
Embedding User-Generated Content using Structural
Supervision and Generative Models

Vinay Shukla1,2 Yang Yang1 Siddarth Malreddy1 Jinoo Baek1 Dale Johnson1

Wenfei Zhou1 Minh Pham1 Mark Williams1 Karthik Lakashman1

1Google 2University of California, Los Angeles
vshukla@g.ucla.edu

{lizyang, malreddysid, jinoo, dalejohnson, wenfei}@google.com
{minphtx, wimark, lakshmanan}@google.com

Abstract

One well-studied solution to avoid the need for vast amount of human-labeled
data is to use self-supervised training objectives during pre-training, which enables
learning on completely unlabeled examples. Especially in the case of larger
models such as LLMs, these pre-training procedures have demonstrated benefits
[Devlin et al., 2018]. In this work we focus on training LLMs for producing
semantically expressive sentence embeddings for User-Generated Content (UGC)
in comment-style mediums. We provide a novel self-supervised training paradigm
that leverages the structure of comment data and also demonstrate the efficacy of
LLM generation for producing quality training data. Through empirical evaluation,
we show improvements against existing baselines methods on several downstream
tasks.

1 Introduction

User-Generated Content (UGC) is a rich source of information on the Internet, with many forums
and comment boards providing the most in-depth knowledge on niche topics. Building semantically
expressive Sentence Embeddings for UGC has a huge potential to improve downstream tasks on such
content like classification, translation, question answering, summarization, and sentiment analysis.

Comments-style UGC data has a very diverse linguistic structure and is often influenced by the
context, language, and medium in which it is presented. For example, they naturally mix multiple
author styles in multi-turn conversations, often intersperse multiple languages (like Hindi written
in English), and contain contextual use of coded language and emojis. In this work, we focus on
improving sentence embeddings for such UGC found in comment-style mediums, e.g. Youtube,
Twitter, and Reddit.

Most relevant sentence-embedding approaches have relied on supervised-learning with human
annotation to train models [Cer et al., 2018, Ni et al., 2021]. This procedure is both expensive and
inefficient. We propose an efficient and novel method to train a “comment embedding model”. We
summarize our contributions as follows: (i) we show that using Large Language Models (LLMs)
to generate similar comment pairs for use in contrastive loss proves to work better than traditional
methods trained on NLI (ii) show that self-supervised learning tasks that are latent in “comment-style”
UGC datasets help to improve model performance.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

U L M T o w e r S h a r e d U L M T o w e r

Pooling + Projection Pooling + Projection

Projection

Semantic Similarity Loss

Is-Reply Loss

Figure 1: We present the general training structure for our pairwise learning. At inference time, the
only piece that we have is a single ULM tower along with the immediate pooling and projection.

2 Related Work

Pretraining Objectives. For Large Langugage Models (LLM) there exist many popular unsuper-
vised learning tasks that have been previously employed. The “masked language model” pretraining
objective was proposed by Devlin et al. [2018] and involves masking out a certain percentage of
words and allowing the model to try and reconstruct the phrase. Also proposed in Devlin et al. [2018]
is the next-sentence prediction task, which involves predicting whether two sentences follow each
other. Other tasks include next token prediction [Radford et al., 2018], contrastive learning [Chen
et al., 2020] etc. The overarching idea is that labeling is expensive, which means that we want to find
supervision among large pretraining datasets to help models achieve better semantic understanding.

Sentence Embeddings. The literature on sentence embeddings is quite extensive. Skip-Thought
utilized surrounding sentence reconstruction as a task and an encoder-decoder model [Kiros et al.,
2015]. This was eventually made quicker with Quick-Thought [Logeswaran and Lee, 2018]. Some
effective methods simply combine word embeddings, which is seen in Arora et al. [2017]. Others
siamese-network style approaches include InferSent [Conneau et al., 2017], SBERT [Reimers and
Gurevych, 2019], SimCSE [Gao et al., 2021], and the siamese DAN + transformer models in [Yang
et al., 2018]. More relevant to us are the two state-of-the-art approaches: Universal Sentence
Encoder [Cer et al., 2018] and T5-Based Sentence Embeddings [Ni et al., 2021]. We note that both
these approaches along with previous methods leverage the SNLI dataset [Bowman et al., 2015].

