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Abstract

Recent advances on deep learning models come at the price of formidable train-
ing cost. The increasing model size is one of the root causes, but another less-
emphasized fact is that data scale is actually increasing at a similar speed as model
scale, and the training cost is proportional to both of them. Compared to the rapidly
evolving model architecture, how to efficiently use the training data (especially
for the expensive foundation model pretraining) is both less explored and difficult
to realize due to the lack of a convenient framework that focus on data efficiency
capabilities. To this end, we present DeepSpeed Data Efficiency, a framework that
makes better use of data, increases training efficiency, and improves model quality.
Specifically, we propose and combine two data efficiency techniques: efficient data
sampling via a general curriculum learning library, and efficient data routing via
a novel random layerwise token dropping technique. For GPT-3 1.3B language
model pretraining, our work achieves 12.5x less data/time/cost ($3.7K if rent on
Azure), while still maintaining 95% of model quality compared to baseline with full
data and cost ($46.3K). For GPT-3 1.3B and BERT-large pretraining, our work can
also achieve the same model quality with up to 2x less data/time/cost, or achieve
better model quality under same data/time/cost. DeepSpeed Data Efficiency is
easy to use and tune, enabling us to easily apply it and verify its benefit on addi-
tional tasks including GPT-3 MoE model pretraining and small-scale GPT-2/ViT
finetuning.
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Figure 1: Model scale (number of parameters) and data
scale (number of consumed training tokens ) of representa-
tive language models in the last 5 years [14, 46, 7, 45, 9].

Recently, large-scale deep learning mod-
els are empowering us to achieve more in
many ways, such as code generation [17]
and text-to-image generation [40, 41].
To keep improving the service qual-
ity, deep learning model architecture
evolves rapidly, and the model size is
also growing at a tremendous speed.
The increasing model size leads to un-
precedented training cost (especially for
foundation model pretraining), which re-
cently grows to 2 months on thousands
of GPUs/TPUs [47, 9]. On the other hand, a less-emphasized perspective is that data scale is actually
increasing at a similar speed as model scale, and the training cost is proportional to both of
them. As plotted in Fig. 1, for several representative language models in the last 5 years both the
model and data scales increase at a similar speed. Recent works including Chinchilla [20] and PaLM
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Table 1: Comparing DeepSpeed Data Efficiency with SOTAs.
Efficient Efficient Verified Key

data sampling data routing workloads achievements

Sequence length 1 specific N/A GPT-2/GPT-3 1.3x data/cost saving
warmup [29] CL metric pretraining with 100% model quality

TokenBypass N/A TokenBypass BERT 1.33x data/cost saving
[21] pretraining with 100% model quality

Proposed XYZ general CL random-LTD GPT-3/BERT/MoE 12.5x data/cost saving
Data Efficiency library support pretraining with 95% model quality

GPT-2/ViT 2x data/cost saving
finetuning with 100% model quality

2 [18] emphasize the need of increasing data scale at an even faster speed. This demonstrates the
importance of improving data efficiency: achieve same model quality with less data and reduced
training cost, or achieve better model quality with the same amount of data and similar training cost.

There are two popular research directions among existing data efficiency techniques: Data sampling
techniques aim to improve the convergence speed by sampling the most suitable next data batch from
the whole data pool; Data routing techniques aim to reduce the computation by routing each data to
only a subset of the model components. These techniques improve data and training efficiency, but
existing solutions have several limitations:

• Techniques like curriculum learning improves data efficiency by indexing and sampling training
data based on certain difficulty metric [3], and it is recently proved effective on large-scale
pretraining tasks [29]. However, implementing different CL strategies for different user tasks can
require a lot of code-refactoring, which is time-consuming and error-prone. In addition, existing
implementations have less consideration on scalability, which makes it difficult to analyze and
index large-scale training data based on different difficulty metrics.

• Existing data routing techniques such as token drop/bypass/pruning were mostly designed for
inference and inapplicable to training. TokenBypass [21], to our knowledge the only data routing
technique for foundation model pretraining, skips the compute of part of the input tokens at some
middle layers during BERT pretraining, reducing pretraining cost while maintaining model quality.
However, it requires several special implementations that may only work for the tested BERT
pretraining case, such as the importance score-based token dropping decisions.

• Although promising data efficiency solutions have been proposed independently, combining multi-
ple methods together for the best outcome is still a laborious process, requiring changes in multiple
places in the training pipeline: data loader, data sampler, model architecture, etc. Another challenge
is that existing techniques add additional hyperparameters but with no clear tuning strategy.

To address these above challenges, we present DeepSpeed Data Efficiency, a framework that makes
better use of data, increases training efficiency, and improves model quality. Our contribution are:

• Efficient data sampling via general curriculum learning library. We present a general curricu-
lum learning (CL) library that is both scalable and customizable: it includes a map-reduce based
data analyzer that enables scalable analysis and indexing of massive data based on any possible
CL metric; it includes a general CL-based data sampler and loader design for users to apply any
customized CL strategies. Using this library, we are able to thoroughly explore different CL
strategies for GPT-3 1.3B and BERT-large pretraining, and identify the best solution that provides
better data and training efficiency than existing CL solution. This library (and the whole DeepSpeed
Data Efficiency framework) has been open sourced in a deep learning acceleration library (name
hidden for anonymity) that is fully compatible with PyTorch.

• Efficient data routing via random layerwise token dropping. We present a novel data routing
technique called random layerwise token dropping (random-LTD) to skip the computation of a
subset of the input tokens at all middle layers. Random-LTD employs a simple yet effective routing
strategy and requires minimal model architecture change. It is very flexible to apply random-LTD
to various tasks (GPT-3/GPT-3 MoE/BERT pretraining and GPT/ViT finetuning) which the SOTA
technique (TokenBypass) does not explore or provides less improvement.
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• An easy to use/tune framework that maximizes data/training efficiency. DeepSpeed Data
Efficiency seamlessly composes the two proposed techniques, and only requires minimal changes
on user side. To our knowledge, we are the first to demonstrate that composing data sampling
and routing techniques can lead to even better data/training efficiency, especially for foundation
model pretraining: For GPT-3 1.3B pretraining, Fig. 2 shows that our approach provides better
model quality at all cost budgets, advancing the whole cost-quality Pareto frontier. In particular,
we achieve up to 12.5x data/time/cost saving while still maintaining 95% of the model quality
(zero-shot eval accuracy) compared to the baseline with full data, while baseline can only maintain
91% of the model quality, a 1.8x higher quality degradation. Based on measured training time,
12.5x would be a cost reduction from $46.3K to $3.7K if renting similar hardware on Azure [2],
greatly democratizing research and usage of foundation models for AI community. For GPT-3
1.3B and BERT-large pretraining, we can also achieve up to 2x data and 2x time saving together
with better or similar model quality as compared to the baseline training with full data, greatly
surpassing state-of-the-art data efficiency solutions as summarized in Tab. 1. Both techniques
under our framework are easy to use and tune, and we include a low-cost tuning strategy and a
summarized usage guidelines.

2 Design
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Figure 2: GPT-3 1.3B pretraining: relative model quality (base-
line with full data as 100% quality) under different data consump-
tion (1% to 100%) and training cost (when renting on Azure).

At high-level, the proposed Deep-
Speed Data Efficiency framework
has two components as shown
in Fig. 5: First we have efficient
data sampling, where instead of
the baseline’s random sampling,
we aim to sample the most suit-
able next data batch from the
whole data pool by a general
curriculum learning (CL) library.
Second we have efficient data
routing, where instead of passing
all input data to all model compo-
nents, we aim to efficiently route
each data through different components of model by leveraging the proposed random layerwise token
dropping (random-LTD) technique. This section presents the design of the two techniques, how we
compose them, together with a low-cost tuning strategy and a summarized usage guidelines.

Efficient data sampling via curriculum learning. To solve the limitations of existing CL solutions
as described in previous sections, we design and implement a general curriculum learning library
emphasizing the scalability and customizability. It consists of three components as shown in top
part of Fig. 5. First we use a data analyzer to perform the offline CPU-only data analysis which
indexes the whole data pool based on any difficulty metric, which could be the sequence length, the
vocabulary rarity, or anything defined by user. This data analyzer employs a Map-Reduce scheme:
During the Map stage, user provides a function that computes the desired difficulty metric, the raw
training dataset, and other configurations such as number of CPU nodes and number of threads
per node. Then the data analyzer will automatically splits the dataset based on number of workers,
compute the difficulty values in a batched fashion, and write the results to two indexes: one index
maps each data sample to its difficulty value, and another index maps each distinct difficulty value to
the corresponding samples. During the Reduce stage, the data analyzer will merge the index files
produced by all workers. This Map-Reduce scheme is necessary since the training data could be
huge thus has to be distributed. For instance, we have 173 million data samples (each with sequence
length 2048) for GPT-3 pretraining and 2.5 billion data samples (each with sequence length ⩽ 512)
for BERT pretraining. To reduce the memory overhead when analyzing the huge dataset, we write
the index files as numpy memory-mapped files. Using this data analyzer we are able to efficiently
analyze GPT-3 and BERT pretraining data based on various difficulty metrics. Using 40 CPU threads
on a single node with AMD EPYC 7V12 64-Core Processor, we can finish the analysis on one metric
within 3/80 hours for GPT-3/BERT data, respectively. For more details, we refer to Sec. A.2
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1 if meth == "baseline":
2 hs = Layer(hs)
3 if meth == "random-LTD":
4 k_hs , d_hs = gather(hs)
5 k_hs = Layer(k_hs)
6 hs = combine(k_hs , d_hs)

Figure 3: random-LTD requires a few lines of code.
hs, khs, and dhs means the full input, kept input, and
dropped input. “gather”, “Layer”, “combine” means
the functions for random selection, transformer layer,
and order-preserved token combination.

