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Abstract

We present Local LoRA, a memory-flexible fine-tuning approach that, in principle,
can fine-tune an arbitrarily large model on fixed hardware, including consumer-
grade GPUs. Our approach aims to decouple the size of the model and the memory
required to fine-tune it by dividing the model into chunks and sequentially fine-
tuning each chunk. Our results show that Local LoRA closes the gap between the
un-tuned model and end-to-end LoRA on math reasoning tasks.

1 Introduction

Given the growing prevalence of open-source LLMs (HuggingFace, 2023), end users are increasingly
interested in fine-tuning them using task-specific datasets. As the performance of LLMs improves as
the model size gets larger (Kaplan et al., 2020; Wei et al., 2022), there is a strong incentive for the
end user to download and fine-tune the largest models possible given available hardware.

The main bottleneck in this process is the memory consumed by fine-tuning the model, as end users
may be unable to afford the memory resources required for this task (Schwartz et al., 2020). This
has resulted in a large amount of work on reducing the memory footprint of the fine-tuning process,
allowing it to be performed on consumer hardware. For example, lowering the numerical precision
(Micikevicius et al., 2018; Kalamkar et al., 2019), check-pointing gradients (Chen et al., 2016), and
parameter-efficient fine-tuning (PEFT) methods (Houlsby et al., 2019) aim to reduce these overheads.

Low-Rank Adapter (LoRA, Hu et al., 2021) fine-tuning is a parameter-efficient method that learns only
a small set of trainable update parameters (called adapters) while fixing the full model parameters.
LoRA reduces GPU memory overheads by storing gradients and optimizer states for only the trainable
parameters instead of all the model parameters. However, LoRA is still bottle-necked by the size
of the model: the entire model must be evaluated during the forward pass and the gradients are
back-propagated through the pre-trained model weights to the adapters. Thus, the entire pre-trained
network must be stored in memory.

In this work, we aim to alleviate this bottleneck by fine-tuning a large model chunk-by-chunk, where
each chunk is sized to fit in the available GPU memory. Inspired by the local learning literature,
we introduce Local LoRA, which allows each chunk to be trained in isolation by using a local
loss function to provide the gradient signal. This allows the user to train arbitrarily large models,
although we expect the downstream performance of the model to fall as the chunk size decreases. Our
preliminary results show that Local LoRA outperforms the unfine-tuned base model on several math
problem-solving tasks, but does not perform as well as End-to-End (E2E) LoRA when fine-tuning a
model of the same size. However, when using Local LoRA to fine-tune a larger base model than is
possible using E2E LoRA, the gap closes on all tasks and Local LoRA exceeds E2E on two tasks.
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Figure 1: Schematic Overview of Local LoRA. In the outer loop, we loop over dataset chunks
D1, . . . ,DN . For each chunk, we then sequentially update the model chunksM1, . . . ,MM . Here,
the model chunks refer to LoRA adapters; in principle, they can be any sort of parameters to fine-tune.
While fine-tuning a model chunkMi, we skip all forward/backward pass computations for {Mj}j>i.

2 Background

In language model fine-tuning (FT), we update the pre-trained model θPT to θFT to max-
imize the language modeling objective given an FT dataset DFT, such that θFT :=

maxθ
∑

xn∈DFT

∑|xn|
t=1 log

(
pθ

(
xn
t | xn

1:t−1

))
, where xn is a sequence of tokens.

One way to yield θFT is vanilla fine-tuning of all layers. While simple and often the gold standard in
terms of performance, this approach is memory-intensive. It requires storing the model, gradients
of the target parameters, and, for the commonly used Adam(W) optimizer (Kingma & Ba, 2017;
Loshchilov & Hutter, 2019), two moments of the gradients. In total this is equivalent to storing four
copies of the model in memory, which can become prohibitively expensive for large models.

A lightweight alternative is parameter-efficient fine-tuning (Houlsby et al., 2019), where we only
fine-tune a small set of parameters. These methods are motivated by the observation that there often
exists a low-dimensional reparameterization of pre-trained models that is as effective for fine-tuning
as the entire parameter space (Aghajanyan et al., 2020). Because these methods only train a small set
of parameters, the memory requirements, including optimizer states, are dramatically reduced.

2.1 LoRA

Low-Rank Adapter (LoRA) (Hu et al., 2021) fine-tunes low-rank-parameterized update matrices
which are added to the fixed, pre-trained weights. For example, for a linear layer Y = XW
with X ∈ Rb×h,W ∈ Rh×o, LoRA’s modified forward pass yields Y = XW + sXL1L2, where
L1 ∈ Rh×r and L2 ∈ Rr×o are the learned parameters, with r ≪ b, and s is a scalar hyper-parameter
that can be tuned. To reduce the memory requirements of LoRA further, related work has explored
the quantization of the pre-trained network (Dettmers et al., 2023) or adapters (Xu et al., 2023).

3 Local LoRA

We present a method for fine-tuning a large model chunk-by-chunk, enabling fine-tuning of a model
larger than the available memory. While we focus on extending LoRA, it can also be combined with
other PEFT and memory efficiency techniques (e.g. quantization and gradient checkpointing).

