages the model to behave linearly
in-between training points, this allows us to enforce representation smoothness during clustering and
enforce consistent predictions between the surrounding and training points [56]. Indeed, mixup [62]
which is an efficient strategy to augment data by interpolating different data samples alongside their
labels, often leads to better generalization to out-of-set samples. It has proven its strength in various
tasks (e.g., image classification [62], anti-spoofing [53] and speech recognition [41]). [62] has shown
that mixup not only reduces the memorization to adversarial samples, but also performs better than
Empirical Risk Minimization [55]. Mixup has also been experimentally found by [21] to be effective
against label noise memorization [1], and to lead to better generalization of self-supervised speaker
verification systems when the clusters are not compact or not well distanced. We find this property to
be especially important during clustering of speaker embeddings to mitigate the strong label noise at
the first training epochs and avoid early convergence to suboptimal cluster assignments. As Mixup
can dilute the label noise in online generated pseudo-labels and create synthetic samples around the
borders that lead to smoothing the data manifold and better class separation, we believe this can help
slow down the memorization of noisy pseudo-labels and learn long enough from the simple patterns
available to lead to better clusters and induce robustness, better generalization capability, and better
online clustering stability for large-scale datasets.

The resulting algorithm is highly scalable, fast, more robust than IMSAT to corruptions and shifts in
the data during online clustering, is simple to implement, and adds limited computational overhead
to IMSAT. We believe our proposed clustering method can be considerably beneficial to further
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optimize current self-supervised SV frameworks by replacing the simple clustering methods being
employed (e.g. k-means, spectral clustering). It can also be used in speaker diarization frameworks
to improve the clustering aspects of speaker diarization methods where clustering is one of the
important modules. Finally, our proposed clustering approach is a general-purpose method and can
be applied to other problems and domains other than speech.

H Comparison of our approach to other clustering benchmarks

In Table 4, we provide the results for a large variety of clustering benchmarks compared to our
proposed method without explicit data augmentation. According to the results, our approach outper-
forms all other baselines in terms of clustering metrics achieving 63.9% unsupervised accuracy, while
having a compute time comparable to classical clustering models (3-4 days). Using our proposed
system’s generated PLs to train our speaker embedding system, also allowed us to achieve a very
competitive downstream SV EER performance outperforming all other benchmarks, except the AHC
PLs which lead to a slightly better performance.

Table 4: A comparison study of our proposed clustering method compared to a large set of benchmarks
(classical and deep-learning based models). Results are reported in terms of Clustering performance
(clustering metrics) and the corresponding EER (%) downstream SV evaluation performance when
using the generated pseudo-labels to train our studied speaker verification system. l2Norm refers to
normalizing i-vector inputs independently along the samples axis to unit l2-norm instead of mean
and standard deviation scaling (StandardScaler) of i-vectors along the features axis.

Model Clustering Metrics Speaker Verification
ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS EER (%)

Supervised (True Labels) 1.0 1.0 1.0 5994 1.0 1.0 1.0 1.0 −0.006 31.708 4.692 1.437

GMM (Full cov.) 0.45 0.631 0.747 5000 0.767 0.728 0.312 0.566 -0.015 39.266 4.673 5.143

GMM (Full cov., l2Norm) 0.504 0.678 0.789 5000 0.792 0.785 0.415 0.633 -0.015 41.568 5.114 5.429

Bayesian GMM (γ=1e-5, µ=1) 0.45 0.629 0.746 5000 0.766 0.727 0.312 0.566 -0.015 39.257 4.673 5.143

Bayesian GMM (l2Norm, γ=1e-5, µ=1) 0.504 0.678 0.789 5000 0.792 0.785 0.415 0.633 -0.015 41.57 5.115 5.159

Divisive HC 0.097 0.204 0.477 5000 0.479 0.474 0.035 0.132 -0.06 18.044 9.068 13.531

KMeans 0.302 0.468 0.591 5000 0.645 0.546 0.194 0.311 -0.114 24.936 2.714 6.978

CURE 0.151 0.218 0.393 5000 0.466 0.34 0.011 0.216 -0.052 17.77 5.372 6.994

BIRCH 0.299 0.374 0.54 5000 0.725 0.43 0.013 0.353 -0.027 24.348 4.901 5.642

DEC 0.029 0.122 0.365 4911 0.386 0.345 0.007 0.036 -0.084 8.734 7.266 11.957

SOM 0.025 0.088 0.402 5041 0.404 0.4 0.01 0.037 -0.041 10.148 18.402 15.806

DeepCWRN 0.003 0.006 0.15 1008 0.179 0.129 0.001 0.003 -0.217 3.841 41.521 38.171

IMSAT 0.393 0.491 0.649 4987 0.668 0.63 0.297 0.426 -0.044 22.887 6.668 5.912

AHC 0.587 0.74 0.825 5000 0.841 0.81 0.311 0.684 −0.01 39.561 4.991 3.685

AHC (l2Norm) 0.602 0.756 0.838 5000 0.849 0.827 0.375 0.693 -0.034 39.638 5.147 3.621

Our approach 0.639 0.776 0.86 9685 0.847 0.873 0.642 0.71 -0.136 0.998 17.599 4.252

Our approach (with data augmentation & InfoNCE) 0.725 0.842 0.9 8500 0.89 0.91 0.746 0.792 -0.134 1.0 18.407 3.362

I The evolution of clustering metrics over time

In figure 3, we show the evolution of clustering metrics and the number of clusters discovered during
the training process. Results show that regularization through data augmentation helps considerably
to improve performance and that using augmentations through objectives Laug or LInfoNCE takes
considerably more epochs to achieve the best clustering performance. As incorporating these
objectives also consumes more computing resources, this results in the whole training process taking
around 10 times longer for training compared to our proposed augmentation-free clustering approach
which requires around 3 days to converge to its best performance.

J Self-supervised angular additive margin softmax (AAMSoftmax) objective

The angular additive margin softmax (AAMSoftmax) objective is one of the most popular methods
for training a speaker embedding network [14]. The AAMSoftmax objective is formulated as follows:

LAAMSoftmax = − 1

N

N∑
i=1

log(
es(cos(θyi,i+m))

K1
), (5)
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Figure 3: The evolution of clustering metrics over epochs and the number of clusters discovered
during training of our clustering systems based on various loss combinations.

where K1 = es(cos(θyi,i+m)) +
∑c

j=1,j ̸=i e
scosθj,i , N is the batch size, c is the number of classes, yi

corresponds to label index, θj,i represents the angle between the column vector of weight matrix Wj

and the i-th embedding ωi, where both Wj and ωi are normalized. The scale factor s is used to make
sure the gradient is not too small during the training and m is a hyperparameter that encourages the
similarity of correct classes to be greater than that of incorrect classes by a margin m.

The training of AAMSoftmax for self-supervised speaker embedding learning is made possible by
the use of our generated pseudo-labels as the above objective requires speaker labels for training.

K ECAPA-TDNN Architecture details

Table 5: Standard ECAPA-TDNN architecture. T indicates the duration of features in number of
frames and d the feature vector dimensionality and Nc is the number pf classes. Batch normalization
is further employed after each layer except temporal pooling.

Layer Input Dimension Output dimension
Conv1d+ReLU+BN d × T 512 × T

SE-Res2Block 512 × T 512 × T
SE-Res2Block 512 × T 512 × T
SE-Res2Block 512 × T 512 × T
Conv1d+ReLU 512 × T 1536 × T

Attentive Statistics Pooling + BN 1536 × T 3072×1
FC + BN 3072×1 192×1

AAM-Softmax 192×1 Nc×1
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