3 Method

3.1 Dual-Model Setup

Similar to previous siamese-network based approaches [Reimers and Gurevych, 2019, Conneau et al.,
2017], we train with “two-models” that shares weights with one another. In our case, we choose a
model based on PaLM 2 [Anil et al., 2023] which contains 1B parameters that we call ULM.

We define our training set D = {(xi, yi)}, where each sample xi = (x1i , x
2
i). Our goal is to train our

model in order to successfully capture relationships between our text pairs (x1i , x
2
i). This is expressed

through our objective functions or the tasks we are trying to learn at training time, which is shown in
Figure 1 and detailed in later sections.

2

Trainer: Generate a sentence similar to ‘A man inspects the uniform of a figure in some East Asian country.‘ in
the same language.
Rater: This sentence is in 'en' language so I will generate a sentence in 'en' language. My generated sentence
is: A figure in an East Asian nation had their uniform inspected by some guy.
Trainer: Generate a sentence similar to ‘أرید أن أتعلم العربیة‘ in the same language.
Rater: This sentence is in ‘ar’ language so I will generate a sentence in ‘ar’ language. My generated sentence is:
أنا مھتم بتعلم العربیة
Trainer: Generate a sentence similar to ‘어제 저녁에 친구들과 영화를 보면서 사이다를 마셨어요.’ in the same
language.
Rater: This sentence is in ‘kr’ language so I will generate a sentence in ‘kr’ language. My generated sentence is:
어제 저녁, 친구들과 영화를 보며 사이다를 마셨어요
Trainer: Generate a sentence similar to '{comment_text}' in the same language.
Rater: This sentence is in '{language_code}' language so I will generate a sentence in '{language_code}'
language. My generated sentence is:

Figure 2: We use few-shot prompting with multiple languages as examples to make sure our data
is multi-lingual. We note that comment_text is substituted for the new comment we are trying to
evaluate and language_code is the langugage of the original comment.

3.2 Structured Signals

We define another task that relies on the innate structure of our “comment”-style UGC datasets.
For pairs of comments, we can determine whether they are replies of each other. We note that this
meta-information is easily tenable when doing a crawl over comment platforms.

Our model returns us a probability at the “is-reply” head which is shown in Figure 1. For a sample i,
let ŷi ∈ [0, 1] correspond to the predicted probabilities of two comments being replies of each other
and yi ∈ {0, 1} be the desired label. For a batch B, we take all samples that are part of the “is-reply”
task and define this as Breply. As shown below, our loss becomes:

Lreply = − 1

|Breply|
∑
i∈Breply

yi log ŷi + (1− yi) log (1− ŷi) (1)

3.3 LLM Generation Supervision

We provide a second avenue of supervision that takes the form of LLM generated comment pairs.
We prompt a LLM to give us a semantically similar comment to a base comment as seen in Figure 2.
Hence, the training data for our task is composed of semantically similar pairs with no label.

We define a batch of training samples with labels B = {(xi, yi)} for 1 ≤ i ≤ k, where k is the batch
size. We take an intermediate representation, which is defined as a vector of length n = 512 that
is obtained after passing passing x1i , the original comment, and x2i , the LLM generated comment,
through the ULM model and performing the “pooling + projection” operations, which is shown in
Figure 1. We define this representation as (v1i , v

2
i) for every i ∈ B. Furthermore, we define a new

batch Bsim, consisting of only text pairs that correspond to this task.