Figure 4: Transformer layers for baseline and random-
LTD. The dash-line box is repeated by l − 2 times.

Efficient data routing via random-LTD. Existing token dropping methods for inference and training
either permanently drop tokens from the compute graph at intermediate layers, or at least make some
tokens fully skip a consecutive series of middle layers (Sec. A.1). However, several works [50, 31, 51]
have shown that MHA focuses on different tokens at different layer depths and the attention map aligns
with the dependency relation most strongly in the middle of transformer architectures. Therefore,
fully skipping middle layers like TokenBypass [21] may hinder the learnability/generalization of the
architecture during pretraining/inference. In order to overcome this problem, we propose a layerwise
token dropping (LTD) mechanism. Instead of fully bypassing same tokens over all middle layers, each
transformer layer independently drops/retains its own set of tokens. Various importance score-based
metrics are used to determine the token dropping criterion. Most of them can be categorized in
attention score-based or loss/frequency-based metrics. However, both of them introduce challenges
that make LTD less practical: Instead of importance score, we propose to use purely random token
dropping assignment and prove its effectiveness in all our experiments. For each transformer layer,
we randomly (uniformly) select a small batch of tokens to proceed and drop the rest.

Combining layerwise token dropping with random token dropping, we have our final random and
layerwise token dropping method (random-LTD), which can efficiently apply token dropping for each
individual layer and can capture the attention dependency of each token with other others in middle
layers with high probability. As a result, our experiments on BERT pretraining confirm that random-
LTD does not require and won’t benefit from special token treatment used by the TokenBypass work,
further reducing the implementation complexity. Fig. 4 presents the comparison between standard
baseline training and random-LTD. The pseudo-code is given in Fig. 3. For each layer, random-LTD
randomly selects (function “gather”) a subset of the tokens and feeds (function “Layer”) them into
the transformer layer. Afterward, we combine (function “combine”) the output of transformer layer
with the dropped tokens to recover the full sequence length in a order-preserved manner. Thus, the
next layer still receives the full sequence and can repeat this process. To apply random-LTD to
an existing training pipeline, user just needs to provide the module class name that they want to
apply random-LTD (e.g., a TransformerLayer class). Then DeepSpeed Data Efficiency will wrap
the module with a new module that includes token dropping capability, and drop some of the input
tokens for this module during training. More details can be found in Sec. A.3

3 Evaluations and Conclusion
Evaluations. We evaluate DeepSpeed Data Efficiency in Sec. B by GPT-3/GPT-3 MoE/BERT
pretraining and GPT-2/ViT finetuning. Sec. B.8 includes studies of the TokenBypass method on
GPT finetuning and pretraining, further demonstrating the advantages of the proposed random-LTD
method. We all achieve better results.

Conclusion. Unlike model scale which could reduce in the future with novel architecture, the amount
of available training data will increase continuously and irreversibly. Language model pretraining is
one of the first to reach a data scale that even training one full epoch is difficult, but sooner or later
all machine learning tasks will face the same data efficiency challenge. In this work we propose the
DeepSpeed Data Efficiency framework, which demonstrate the power of composing 2 novel data
efficiency techniques together. This enables us to achieve an up 12.5x data/time/cost saving (from
$46.3K to $3.7K on Azure) while maintaining 95% of model quality for GPT-3 pretraining, an up
to 2x saving for GPT-3 and BERT pretraining while maintaining 100% model quality, or to achieve
even better model quality under similar data and cost. DeepSpeed Data Efficiency is easy to use and
tune, which enables us to apply it and verify the benefit on additional GPT-3 MoE pretraining and
GPT-2/ViT finetuning tasks.
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[6] Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Libovickỳ, and Tomáš Musil. Results of the
wmt17 neural mt training task. In Proceedings of the second conference on machine translation,
pages 525–533, 2017.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[8] Daniel Campos. Curriculum learning for language modeling. arXiv preprint arXiv:2108.02170,
2021.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[11] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[12] Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. Recognizing textual
entailment: Models and applications. Synthesis Lectures on Human Language Technologies,
6(4):1–220, 2013.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

5

https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/


[16] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[17] GitHub. Github copilot. https://github.com/features/copilot/, 2021.

[18] Google. Palm 2 technical report. https://ai.google/static/documents/
palm2techreport.pdf, 2023.

[19] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish
Sabharwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-
vector elimination. In International Conference on Machine Learning, pages 3690–3699.
PMLR, 2020.

[20] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[21] Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and
Denny Zhou. Token dropping for efficient BERT pretraining. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
3774–3784, Dublin, Ireland, May 2022. Association for Computational Linguistics.

[22] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

[23] Gyuwan Kim and Kyunghyun Cho. Length-adaptive transformer: Train once with length drop,
use anytime with search. arXiv preprint arXiv:2010.07003, 2020.

[24] Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun,
and Kurt Keutzer. Learned token pruning for transformers. arXiv preprint arXiv:2107.00910,
2021.
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A Appendix

A.1 Background and Related Works

Data sampling. For deep learning, the most common data sampling method for minibatch stochastic
gradient descent is uniform sampling, where at each step a batch of data is drawn uniformly at
random from the whole training data. However, it’s potentially beneficial to focus on different kinds
of data at different training stages. One example is the curriculum learning technique [3] which
aims to improve training convergence speed by presenting relatively easier or simpler examples
earlier during training. Building a curriculum learning solution usually requires two components:
the difficulty metric (i.e., how to quantify the difficulty of each data sample) and the pacing function
(i.e., how to decide the difficulty range when sampling next training data batch). In the NLP area,
curriculum learning has been applied on small-scale one-stage tasks and downstream finetuning tasks,
such as neural machine translation (NMT) [25, 6, 62, 36, 63] and natural language understanding
(NLU) [42, 43, 48, 55]. There are also a few works that explore curriculum learning for language
model pretraining [37, 61, 8, 29]. However, one common limitation among existing works is that
there does not exist a scalable and customizable curriculum learning library, making it difficult to
analyze large-scale data and explore custom difficulty metrics/pacing functions. One evidence is that
most of the curriculum learning works for language model pretraining only focus on the sequence
length metric due to the difficulty of exploring other metrics on the huge pretraining dataset.
Data routing. In common deep learning training, the model is considered as a whole and all
sampled data will be routed to all model components. However, it’s potentially beneficial to route
each data sample to only a subset of model components, improving the training efficiency. One
direction of efficient data routing is to add data bypassing/skipping capability to existing model
architectures such as Transformer. Transformer [49] architecture is a stack of transformer lay-
ers, each of which has two main ingredients, i.e., the multi-head attention (MHA) and the feed-
forward connection network (FFC). Suppose the transformer has l layers denoted as L1, . . . , Ll.
Let Xi ∈ Rs×d be the output tensor of i−th transformer layer, and x0 be the input (after em-
bedding) of the transformer. Here s is the sequence length and d is the hidden dimension.

Figure 5: Design of the DeepSpeed Data Efficiency
framework.

Several token dropping/bypassing/pruning tech-
niques [24, 19, 23, 38, 53] were proposed for
BERT inference to reduce the computational
overhead, but they are not practical for train-
ing. In these works, if a token i (Xj,i) is de-
cided to be dropped at layer j (Lj), the com-
pute cost of this token through all remaining
layers (Lk where k > j) is eliminated. As
such, the sequence length si of the i-th layer’s
input Xi−1 will be a non-increasing array, i.e.,
s0 ≥ s1 ... ≥ sl. However, such a configuration
has been shown instability for adaptive token-
dropping inference [23]. Therefore, [23] utilize
the sandwich rule and distillation from [58] to
stabilize training and boost accuracy. But these
two methods also significantly increase the train-
ing cost. Thus, such techniques cannot be ap-
plied to speed up the pretraining procedure.
Recently, TokenBypass [21] enabled token drop-
ping for BERT pretraining. It uses several impor-
tance scores/metrics to determine the dropped
tokens (token frequency and cumulative loss). It
proposed two main mechanisms to overcome the
training instability issue: (1) the sandwich token
dropping rule, where the first (L1 to Li) and
the last few BERT layers (Ll−j to Ll) capture
all tokens (no token dropping) and only bypass
s′ ≤ s tokens from Li to Ll−j middle layers. Particularly, the authors (only) test on the encoder
transformer (12-layer BERTbase and 24-layer BERTlarge), and let i = l/2− 1, j = 1, s′ = s/2. (2)
special token treatment, where special tokens (e.g., [MASK], [CLS], [SEP]) are never dropped.
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Compared to TokenBypass, our random-LTD (1) does not require importance score metric, special
token treatment, or the sandwich token dropping rule, which dramatically reduces the manual design
effort; (2) has been broadly tested on GPT-3/BERT pretraining tasks and GPT-2/ViT finetuning tasks,
providing better data/training efficiency than TokenBypass.