Model Chunking Consider a Transformer model composed of L blocks (Vaswani et al., 2017).
We can view this as a composition of functions,M = d ◦ fL ◦ fL−1 ◦ . . . ◦ f1 ◦ e, where e is the
embedding layer, d is the de-embedding, and each fi is a Transformer block. Following ideas from
the local learning and parallel training literature (Hinton et al., 1995; Jaderberg et al., 2017; Mostafa
et al., 2018; Nøkland & Eidnes, 2019; Belilovsky et al., 2020; Laskin et al., 2020), Local LoRA
divides this model into chunks by grouping the functions like so,

M = (d ◦ fL ◦ . . . ◦ fl) ◦ (fm ◦ . . . ◦ fn) ◦ . . . ◦ (fo ◦ . . . ◦ f1 ◦ e),
M =MC ◦MC−1 ◦ . . . ◦M1,

where l,m,n, and o are the layers at which the model is split, C is the number of total chunks, and
eachMi a chunk. By dividing the model into sufficiently many chunks, we can fit the parameters in
the memory of consumer-grade GPUs with relatively small amounts of memory.
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Algorithm 1 Local LoRA

Input: model chunks {Mi}Ci=1, dataset chunks {Dj}Dj=1, n_epochs
for epoch ∈ {1, . . . , n_epochs} do

for Dj ∈ {Dj}Dj=1 do
forMi ∈ {Mi}Ci=1 do

if first dataset chunk then load_pretrained_weights(Mi)
if first model chunk then inputs← tokenize(Dj) else inputs← last_embeddings
combined_model← get_proxy(MC) ◦Mi

load_on_gpu(combined_model)
last_embeddings← train(combined_model,Dj)
unload_from_gpu(combined_model)

The idea is to fine-tune the model one chunk at a time, starting withM1, the chunk containing the
embedding layer, and finishing withMC , the chunk containing the de-embedding. The algorithm
loads each chunk onto the GPU in turn, performs several steps of fine-tuning, and then unloads it and
loads the subsequent chunk. Figure 1 gives an overview and Algorithm 1 a detailed description.

Dataset Chunking Naive local fine-tuning of model chunks is infeasible due to two problems.

First, for any chunkMi with i > 1, we require the embeddings generated while fine-tuningMi−1 to
use as the inputs toMi. These embeddings are large, potentially multiple TBs for an entire dataset,
and writing the full set of embeddings to the disk can take a substantial amount of time.

Second, as we compute the embeddings while fine-tuning the previous chunk, the embeddings
computed earlier will be “stale” as they have been computed using out-of-date parameters. Re-
computing the embeddings after fine-tuning the chunk would result in overhead.

We address these issues by dataset chunking: we iterate through all the model chunks on the first
dataset chunk, then switch to the second dataset chunk and iterate over all the model chunks again,
and so on. This means we only have to store a fraction of the full set of embeddings at one time; in
fact, we keep them in CPU memory, and the embeddings only become slightly stale.

Proxy Model To compute the gradient of the output of chunk Mi we use a local loss function,
implemented by a proxy model. The proxy model maps from the output of chunkMi to the output
of the full model, thus allowing the loss and gradient to be computed. The proxy should be small to
conserve memory for the main chunk and reasonably approximate the gradient of the remainder of
the model, ie, when training the ith chunk on input hi−1 which outputs embeddings hi =Mi(hi−1),
the proxy model Pi should ideally satisfy ∂Pi(hi)/∂hi ≈ ∂(d ◦MC ◦ . . . ◦Mi+1)(hi)/∂hi.

Many choices of the proxy model are possible, but in this work, we make the simple choice of using
the final hidden layer of the model and the de-embedding, Pi = d ◦ fL. This choice is motivated by
works on layer-dropping (Fan et al., 2020; Zhang & He, 2020; Kaddour et al., 2023b), which found
that Transformer blocks can be dropped during training without destabilizing the model. Our proxy
model is equivalent to dropping intermediate layers between the chunk and the output. Alternatively,
it has been shown that learned linear projections on top of early hidden states can output embeddings
very close to the final ones (Belrose et al., 2023).

4 Experiments

Fine-Tuning Task We fine-tune the Llama 2 7B and 13B models (Touvron et al., 2023) on MathIn-
struct (Yue et al., 2023), a state-of-the-art instruction-tuning dataset for general math problem-solving.
In the case of the 7B model, fine-tuning on this dataset was shown to outperform the then best
open-source model (WizardMath) by 25%. We evaluate open-ended reasoning on Math (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), NumGLUE (Mishra et al.,
2022), DeepMind (Davies et al., 2021), and Simuleq (Koncel-Kedziorski et al., 2016). We also
evaluate multiple-choice question answering on AQuA-RAT (Ling et al., 2017), SAT-Math (Zhong
et al., 2023), and MMLU-Mathematics (Hendrycks et al., 2020) datasets.