We then create a distribution over our batch for each i ∈ Bsim, i.e. we use an in-batch sampled softmax.
We use cosine similarity as our scoring function and τ as a temperature constant. The main idea
behind our loss is that we want the model to maximize sim(v1i , v

2
i) while minimizing sim(v1i , v

2
j) for

i not equal to j.

Lsim =
1

|Bsim|

∑
i∈Bsim

− log

(
esim(v1i ,v

2
i)/τ∑

j∈Bsim
esim(v1i ,v

2
j)/τ

)
(2)

4 Evaluation

In order to evaluate the model, we prepared several datasets to test the semantic representation
capability of the embeddings. We treat the multi-lingual Universal Sentence Encoder [Cer et al.,
2018] (USE-multi) as baseline. It should be noted that the USE-multi model supports only 16

3

Table 1: Model Evaluations for KNN recall on US and UK YT comments.

Model YT Comments - US YT Comments - UK
R@1 R@3 R@5 R@1 R@3 R@5

USE-multi 4.07% 7.56% 9.18% 4.47% 8.29% 10.16%
Ours 4.63% 8.62% 10.44% 5.33% 9.67% 15.07%

Table 2: Results for binary classification on the Reddit comment dataset for the politics vs. funny
subreddits and aww vs. gaming subreddits. We report mean accuracy, AUC, and AUC-PR.

Method Task Model Accuracy AUC AUC-PR

USE-multi politics vs. funny Logistic Regression 0.9040 0.9040 0.9235
Ours politics vs. funny Logistic Regression 0.9053 0.9054 0.9257

USE-multi aww vs. gaming Logistic Regression 0.8212 0.8215 0.8686
Ours aww vs. gaming Logistic Regression 0.8240 0.8244 0.8697

languages while our model is able to handle all major languages used in YT comments. We only use
USE-multi as a baseline because its embedding dimension is equivalent to ours (512), so this will
give us a meaningful comparison.

4.1 YouTube Comment Similarity Task

The YouTube comments dataset from Kaggle [J, 2017] has a list of comments sampled from various
videos. It contains comments for videos from the US and the UK regions. In order to get semantically
similar pairs we follow the same technique mentioned in Section 3.3 to synthetically generate text
pairs. Since this process is very time consuming, we sample 10K comments from each region and
generate the pairs. To evaluate the model, we run KNN in the generated set for every comment in the
original dataset. Then we compute the recall@K which represents the percentage of comments in the
original dataset that had their corresponding generated comment in the top K nearest neighbors.

Results and Discussion. Our results are tabulated in Table 1. We observe that on all recall@K
values, our method outperforms the baseline. This is a testament to our method’s clustering capability
and how it is able to provide “close embeddings” for comments we expect to be similar in nature.

4.2 SubReddit Prediction Task

We derive an eval dataset from a publically available Reddit Kaggle comment dataset [Magnan, 2019].
In line with the tasks in the SentEval benchmark [Conneau and Kiela, 2018], we provide a series of
downstream tasks that involves training a classifier on our model’s embeddings. The goal of our task
is binary classification, more specifically, we want to determine which subreddit a comment belongs
to. In our tasks, we sample 4000 total comments from 2 random subreddits ensuring that there are
exactly 2000 from each. We train a logistic regression classifier with 10-fold cross validation.

Results and Discussion. We report our evaluation in Table 2. Our method performs better than
USE-multi on all metrics in both datasets for UGC content. Furthermore, USE-multi was pretrained
on reddit data while ours was strictly trained on Youtube data, which makes this comparison inherently
in the favor of USE-multi. Yet even with this in mind, our method achieves higher downstream
performance on the fitted model.