A.2 Additional details for curriculum learning

Next, during training, the curriculum scheduler will determine the difficulty threshold for the current
step based on a pacing function such as linear, rooted, or any strategy provided by user. Then the
data sampler will sample the data with desired difficulty from the indexed data pool. To apply the
proposed CL solution to a existing training pipeline, user just need to call an API and provide the raw
training data, the difficulty metric index (computed in the offline analysis), and the pacing function
configurations. Our framework will then provide a curriculum learing-based data loader that users
can simply iterate at each step. Using our CL library for GPT-3/BERT pretraining, we are able to
easily analyze and index the huge training data based on 7 difficulty metrics:
• Truncation-based sequence length (seqtru), for GPT and BERT. This metric starts with shorter

data samples and gradually increases the sequence length during training. To change the sequence
length, this metric will truncate the sequences (from the end of sequence) while keeping the number
of samples unchanged, thus the number of tokens will decrease. This metric is recently applied to
GPT-2 and GPT-3 models and demonstrate decent training efficiency gains [29].

• Reshape-based sequence length (seqres), for GPT. This metric is similar to seqtru metric, but
instead of truncating we break the original sequences into segments based on the desired new
sequence length. Thus we are essentially “reshaping” the input tensor into more samples and shorter
lengths. This metric is proposed in MosaicML Composer as a variant of the seqtru metric [33],
but their documentation does not describe which way provides better model quality. We don’t
apply the seqres to BERT case because unlike GPT data where all tokens are valid, BERT input
sequences only include two natural sentences thus each sequence has different “effective sequence
length” and then padded to 512. If we simply “reshape” BERT sequences, some of the new short
sequences may only contain padding tokens.

• Reorder-based sequence length (seqreo), for BERT. This metric is similar to seqtru metric, but
instead of truncating we adjust the sequence length by reordering the training data based on the
“effective sequence length” in BERT training data sequences.

• Vocabulary rarity (voc), for GPT and BERT. This metric was proposed in a CL work for neural
machine translation [36]. It computes the product of the unigram probabilities for each sequence by
−
∑N

k=1 log(p(wk)) where p(wk) is the vocabulary frequency (inside whole training data) of the
kth word in the sequence. Lower value indicates that the sequence has more common vocabularies.

• seqtru_voc, for GPT and BERT. seqres_voc, for GPT. seqreo_voc, for BERT. These 3 metrics
are combinations of above metrics. For seqtru_voc and seqres_voc, we first reorder the training
data based on voc metric, then apply seqtru or seqres as a kind of post-processing. For seqreo_voc,
we treat it as a single new metric and index the data based on it.

Besides the difficulty metrics, another set of CL hyperparameters is the pacing function: the start
and end difficulty (ds and de), total number of CL steps (Tc), and the kind of pacing function (linear,
sqrt, or users can plug in any customized function to the proposed framework). For seqtru and seqres
metrics, we set the ds and de as value-based (e.g., ds = 80, de = 2048) since the possible values
of these two metrics are continuous. For other metrics, we set ds and de as percentile-based (e.g.,
ds = 1%, de = 100%) since the possible values of these metrics are discrete. For seqtru and seqres
we use a linear pacing function (dt = ds+(de−ds)×min( t

Tc
, 1)) following the preivous work [29],

while for seqreo and voc we use a sqrt pacing function (dt = ds + (de − ds) ×min(( t
Tc
)0.5, 1)).

This is because seqreo and voc will only sample from a subset of data pool before reaching the end
difficulty, and previous work finds that in such case it’s beneficial to use a sqrt function to avoid
sampling too much easy samples at the beginning [36]. Sec. A.4 includes low-cost tuning strategy
and usage guidelines for our CL solutions.

A.3 Additional details for efficient data routing via random-LTD

Layers without Token Dropping. While TokenBypass needs to keep half of the layers in full
sequence length training, random-LTD has no such limitation. Thanks to its attention-capture feature,
we can apply random-LTD to most of the transformer layers except the first and last layers, enabling
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further training efficiency gain. Our experiments show that keeping the first and last layers in full
sequence length training usually leads to better performance since (1) the first layer directly connects
to the embedding, and it can help refine the raw feature; (2) directly connected to the final prediction,
the last layer provides a feature realignment for all tokens which could improve the model quality.

Monotonic Sequence Length Growth. In order to reduce the gradient variance introduced by
random-LTD, we gradually increase the kept sequence length throughout training with a linear
schedule (referred to as MSLG). Thus random-LTD has two hyperparameters similar to CL: starting
from a sequence length rs which denotes the size of kept token set Ki for each middle layer after
dropping, random-LTD will gradually drop less tokens (following a linear function) and eventually
stop dropping after Tr steps. Our experiments show that MSLG provides better model quality than
constant drop schedule under similar data/compute savings. Sec. A.4 includes low-cost tuning strategy
and usage guidelines for random-LTD.

A.4 Composing CL and random-LTD, tuning strategy, usage guidelines
Table 2: CL and random-LTD usage guidelines.

Case Guidelines

GPT-3 CL: ds = 80/1% (seqtru/voc), Tc = 40% of baseline’s total steps
pretraining random-LTD: rs = 128, Tr = 70% of baseline’s total steps

BERT CL: ds = 128/5% (seqtru/voc), Tc = 50% of baseline’s total steps
pretraining random-LTD: rs = 128, Tr = 100% of baseline’s total steps

GPT-2 CL: ds = 32 (seqres), Tc = 70% of baseline’s total steps
finetuning random-LTD: rs = 128, Tr = 30% of baseline’s total steps

ViT finetuning random-LTD: rs = 32/66, Tr = 80% of baseline’s total steps

CL and random-LTD are complemen-
tary: CL helps to sample the next data
batch, and random-LTD helps to decide
how to route each sampled data inside
the model. DeepSpeed Data Efficiency
hides several complexities when compos-
ing the two techniques so that users can
easily enjoy the compound benefit. As
one example, some CL metrics would
affect the actual sample sequence length,
thus inside our framework we make sure the random-LTD’s token dropping mechanism is aware
of this, and also adjust the calculation of number of actual consumed tokens which are affected by
both techniques. This token consumption calculation is also critical to the learning rate schedule:
previous CL work [29] finds that if a CL technique reduces the number of tokens on certain steps, it
is desirable to use a learning rate decay schedule based on consumed tokens instead of consumed
steps. This is because if baseline and CL use the same step-wise LR decay, it leads to much faster
token-wise LR decay for CL which hurts model quality. In this work, we apply the token-based LR
decay schedule for both CL and random-LTD. To our knowledge this is the first work to apply such
LR schedule to token dropping/data routing techniques, and our experiments show that it does help
improving random-LTD’s performance. Our CL library’s general data analyzer/sampler/loader and
random-LTD’s module wrapping design makes it easy to apply our framework to different model
training tasks. And the overall composibility of DeepSpeed Data Efficiency enables us to leverage
both data efficiency techniques and achieve even better data and training efficiency (Sec. B).
Tuning Strategy and Usage Guidelines. Both CL and random-LTD only have two parameters that
need user tuning: the starting CL difficulty/random-LTD seqlen (ds/rs), and the total CL/random-LTD
steps (Tc/Tr). 2 And for both CL and random-LTD we find that it’s possible to apply a low-cost
tuning strategy proposed in previous CL work [29], where we perform binary search on a very small
portion (e.g., 2%) of training to find the smallest ds/rs and largest Tc/Tr that don’t trigger substantial
validation loss fluctuations (“whether the perplexity value becomes larger than 1.3x of the previous
best perplexity”). For GPT-2 finetuning, given the low training cost we also perform full training of
16 different CL/random-LTD settings which confirm that (1) the low-cost tuning strategy is able to
find very good hyperparameters; (2) both CL and random-LTD are not sensitive to hyperparameter
choices. Tab. 2 summarizes the usage guidelines based on our tuning results, which we believe can be
directly applied to any similar models (at least as a very good starting point for any further tuning).