Hyper-Parameters We select a learning rate of 4× 10−5 using a small grid search (see Appendix).
We use a batch size of 64, a cosine learning rate scheduler with a warm-up ratio of 0.03, and train
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Table 1: Validation loss on MathInstruct and downstream evaluation on math problem solving
tasks. “Base”: unfine-tuned pre-trained model. Val. loss: lower better. Other tasks: higher better.

Model val. Open-Ended Multiple-Choice
loss Math GSM8K Svamp NumGLUE DM Simuleq Aqua Sat MMLU-M

Base 7B 2.9 3.4 3.2 14.5 16.7 7.5 3.3 6.7 8.6 5.5
E2E LoRA 7B 0.56 16.3 30.9 59.0 37.9 37.1 9.1 25.6 30.5 34.3

Local LoRA 7B 0.68 3.6 7.9 30.6 21.0 15.9 1.9 13.0 13.6 18.4
Local LoRA 13B - 11.1 31.7 62.2 34.9 26.2 5.6 24.4 22.3 27.7
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Figure 2: Impact of the number of chunks on
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Figure 3: Training loss of each chunk of a four-
chunk model. Each chunk successfully learns
using the proxy model.

for one epoch. We apply LoRA to all linear layers, except the de-embedding layer, and set the rank
r = 8 We quantize the pre-trained model weights to 8 bits, and use gradient checkpointing.

4.1 Results

Table 1 compares the performance of the pre-trained 7B model, and the 7B model fine-tuned with
E2E LoRA and Local LoRA (split into two chunks of 16 layers each). Despite the simple proxy
model, we find that Local LoRA improves performance over the pre-trained base model, although it
falls short of E2E LoRA. We also report the performance of the 13B model fine-tuned with Local
LoRA (split into two chunks of 20 layers each), finding that on some tasks Local LoRA can match
the performance of E2E LoRA. In our setup, the 13B model was too large to fine-tune E2E on a
consumer Nvidia RTX 3080 GPU, however this model could be fine-tuned using Local LoRA. This
demonstrates that, by using Local LoRA, we can fine-tune a larger base model and potentially achieve
better downstream performance.

Figure 2 studies the evaluation loss of the model as we split the model into an increasing number
of chunks. The performance decreases as the model is split further, likely because the small proxy
model achieves a poorer approximation of the gradient as it approximates more and more of the
model. However, dividing the model in more chunks allows fine-tuning of a larger base model, the
improved capability of which may overcome this decrease. Figure 3 shows the training loss of each
chunk over time, revealing that each chunk successfully learns using the proxy model.

We also record the training time for each method: On a single A100 40GB GPU, E2E LoRA took
22.0h, while Local LoRA with two chunks took 27.7h, three chunks 29.8h, and four chunks 32.1h.

5 Related Work

Parameter-Efficient Fine-Tuning (PEFT) Vanilla fine-tuning of entire LLMs requires the same
amount of memory as pre-training, rendering it infeasible for many practitioners (Kaddour et al.,
2023a). PEFT refers to a class of methods that adapt LLMs by updating only a small subset of model
parameters, thereby being more memory-efficient (Houlsby et al., 2019; Ding et al., 2022; Lialin
et al., 2023). Popular approaches include prompt-tuning Li & Liang (2021); Lester et al. (2021),
adapters (Houlsby et al., 2019; Pfeiffer et al., 2020; Sung et al., 2022), low-rank-parameterized update
matrices (Hu et al., 2021; Dettmers et al., 2023), and scaling activations by learned vectors (Liu et al.,
2022). Local LoRA is orthogonal to (and compatible with) these approaches since it does not restrict
which target parameters to fine-tune (be it full layers, adapters, low-rank update matrices, etc.). This
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work focuses on extending LoRA since it is arguably the most popular PEFT method. For future
work, it would be interesting its framework to other PEFT methods and compare their results.

Model Parallelism Local LoRA is closely related to local learning work on model-parallel distributed
training (Jaderberg et al., 2017; Mostafa et al., 2018; Nøkland & Eidnes, 2019; Belilovsky et al.,
2020; Laskin et al., 2020). These approaches use a loss function local to each accelerator to provide
a gradient signal for the model chunk stored on that accelerator in a similar fashion to how LoFT
uses a proxy model to generate a gradient signal for the currently loaded chunk. The motivation
is to scale the training across a large number of accelerators while avoiding the communication of
gradients between them, which would otherwise slow down the training. In contrast, LoFT aims to
make fine-tuning of large models possible with only a small amount of resources by estimating the
gradient signal from the unloaded portion of the model.

Local Learning Local objectives appear in the wake-sleep algorithm (Hinton et al., 1995) and more
recent algorithms that attempt to implement biologically plausible learning (Löwe et al., 2019; Hinton,
2022). They were also used in Inception networks (Szegedy et al., 2015) to solve the vanishing
gradient problem.

6 Conclusion and Future Work

The primary limitation of our initial work is the simple choice of proxy network. We plan to explore
creating improved proxy networks by performing supervised training of the proxy to match the
gradients of the full network, taking inspiration from Jacobian matching in the knowledge distillation
literature (Hinton et al., 2015; Srinivas & Fleuret, 2018).
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