5 Conclusion

In this paper, we have shown that the self-supervised training of Sentence Embeddings using LLM-
generated datasets and structural signals latent in “comment datasets” has a potential to outperform
existing baselines on UGC. As the pretraining utilizes a lot of data, using these techniques can help
to greatly reduce the amount of human labeled data, which saves on time and cost. In the future,

4

we hope to extend LLM-generated datasets to question-answering and NLI-based tasks. We refer
the reader to Appendix A and B respectively for a more detailed discussion on future work and
limitations of our approach.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In International conference on learning representations, 2017.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL https:
//aclanthology.org/D15-1075.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670–
680, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1070. URL https://aclanthology.org/D17-1070.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Mitchell J. Trending youtube video statistics and comments. 2017. URL https://www.kaggle.
com/datasets/datasnaek/youtube.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. Advances in neural information processing systems, 28,
2015.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
tions. arXiv preprint arXiv:1803.02893, 2018.

Sameul Magnan. 1 million reddit comments from 40 subreddits. 2019. URL https://www.kaggle.
com/datasets/smagnan/1-million-reddit-comments-from-40-subreddits.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. arXiv preprint
arXiv:2108.08877, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

5

https://aclanthology.org/D15-1075
https://aclanthology.org/D15-1075
https://aclanthology.org/D17-1070
https://www.kaggle.com/datasets/datasnaek/youtube
https://www.kaggle.com/datasets/datasnaek/youtube
https://www.kaggle.com/datasets/smagnan/1-million-reddit-comments-from-40-subreddits
https://www.kaggle.com/datasets/smagnan/1-million-reddit-comments-from-40-subreddits

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Learning semantic textual similarity from
conversations. In Proceedings of the Third Workshop on Representation Learning for NLP,
pages 164–174, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-3022. URL https://aclanthology.org/W18-3022.

6

https://aclanthology.org/W18-3022

A Future Work

There are a lot of interesting follow up tasks to what we presented in this work. LLM generated
supervision can be used on many other tasks other than just similar sentences. We plan to introduce
tasks such as generating more comments in the style of a given commenter or using LLM to generate
synthetic replies. Also, as introduced in the NLI dataset [Gao et al., 2021, Yang et al., 2018], we
could prompt a LLM to generate “entailments” or “contradictory” sentences. Question-Answering
tasks [Cer et al., 2018] have also been shown to improve Sentence Embeddings and is something that
we would want to consider generating in the future.

Furthermore, we would like to alter the structure of our model structure. This involves different
pooling operations instead of “last token” and also exploring different dimensionalities for our
embedding projections.

B Limitations

A big limitation of our approach is the necessity of a LLM to prompt and generate our datasets.
With the growth of LLMs in industry, many companies such as OpenAI provide APIs to directly
access their models. Hence, we believe that although the resources needed to generate our synthetic
dataset are certainly vital and require consideration, with the increasing accessability to LLMs and
abundance of APIs1 that allow for everyday users to access huge models, it is not inconceivable.

C Experimental Details

C.1 Hardware

All of our model training is done via Jax and trained on Cloud TPUs. The mesh shape is [1, 64, 1],
which means that we trained on 64 TPUs.

C.2 Hyperparameters

All our hyperparameters are chosen by using a 10% split on training data for validation. We use
τ = 1

15 in our experiments and also a batch size of 512. We use 0.0002 as the constant learning
rate, and Adafactor as the optimizer. Early stopping was performed by looking at batch avg cosine
similarity in the evaluation dataset. We use Tanh as the activation function after the pooling and
projection as shown in Figure 1. The pooling we do is “last token” as well, which makes sense
because we use a decoder model. When we combine the output of the embeddings of the tower, we
currently use concatenation and use a single projection to a head for the is-reply task. In each batch,
we sample with equal probability from the “is-reply” task as well as the “semantic similarity task”.

1https://openai.com/blog/openai-api

7

	Introduction
	Related Work
	Method
	Dual-Model Setup
	Structured Signals
	LLM Generation Supervision

	Evaluation
	YouTube Comment Similarity Task
	SubReddit Prediction Task

	Conclusion
	Future Work
	Limitations
	Experimental Details
	Hardware
	Hyperparameters