B Evaluation

We evaluate DeepSpeed Data Efficiency by GPT-3/GPT-3 MoE/BERT pretraining and GPT-2/ViT
finetuning. Appendix B.8 includes studies of the TokenBypass method on GPT finetuning and
pretraining, further demonstrating the advantages of the proposed random-LTD method.

2For CL, the ending difficulty de is always the highest possible difficulty
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Table 3: GPT-3 1.3B 0-shot evaluation results. The first column is the results of the original OpenAI
GPT-3 1.3B model [7]. All the other columns are in the same order as the rows in main paper Tab. 7.
OpenAI results are not directly comparable to ours because the training data are different.

(8) (15)
(5) (6) CL (10) (13) CL

(2) (3) (4) CL CL seqtru CL CL seqtru
(0) (1) CL CL CL seqtru seqres (7) +voc (9) seqtru (11) (12) seqtru (14) +voc

Case OpenAI baseline seqtru seqres voc +voc +voc rLTD +rLTD baseline +voc rLTD baseline +voc rLTD +rLTD
Train tokens 300B 300B 300B 300B 300B 300B 300B 300B 300B 200B 200B 200B 150B 150B 150B 150B

Avg. 47.9 42.5 43.4 43.0 42.3 43.6 43.0 43.7 43.8 41.9 42.7 43.1 42.0 42.6 42.7 42.8

(0) HellaSwag 54.7 51.9 52.3 52.4 51.8 52.7 52.2 54.1 54.3 50.9 52.0 52.9 49.9 50.6 51.6 52.1
(1) LAMBADA 63.6 62.0 61.2 61.7 60.6 61.9 61.1 62.9 62.3 59.8 61.4 62.3 59.5 59.6 61.3 61.7
(2) TriviaQA 19.7 7.0 7.91 7.63 6.66 7.65 6.07 7.9 7.55 6.15 6.46 7.54 5.9 7.2 6.37 7.42
(3) WebQs 4.63 1.38 1.62 2.07 2.56 1.38 2.02 3.15 2.17 2.46 1.67 2.31 1.03 2.26 2.66 3.2
(4) Winogrande 58.7 55.6 59.1 58.2 57.1 58.9 56.9 58.5 58.4 54.9 58.2 59.1 56.6 57.1 57.1 57.5
(5) PIQA 75.1 71.4 71.0 72.1 70.8 71.4 72.1 71.2 71.5 70.7 71.4 72.3 71.4 71.9 70.5 72.0
(6) ARC Challenge 35.5 29.4 29.6 29.3 28.8 30.1 28.9 28.7 30.1 28.5 28.2 29.7 27.2 27.0 28.7 27.6
(7) ARC Easy 53.8 53.7 54.3 55.0 54.0 55.2 55.0 54.4 56.4 53.5 53.2 52.7 52.7 53.7 54.1 54.0
(8) ANLI R1 33.4 31.6 33.3 30.7 33.4 33.5 31.6 33.0 31.6 31.6 29.8 31.9 33.0 32.9 32.1 33.7
(9) ANLI R2 33.3 33.7 33.8 32.8 33.0 33.3 32.9 32.5 31.5 30.4 33.2 34.8 31.8 33.9 34.6 33.6
(10) ANLI R3 33.4 33.1 35.2 33.5 33.2 33.3 33.9 33.4 35.2 33.7 35.8 35.3 32.4 34.8 34.9 35.0
(11) OpenBookQA 46.8 32.4 31.8 32.0 31.2 34.0 34.6 34.0 34.0 31.0 33.0 33.8 30.4 32.4 33.6 32.4
(12) RACE-h 40.9 35.2 34.2 35.7 35.3 35.3 34.3 35.4 36.4 34.6 33.9 35.0 34.3 34.2 34.6 34.9
(13) BoolQ 62.4 62.4 63.1 62.5 60.2 62.7 63.6 61.9 63.6 62.0 62.8 61.0 61.2 59.6 61.5 61.9
(14) Copa 77.0 72.0 70.0 75.0 72.0 73.0 77.0 76.0 75.0 71.0 74.0 73.0 72.0 75.0 71.0 71.0
(15) RTE 56.0 54.2 58.1 54.9 52.0 56.0 54.2 55.0 54.5 55.2 54.9 54.2 59.2 55.6 55.2 54.5
(16) WSC 61.5 36.5 42.3 36.5 34.6 43.3 36.5 43.3 40.4 36.5 37.5 36.5 36.5 36.5 37.5 36.5
(17) MultiRC 13.6 1.05 2.1 1.47 3.15 0.944 0.944 0.839 2.41 0.839 0.839 0.839 0.839 1.68 1.05 1.15
(18) ReCoRD 85.2 83.3 83.7 83.5 83.2 83.8 83.3 84.7 84.3 82.8 82.4 84.0 82.5 82.6 83.6 83.6

Table 4: GPT-3 1.3B 10-shot evaluation results. The first column is the results of the original OpenAI
GPT-3 1.3B model [7]. All the other columns are in the same order as the rows in main paper Tab. 7.
OpenAI results are not directly comparable to ours because the training data are different. Note that
OpenAI used different number of shots for each task, while we use the same 10 shots for all tasks.

(8) (15)
(5) (6) CL (10) (13) CL

(2) (3) (4) CL CL seqtru CL CL seqtru
(0) (1) CL CL CL seqtru seqres (7) +voc (9) seqtru (11) (12) seqtru (14) +voc

Case OpenAI baseline seqtru seqres voc +voc +voc rLTD +rLTD baseline +voc rLTD baseline +voc rLTD +rLTD
Train tokens 300B 300B 300B 300B 300B 300B 300B 300B 300B 200B 200B 200B 150B 150B 150B 150B

Avg. 49.0 44.0 44.8 44.5 44.5 44.9 44.4 44.9 45.1 44.0 44.5 44.8 42.7 43.7 43.5 44.0

(0) HellaSwag 54.9 52.4 52.7 52.6 52.0 52.7 52.8 54.7 55.1 51.2 52.2 53.4 50.5 50.9 52.2 53.0
(1) LAMBADA 57.0 57.6 56.0 57.0 55.7 57.0 57.6 59.5 59.6 55.1 56.4 58.4 54.2 55.7 57.5 58.9
(2) TriviaQA 32.1 13.5 14.0 13.9 13.2 14.7 13.0 13.5 13.7 12.6 12.9 12.4 11.5 12.0 11.5 12.3
(3) WebQs 19.6 11.8 11.9 12.0 12.9 12.6 12.5 12.5 13.8 12.1 11.5 12.0 10.0 11.6 10.2 12.1
(4) Winogrande 59.1 57.4 56.7 58.9 58.2 60.0 58.2 58.7 58.1 55.9 59.2 59.0 56.8 58.0 58.4 58.4
(5) PIQA 74.3 71.5 71.4 71.5 71.4 71.5 72.3 71.6 72.6 71.1 72.0 71.9 71.2 71.7 71.4 71.4
(6) ARC Challenge 36.7 32.8 32.2 33.4 32.7 32.8 32.5 32.8 34.6 32.3 32.7 33.4 31.7 31.2 30.5 31.7
(7) ARC Easy 59.1 63.5 65.2 64.6 64.7 64.7 64.4 64.2 65.9 63.2 63.9 62.5 61.5 63.0 61.7 63.0
(8) ANLI R1 32.5 29.8 31.6 31.4 31.7 31.6 32.7 32.3 32.7 31.3 32.5 30.7 32.0 30.8 33.0 32.4
(9) ANLI R2 31.4 34.4 34.6 33.0 31.2 33.7 31.9 32.4 32.6 34.0 32.9 31.9 31.0 32.0 34.0 34.0
(10) ANLI R3 36.0 33.6 34.1 33.1 33.4 33.8 33.8 32.8 33.8 31.9 33.9 33.9 32.7 31.7 35.2 35.2
(11) OpenBookQA 50.6 32.4 34.0 34.6 34.0 35.4 35.2 33.6 32.6 33.0 33.2 33.2 33.4 33.4 32.2 29.8
(12) RACE-h 41.4 34.5 36.6 35.4 35.3 36.7 35.5 37.1 36.7 35.7 34.4 35.3 35.5 34.2 35.9 34.6
(13) BoolQ 64.1 60.8 63.5 59.4 63.1 62.1 63.1 64.2 64.0 62.8 62.1 63.8 58.8 63.4 58.2 62.0
(14) Copa 77.0 76.0 74.0 79.0 76.0 76.0 74.0 73.0 74.0 74.0 77.0 76.0 69.0 70.0 71.0 70.0
(15) RTE 50.9 48.0 55.2 50.5 53.8 52.7 49.1 53.1 52.0 56.0 54.5 55.6 48.0 56.0 48.4 51.2
(16) WSC 49.0 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 20.8 5.88 7.24 5.35 6.93 5.77 5.98 6.19 5.35 4.51 5.67 6.72 4.51 6.19 5.67 6.4
(18) ReCoRD 84.0 83.0 83.4 83.3 82.4 83.6 83.2 84.6 84.0 82.3 82.7 83.9 82.2 82.4 83.8 83.3

B.1 GPT-3 and GPT-3 MoE pretraining

We use the Pile public dataset [16] to perform the pretraining of GPT-3 1.3B [7] (24 layers, 2048
hidden size, 16 attention heads) model. We also pretrain a GPT-3 Mixture-of-Experts (MoE) 6.7B
model (24 layers, 1024 hidden size, 16 attention heads, 64 experts on every other layer) following
related work [39]. We then perform 0-shot and 10-shot evaluations on 19 tasks to evaluate the model
quality of the pretrained models. Detailed experimental setup is described in Appendix B.4.
Among the 5 CL difficulty metrics we have for GPT-3 model, to find out which metric provides the
best model quality we pretrain the model (with 100% data) 5 times (each with 1 CL metric). For
seqtru metric (to our knowledge the only metric previously applied to GPT-3 pretraining), we tune
the CL hyperparameters ds and Tc based on the tuning strategy proposed in previous work [29].
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Table 5: GPT-3 1.3B 0-shot evaluation results when pretraining with 1%, 2%, 4%, 8%, 16%, and
32% of data.

(2) (4) (6) (8) (10) (12)
CL CL CL CL CL CL

seqtru seqtru seqtru seqtru seqtru seqtru
(1) +voc (3) +voc (5) +voc (7) +voc (9) +voc (11) +voc

Case baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD
Model size 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B
Train tokens 3B 3B 6B 6B 12B 12B 24B 24B 48B 48B 96B 96B

Avg. 34.5 35.0 36.3 36.8 37.2 38.4 38.8 40.2 39.8 41.2 41.5 42.2

(0) HellaSwag 28.7 29.3 30.8 33.2 35.4 38.1 39.0 42.7 43.5 46.9 47.8 49.9
(1) LAMBADA 28.9 32.0 38.0 41.4 43.5 49.5 50.3 53.9 54.3 58.0 57.8 60.4
(2) TriviaQA 1.18 1.4 1.58 1.56 1.79 1.89 2.28 3.91 3.5 4.82 6.29 6.16
(3) WebQs 0 0.148 0.443 0.738 1.03 0.935 0.984 0.984 1.08 2.36 2.21 2.51
(4) Winogrande 51.3 50.8 52.2 51.0 49.5 51.8 50.7 54.1 53.5 54.9 53.3 56.5
(5) PIQA 62.1 61.6 62.5 63.5 64.9 66.6 66.8 68.5 68.6 69.6 70.1 71.3
(6) ARC Challenge 22.2 22.9 24.9 23.0 24.7 24.6 24.1 26.2 26.7 26.6 28.5 28.2
(7) ARC Easy 38.8 38.4 40.5 41.0 44.1 45.2 46.4 47.7 48.6 50.7 51.2 52.7
(8) ANLI R1 33.3 33.3 32.6 33.3 31.5 31.5 31.7 32.7 33.2 33.7 33.4 33.0
(9) ANLI R2 33.2 34.6 35.8 32.7 31.7 32.8 32.6 33.6 33.1 34.0 34.1 34.4
(10) ANLI R3 32.8 33.9 35.4 32.9 34.4 34.9 35.4 34.5 32.2 35.1 33.7 33.5
(11) OpenBookQA 25.6 24.4 26.2 27.2 28.2 28.0 28.8 29.6 30.4 31.6 32.2 31.6
(12) RACE-h 27.1 28.5 28.9 29.4 30.0 31.2 32.2 32.5 31.8 33.5 34.5 35.2
(13) BoolQ 58.4 56.4 53.3 56.8 56.0 57.3 59.2 62.0 58.7 60.3 61.9 60.1
(14) Copa 61.0 64.0 66.0 71.0 68.0 69.0 70.0 72.0 69.0 69.0 70.0 71.0
(15) RTE 52.7 52.3 53.4 53.1 53.4 54.2 54.2 53.4 52.3 53.1 53.4 55.6
(16) WSC 36.5 36.5 39.4 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 0.839 0.839 1.15 0.839 1.47 0.839 0.839 0.839 0.839 1.36 0.839 1.47
(18) ReCoRD 60.6 63.4 66.6 70.3 71.5 75.6 75.8 78.8 78.7 81.3 81.4 82.3

Table 6: GPT-3 1.3B 10-shot evaluation results when pretraining with 1%, 2%, 4%, 8%, 16%, and
32% of data.

(2) (4) (6) (8) (10) (12)
CL CL CL CL CL CL

seqtru seqtru seqtru seqtru seqtru seqtru
(1) +voc (3) +voc (5) +voc (7) +voc (9) +voc (11) +voc

Case baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD
Model size 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B
Train tokens 3B 3B 6B 6B 12B 12B 24B 24B 48B 48B 96B 96B

Avg. 33.9 35.0 35.6 36.6 37.3 38.8 38.8 40.7 40.7 42.3 43.0 43.2

(0) HellaSwag 28.9 29.5 31.3 33.2 35.2 38.2 39.3 43.1 43.6 47.0 47.9 50.3
(1) LAMBADA 24.5 27.5 32.2 36.2 37.6 44.9 44.0 50.7 47.0 53.2 51.8 57.0
(2) TriviaQA 0.804 1.36 1.75 3.05 3.21 4.93 5.27 6.96 7.51 9.45 10.6 11.0
(3) WebQs 1.08 1.72 2.17 2.9 3.44 5.22 4.87 6.94 7.73 8.66 10.4 11.4
(4) Winogrande 51.6 51.0 52.2 50.2 51.8 54.0 51.7 55.2 57.0 55.1 57.0 56.1
(5) PIQA 60.9 62.0 62.1 63.9 65.3 66.5 66.0 67.9 68.8 69.7 69.8 71.1
(6) ARC Challenge 21.9 23.2 24.0 24.3 24.8 24.9 26.5 27.7 28.0 29.8 31.5 32.1
(7) ARC Easy 38.7 41.9 44.9 47.1 50.0 52.4 54.1 55.6 56.4 59.8 60.6 62.5
(8) ANLI R1 31.7 33.5 33.4 32.8 34.1 32.6 35.2 33.0 31.6 33.7 33.0 31.2
(9) ANLI R2 33.1 35.0 30.3 34.7 35.6 34.4 34.2 31.0 33.6 34.4 32.4 32.5
(10) ANLI R3 33.9 34.8 35.1 33.2 33.5 34.2 33.4 33.2 34.5 33.2 34.2 32.8
(11) OpenBookQA 25.0 26.0 27.2 28.4 28.8 26.0 27.2 28.6 29.2 31.2 32.6 33.0
(12) RACE-h 26.9 27.8 29.1 28.9 29.1 30.5 32.3 31.9 32.0 34.3 34.4 35.0
(13) BoolQ 49.1 50.0 45.6 49.1 45.4 56.2 48.0 56.3 55.6 60.2 62.1 58.3
(14) Copa 62.0 66.0 70.0 66.0 69.0 67.0 71.0 70.0 66.0 70.0 72.0 72.0
(15) RTE 53.1 49.5 47.3 50.2 48.4 48.7 48.0 56.3 55.6 50.9 54.2 49.1
(16) WSC 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 5.25 4.72 4.41 4.3 5.35 4.3 5.14 3.88 5.04 5.56 5.67 6.93
(18) ReCoRD 59.8 63.0 66.0 69.6 70.8 75.0 74.6 78.7 77.8 80.9 80.7 82.1

Then for other metrics we use the same hyperparameters without retuning for fair comparison. As
presented in Tab. 7 case 1 to 6, results show that all 5 CL metrics provide better model quality than
baseline (except (4)CL_voc’s 0-shot accuracy), and the (5)CL_seqtru_voc provides the best quality.
The extensibility of our general CL library enables us to easily apply different CL metrics to this
large-scale model pretraining with huge training data, and identify a new CL metric that provides
better model quality than existing solution (2)CL_seqtru. Next we pretrain the model with 67%
data, comparing the baseline and the best CL metric we find. Results show that the average 0-shot
evaluation accuracy drops from 42.5 to 41.9 when baseline use less data (Tab. 7 case 1, 9). On the
other hand, our CL solution (case 10) with 67% data is able to achieve better 0-shot and 10-shot
accuracy than baseline with 100% data, achieving a 1.5x data and time saving.
When applying the proposed random-LTD technique, results show similar benefit as CL: better model
quality when using 100% data (Tab. 7 case 7), and 1.5x data/time saving while maintaining model
quality (case 11). To explore whether composing CL and random-LTD could achieve even better data
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Table 7: GPT-3 1.3B (case 1 to 15) and GPT-3 MoE
6.7B (case 16, 17) pretraining cost and average evalua-
tion accuracy on 19 tasks. GPT-3 MoE only has 0-shot
accuracy due to time constraints. Accuracy results for
each single task can be found in Appendix B.4

CL/ Data Time Avg Avg
random-LTD (billon (hours on 0-shot 10-shot

Case hyperparameter tokens) 64 V100) accuracy accuracy

(1)baseline N/A 300 (1x) 260 (1x) 42.5 44.0
(2)CL_seqtru ds = 80, Tc = 110K 300 (1x) 257 (1.01x) 43.4 44.8
(3)CL_seqres ds = 80, Tc = 110K 300 (1x) 248 (1.05x) 43.0 44.5
(4)CL_voc ds = 1%, Tc = 110K 300 (1x) 257 (1.01x) 42.3 44.5
(5)CL_seqtru_voc same as (2) + (4) 300 (1x) 259 (1.00x) 43.6 44.9
(6)CL_seqres_voc same as (3) + (4) 300 (1x) 248 (1.05x) 43.0 44.4
(7)random-LTD rs = 128, Tr = 200K 300 (1x) 263 (0.99x) 43.7 44.9
(8)CL_seqtru_voc same as (5) + (7) 300 (1x) 260 (1.00x) 43.8 45.1
+random-LTD

(9)baseline N/A 200 (1.5x) 174 (1.49x) 41.9 44.0
(10)CL_seqtru_voc seqtru: ds = 80, Tc = 73K 200 (1.5x) 171 (1.52x) 42.7 44.5

voc: ds = 1%, Tc = 73K
(11)random-LTD rs = 128, Tr = 133K 200 (1.5x) 176 (1.48x) 43.1 44.8

(12)baseline N/A 150 (2x) 130 (2.00x) 42.0 42.7
(13)CL_seqtru_voc seqtru: ds = 80, Tc = 55K 150 (2x) 129 (2.02x) 42.6 43.7

voc: ds = 1%, Tc = 55K
(14)random-LTD rs = 128, Tr = 100K 150 (2x) 131 (1.98x) 42.7 43.5
(15)CL_seqtru_voc same as (13) + (14) 150 (2x) 130 (2.00x) 42.8 44.0
+random-LTD

(16)baseline N/A 300 (1x) 111 (1x) 42.8
(17)CL_seqtru_voc same as (5) + (7) but with 300 (1x) 111 (1.00x) 43.5
+random-LTD 2x Tc and Tr due to batch size
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Figure 6: Validation perplexity during
GPT-3 1.3B pretraining, comparing the
baseline and the best DeepSpeed Data
Efficiency solution under 100% and 50%
training data.

and training efficiency, first we pretrain the model with both techniques under 100% training data.
Results (case 5, 7, 8) show that using both techniques together further improves the model quality,
demonstrating the benefit of composability by our framework. Next we pretrain the model with 50%
data. Results (case 12 to 15) show that the baseline has worse 0-shot and 10-shot evaluation accuracy
under 2x less data. Using CL or random-LTD can only recover part of the accuracy loss. On the other
hand, the composed data efficiency solution is able to achieve the same or better accuracy results as
baseline with 100% data, demonstrating a 2x data and 2x time saving.
To better understand how the proposed approach influences the model convergence, Fig. 6 plots the
token-wise validation perplexity during pretraining. At the beginning of the training the proposed
approach has slower convergence since we focus on easier/simpler data samples (CL) and drop more
tokens (random-LTD) at the beginning. On the other hand, at the later stage of training the proposed
approach is able to provide faster convergence speed than baseline. Our approach with 50% data
is able to achieve similar final validation perplexity as baseline with 100% data (while baseline
with 50% data cannot). Our approach with 100% data is able to achieve even better final validation
perplexity which leads to the highest model quality.
As presented in Sec. 1 and Fig. 2, we also compare baseline and proposed work when using even less
data during GPT-3 pretraining (Detailed accuracy results can be found in Appendix B.4). Results show
that our approach provides better model quality at all cost budgets, advancing the whole cost-quality
Pareto frontier. In particular, we achieve up to 12.5x data/time/cost saving while still maintaining
95% of the model quality (zero-shot eval accuracy) compared to the baseline with full data. Based
on measured training time, this would be a cost reduction from $46.3K to $3.7K if renting similar
hardware on Azure [2], greatly democratizing research and usage of foundation models.

Recent work shows that applying Mixture-of-Experts (MoE) to GPT-style model pretraining could
lead to better training efficiency while reaching similar model quality [39]. Thus we also pretrain a
GPT-3 MoE 6.7B model (350M base model, together with 64 experts on every other layer) to compare
baseline and proposed work. Results show that MoE model does achieve similar model quality with
less training cost (Tab. 7 case 1, 16). On the other hand, our approach can further improve MoE
model’s model quality (case 17), confirming its broad applicability.

B.2 BERT-large pretraining

We use the Pile public dataset [16] to perform the pretraining of BERT-large [14] (24 layers, 1024
hidden size, 16 attention heads) model. We then perform GLUE finetuning to evaluate the model
quality of the pretrained models. Detailed experimental setup is described in Appendix B.5.
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Table 8: BERT-large pretraining cost and GLUE fine-
tuning score (median±std, details in Appendix B.5).

CL/ Data Time GLUE
random-LTD (billon (hours on finetune

Case hyperparameter tokens) 64 V100) score

(1)baseline N/A 1049 (1x) 261 (1x) 87.29±0.53
(2)CL_seqtru ds = 128, Tc = 960K 1049 (1x) 265 (0.98x) 87.31±0.57
(3)CL_seqreo ds = 5%, Tc = 960K 1049 (1x) 261 (1.00x) 87.48±0.61
(4)CL_voc ds = 5%, Tc = 960K 1049 (1x) 261 (1.00x) 87.36±0.64
(5)CL_seqtru_voc same as (2) + (4) 1049 (1x) 266 (0.98x) 87.60±0.34
(6)CL_seqreo_voc same as (3) + (4) 1049 (1x) 262 (1.00x) 87.06±0.52
(7)random-LTD rs = 128, Tr = 2M 1049 (1x) 302 (0.86x) 88.17±0.48
(8)CL_seqtru_voc same as (5) + (7) 1049 (1x) 290 (0.90x) 87.69±0.32
+random-LTD

(9)baseline N/A 703 (1.5x) 175 (1.49x) 87.19±0.49
(10)CL_seqtru_voc seqtru: ds = 128, Tc = 640K 703 (1.5x) 178 (1.47x) 87.29±0.62

voc: ds = 5%, Tc = 640K
(11)random-LTD rs = 128, Tr = 1.34M 703 (1.5x) 201 (1.3x) 87.99±0.38

(12)baseline N/A 524 (2x) 131 (1.99x) 86.61±0.5
(13)CL_seqtru_voc seqtru: ds = 128, Tc = 480K 524 (2x) 133 (1.96x) 86.9±0.33

voc: ds = 5%, Tc = 480K
(14)random-LTD rs = 128, Tr = 1M 524 (2x) 150 (1.74x) 87.32±0.48
(15)CL_seqtru_voc same as (13) + (14) 524 (2x) 144 (1.81x) 87.44±0.46
+random-LTD

Table 9: GPT-2 finetuning on PTB results.
Best PPL Num. combinations PPL median/std

Case at seed 1234 surpass baseline over 5 seeds

(1)baseline 16.077 N/A 16.077±0.028
(2)CL_seqtru 15.888 9 out of 16
(3)CL_seqres 15.795 16 out of 16 15.818±0.032
(4)CL_voc 16.031 4 out of 16
(5)CL_seqtru_voc 16.005 3 out of 16
(6)CL_seqres_voc 15.981 8 out of 16
(7)random-LTD 15.910 16 out of 16 15.948±0.040
(8)CL_seqres 15.831 N/A 15.831±0.014
+random-LTD

Table 10: ViT finetuning results.
CIFAR datasets on 24-layer ViT

Data saving Top-1 (CIFAR100) Top-1 (CIFAR10)

baseline N/A 93.93±0.30 99.32±0.05
random-LTD 1.4x 94.02±0.40 99.30±0.03

ImageNet datasets on 12-layer ViT
Data saving Top-1 Top-5

baseline N/A 84.65±0.04 97.41±0.02
random-LTD 1.3x 84.70±0.04 97.48±0.02

Similar to the GPT-3 case, for CL we first investigate which metric (among 5 metrics we have for
BERT model) provides the best model quality by pretraining the model (with 100% data) 5 times.
Tab. 8 case 1 to 6 results show that 4 CL metrics provide better model quality than baseline, and
the (5)CL_seqtru_voc provides the best quality. Next we pretrain with 67% data, comparing the
baseline and our best CL metric. Results show that the GLUE score drops from 87.29 to 87.19 when
baseline use less data (case 1, 9). On the other hand, our CL solution (case 10) with 67% data is able
to achieve on-par GLUE score as baseline with 100% data, achieving a 1.5x data and time saving.
Tab. 8 case 7, 11, 14 present the case when applying random-LTD only. In terms of data saving
random-LTD performs better than CL: it is able to achieve better GLUE score even with 2x less data
than baseline (case 14), greatly surpassing the 1.33x data saving by the state-of-the-art TokenBypass
method. However, the time saving is less than data saving because the token dropping mechanism
adds a computation overhead at each step. Because the BERT-large is a smaller model than GPT-3
1.3B, this fixed latency overhead has a larger relative impact to the training time. However, even with
this overhead random-LTD is still a more data/time-efficient solution than baseline/TokenBypass.
Tab. 8 case 8 and 15 present the case when applying both CL and random-LTD. At 50% data, the
composed solution further improves the GLUE score from the CL/random-LTD-only cases (case 15),
achieving a 2x data and 1.8x time saving while maintaining the GLUE score compared to baseline.
Another thing to note is that this case also has more time saving than the random-LTD-only case.
This is because CL will first truncate the sequences before random-LTD perform the random token
selection, and the shorter sequences reduces random-LTD’s computation overhead. At 100% data,
the composed solution (case 8) improves the GLUE score from the CL-only case, but is worse than
the random-LTD-only case. One hypothesis is that for BERT pretraining when composing the two
techniques it’s preferable to reduce the CL duration, but exhaustively testing all hyperparameters is
out of our resource budget and this work’s scope.

B.3 GPT-2 and ViT finetuning
To verify the effectiveness of the proposed work on small-scale tasks, we apply our techniques to PTB
finetuning task [30] for an already-pretrained GPT-2350M model checkpoint from Huggingface. Given
the much smaller training cost, we focus on improving the model quality under the same amount of
data. Detailed experimental setup and hyperparameter tuning are described in Appendix B.6. As
shown in Tab. 9, seqres provides the best model quality among the 5 CL metrics (case 3), unlike the
two pretraining tasks where the seqtru_voc is the best metric. This is because this finetuning task has
much smaller batch size and number of tokens per batch. seqtru will reduce number of tokens per
batch, which is less desirable under small-batch training. The small batch also prevents the voc metric
to include sufficient number of samples with different vocabulary rarity, limiting its benefit. Applying
random-LTD also improves the model quality (case 7). Both CL best metric and random-LTD are
able to surpass baseline on all 16 combinations of their hyperparameters, demonstrating that they are
not sensitive to the hyperparameter choices. At last we try another 4 seeds for the baseline, CL best
metric, random-LTD, and the CL+random-LTD case. The composed CL+random-LTD case (case
8) further improves model quality from random-LTD-only case, but is only on-par with CL-only
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case. One hypothesis is that for tasks with such small-scale training data, it’s less possible to further
improve model quality by composing multiple data efficiency techniques.
We also try finetune the vision transformer (ViT) on both ImageNet (with a 12-layer pretrained
ViT) and CIFAR (with a 24-layer pretrained ViT). Due to time/resource limitation, we only test
random-LTD for this task. Detailed experimental setup is described in Appendix B.7. As presented
in Tab. 10, results show that random-LTD is able to achieve 1.3-1.4x data savings while maintaining
the model quality, demonstrating its broad applicability.

B.4 GPT-3 pretraining experimental setup and detailed results

For GPT-3 pretraining, we set some of the hyperparameters the same as the original OpenAI work [7]:
seqlen 2K, batch size 512, learning rate 2e-4 (batch size 256 and learning rate 3e-4 for the GPT-3
MoE 6.7B model since we use 350M as the base model). We set other hyperparameters differently:
(1) OpenAI pretrains GPT-3 on 300B tokens. To evaluate data efficiency techniques, we pretrain
with 9 different total training tokens: 300B, 200B (67%), 150B (50%), 96B (32%), 48B (16%), 24B
(8%), 12B (4%), 6B (2%), 3B (1%). (2) When using less than 300B training tokens, we increase the
peak learning rate proportionally (e.g., 2x LR when using 50% data). This is similar to the traditional
learning rate scaling when using different batch sizes. However, when using extremely small amount
of data (e.g., 1% data), we find that using too larger learning rate (e.g., 100x) could lead to divergence.
In such case we keep halving learning rate until the training succeed. (3) We do not use OpenAI’s
batch size warmup method because our GPT-3 125M model pretraining experiments show that it does
not help on model quality under the same total training tokens. And the smaller batch sizes prevent
us to pretrain on large number of GPUs at the beginning, which leads to longer training wall-clock
time; (4) Since we don’t use the batch size warmup, our training has more tokens at early steps.
Thus we increase the linear learning rate warmup duration from OpenAI’s 375M tokens to 3B tokens
(except when using 3B tokens in total, where we use first 1.5B tokens for warmup); (5) OpenAI uses
a single cycle cosine learning rate decay over 260B tokens, and the min learning rate is 10% of peak
learning rate. However, based on our experiments and related works [57, 20], we changed the decay
duration to always equal to total training token and the min learning rate to always equal to 1e-6,
which provide better model quality. When calculating the total consumed training token, we take CL
and random-LTD (which change number of tokens on certain steps) into consideration. For CL and
random-LTD hyperparameters, we use the low-cost tuning strategy described in Sec. 2.

To evaluate the quality of pretrained GPT-3 models, we perform 0-shot and 10-shot evaluations on 19
tasks used by original OpenAI work: HellaSwag [59], LAMBADA [35], TriviaQA [22], WebQs [4],
Winogrande [44], PIQA [5], ARC Challenge/Easy [11], ANLI R1/R2/R3 [34], OpenBookQA [32],
RACE-h [27], BoolQ [10], Copa [1], RTE [12], WSC [28], MultiRC [56], and ReCoRD [60]. Since
there is no additional training involved in 0/10-shot evaluations, it’s impossible to try multiple seeds
thus each task only has one accuracy result. We then take the average accuracy over the 19 tasks.

Tab. 3 and 4 present the 0-shot and 10-shot accuracy results for each task achieved by the pretrained
GPT-3 1.3B models. Tab. 5 and 6 present the 0-shot and 10-shot accuracy results for the same GPT-3
1.3B model but pretrained with even less data as discussed in main paper Fig. 2, Sec. 1, and Sec. B.1.
Tab. 11 presents the 0-shot accuracy results for each task achieved by the pretrained GPT-3 MoE
6.7B models, as discussed in main paper Sec. B.1.

B.5 BERT-large pretraining experimental setup and detailed results

For BERT-large pretraining, we set some of the hyperparameters the same as the Megatron-LM
work [46] since it achieves better model quality than original BERT: seqlen 512, batch size 1024,
learning rate 1e-4 with linear warmup up at first 10000 steps and then linearly decay to 1e-5. We
set other hyperparameters differently: (1) Megatron-LM pretrains over 2M steps (1049B tokens).
To evaluate data efficiency techniques, we pretrain with 3 different total training tokens: 1049B,
703B (67%), and 524B (50%). (2) When using less than 1049B training tokens, we increase the peak
learning rate proportionally. (3) Megatron-LM decays the learning rate over 2M steps. Since our
techniques could change the number of tokens at some steps, we change the decay to token-based
and set the decay duration always the same as total training tokens. For CL and random-LTD
hyperparameters, we use the low-cost tuning strategy described in Sec. 2.
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Table 11: GPT-3 MoE 6.7B 0-shot evaluation results.

(2)
CL

seqtru
(1) +voc

Case baseline +rLTD
Model size 6.7B 6.7B
Train tokens 300B 300B

Avg. 42.8 43.5

(0) HellaSwag 53.0 53.3
(1) LAMBADA 60.1 59.6
(2) TriviaQA 11.0 9.31
(3) WebQs 2.95 2.31
(4) Winogrande 56.0 56.8
(5) PIQA 72.0 71.8
(6) ARC Challenge 28.9 28.9
(7) ARC Easy 54.5 54.2
(8) ANLI R1 33.6 30.8
(9) ANLI R2 32.8 34.1
(10) ANLI R3 33.6 35.5
(11) OpenBookQA 33.6 32.4
(12) RACE-h 33.8 35.0
(13) BoolQ 61.5 57.5
(14) Copa 71.0 74.0
(15) RTE 54.5 55.2
(16) WSC 36.5 51.0
(17) MultiRC 1.89 1.78
(18) ReCoRD 82.4 82.6

Table 12: BERT-large finetuning results. The first row is the results of the original BERT-large
model [14]. All the other rows are in the same order as the rows in main paper Tab. 8. Original
BERT results are not directly comparable to ours because the training data and total training token
are different.

Case Train tokens Average MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE

(0)original 43B 82.1 86.7 85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1
(1)baseline 1049B 87.29±0.53 88.54±0.16 89.25±0.13 92.1±0.07 94.12±0.15 94.33±0.48 64.36±1.59 90.43±0.21 89.32±0.81 83.2±1.16
(2)CL_seqtru 1049B 87.31±0.57 89.03±0.14 89.35±0.24 92.21±0.03 94.12±0.11 94.68±0.1 62.08±2.06 90.72±0.27 89.58±0.52 83.98±1.64
(3)CL_seqreo 1049B 87.48±0.61 88.81±0.16 89.27±0.19 92.2±0.12 93.99±0.28 94.79±0.42 62.86±1.85 90.51±0.25 89.32±0.85 85.55±1.34
(4)CL_voc 1049B 87.36±0.64 88.64±0.23 89.24±0.16 92.32±0.05 94.03±0.09 95.14±0.31 63.34±1.82 90.07±0.18 89.84±1.06 83.59±1.83
(5)CL_seqtru_voc 1049B 87.6±0.34 88.9±0.1 89.29±0.17 92.26±0.05 94.26±0.19 95.25±0.4 64.6±0.6 90.38±0.25 90.62±0.22 82.81±1.05
(6)CL_seqreo_voc 1049B 87.06±0.52 88.73±0.13 88.91±0.26 92.32±0.07 93.92±0.08 94.91±0.25 61.05±1.15 90.36±0.23 89.32±1.13 83.98±1.34
(7)random-LTD 1049B 88.17±0.48 88.74±0.25 89.18±0.21 92.27±0.1 94.32±0.21 95.02±0.38 67.3±1.5 90.65±0.15 90.1±0.63 85.94±0.89
(8)CL_seqtru_voc+random-LTD 1049B 87.69±0.32 88.79±0.13 89.26±0.04 92.34±0.08 94.21±0.23 95.14±0.36 65.46±0.68 90.44±0.19 89.58±0.56 83.98±0.59
(9)baseline 703B 87.19±0.49 88.75±0.18 89.11±0.19 92.13±0.08 93.99±0.16 95.14±0.46 62.07±1.44 90.08±0.31 89.84±0.68 83.59±0.87
(10)CL_seqtru_voc 703B 87.29±0.62 88.96±0.07 89.15±0.25 92.21±0.09 94.23±0.08 95.25±0.33 62.19±1.75 89.92±0.21 90.1±0.55 83.59±2.25
(11)random-LTD 703B 87.99±0.38 88.86±0.1 88.79±0.12 92.01±0.12 94.25±0.17 94.68±0.32 67.1±0.9 90.55±0.19 89.32±0.39 86.33±1.12
(12)baseline 524B 86.61±0.5 88.53±0.14 88.77±0.17 92.04±0.11 93.93±0.19 95.02±0.25 61.05±1.22 89.88±0.25 88.28±1.08 82.03±1.13
(13)CL_seqtru_voc 524B 86.9±0.33 88.66±0.14 89.25±0.21 92.08±0.05 93.99±0.26 95.02±0.17 63.34±0.52 89.96±0.25 88.54±0.22 81.25±1.14
(14)random-LTD 524B 87.32±0.48 88.81±0.15 88.9±0.13 91.96±0.04 94.28±0.14 94.91±0.43 64.41±1.32 90.39±0.25 89.06±0.18 83.2±1.67
(15)CL_seqtru_voc+random-LTD 524B 87.44±0.46 88.9±0.19 88.9±0.13 92.19±0.09 94.17±0.12 94.68±0.35 65.97±1.09 90.31±0.22 89.06±0.79 82.81±1.13

To evaluate the quality of pretrained BERT-large models, we finetune the models for 8 tasks from
the GLUE benchmark [52]: MNLI, QQP, QNLI, SST-2, CoLA, STS-B, MRPC, RTE. We follow the
finetuning hyperparameters from the original BERT work [14]: 3 epochs, batch size 32. For learning
rate we test 5e-5, 4e-5, 3e-5, 2e-5 on the baseline and find that 3e-5 provides the best average GLUE
score, thus we select LR=3e-5 for the comparison between baseline and proposed work. We perform
finetuning on 5 seeds (1234 to 1238) and take the median/std on each task, then we take the average
of the median scores as the average GLUE score, and take the average of std scores as the overall std.

Tab. 12 presents the finetuning results for each task achieved by the pretrained BERT-large models.

B.6 GPT-2 finetuning experimental setup

Due to the lack of published training recipe, we first perform a hyperparameter search for the baseline
case (256 combinations of batch size, LR schedule, number of epochs). Then using the combination
that provides best baseline validation perplexity, we apply CL and random-LTD (each with 16
different combinations of their two hyperparameters) to verify if they could further improve the model
quality.
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For GPT-2350M finetuning on PTB [30], we use an already-pretrained GPT-2350M model checkpoint
and an example script 3 from Huggingface. Given the much smaller training cost (about 38min on
a single V100 for 5 epochs), we focus on improving the model quality under the same amount of
data. Due to the lack of published training recipe, we first perform a hyperparameter search for the
baseline case: we tried 256 combinations of batch size (4, 8, 16, 32), learning rate (2e-5, 3e-5, 5e-5,
10e-5), learning rate warmup (0% and 10% linear warmup steps), learning rate decay (no decay,
linear decay), and number of epochs (2, 3, 5, 10). For this sweep we only use one seed (1234) due to
the number of combinations. Results show that the best combination among the 256 cases is: batch
size 4, learning rate 10e-5, 0% learning rate warmup, linear learning rate decay, and 5 epochs. Results
also show that for this task using more epochs (5 or 10) leads to better validation perplexity than less
epochs (2 or 3).

Then using this combination that provides best baseline validation perplexity, we apply CL and
random-LTD (each with 16 different combinations of their two hyperparameters) to verify if they
could further improve the model quality. For CL we test 5 metrics (seqtru, seqres, voc, seqtru_voc,
seqres_voc), each with 16 different combinations of its two hyperparameters: start difficulty ds
(8, 32, 128, 512 for seqtru/seqres, and 1%, 10%, 30%, 50% for voc) and total CL steps Tc (10%,
30%, 50%, 70% of the baseline’s total steps). Results show that the seqres metric provides the
best model quality, and its best hyperparameter combination is ds = 32, Tc = 70% of baseline
steps. For random-LTD we test 16 different combinations of its two hyperparameters: start seqlen
rs (8, 32, 128, 512) and total steps Tr (10%, 30%, 50%, 70% of the baseline’s total steps). Results
show that the best hyperparameter combination is rs = 128, Tr = 30% of baseline steps. For
CL+random-LTD composed case, we re-tuned the combination of Tc and Tr (CL will first adjust
seqlen before random-LTD. To have a meaningful composition, it essentially requires Tc < Tr) and
the best combination is ds = 32, rs = 128, Tc = 10%, Tr = 30% of baseline steps. At last, for the
best case of baseline, CL, random-LTD, and CL+random-LTD, we run another 4 seeds (1235 to 1238)
and then calculate the median/std of the validation perplexity.

B.7 ViT finetuning experimental setup

We apply random-LTD to the vision transformer (ViT) [15] on finetuning tasks to demonstrate the
broader applications of our method across different domains. We use the pretrained models published
in [54] and test on two small image recognition benchmarks— CIFAR10 and CIFAR100 [26], and one
large-scale dataset—ImageNet [13]. For ImageNet (CIFAR10/100), we use the 12-layer (24-layer)
pretrained ViT with an input resolution 224 × 224 in which each patch of size 16 × 16 such that
the sequence length becomes 196 + 1 (the extra token is for position). ImageNet (CIFAR10/100)
is trained on 8-GPU (1-GPU) and the batch size is 32 (128) images per GPU. The training budget
for all three datasets is 14 epochs and a small constant learning rate is used based on grid search.
Particularly, the best learning rate for ImageNet (CIFAR) is 5e-5 (1e-4). For ImageNet (CIFAR),
when applying random-LTD the sequence length is started with 66 (32) and linearly reaches to the
197 full sequence length at 80% of the total baseline training iterations, equivalent to a 1.3x (1.4x)
data saving.

B.8 Comparing random-LTD with the TokenBypass work

In main paper Sec. B.2 we demonstrate that random-LTD achieves 2x data saving while maintaining
model quality for BERT pretraining, greatly surpassing the 1.3x data saving achieved by the state-of-
the-art TokenBypass work [21]. In this section we provide additional discussion and evaluation to
compare random-LTD with TokenBypass.

We include the illustration of the comparison between baseline, TokenBypass, and random-LTD
in Fig. 7. First, the takeaway from TokenBypass can be summarized into (1) drop unimportant
tokens starting from an intermediate layer of the model, (2) the dropping schedules is a fixed constant
function (drop half of the tokens), and (3) the dropping criterion based on the “accumulated masked
language modeling loss” (which is referred to as “token loss” since it needs each token’s loss)

However, TokenBypass have several limitations (1) only tested on BERT pretraining (we find that
it’s less effective in GPT pretraining and finetuning), (2) the bypass layer starting only from an

3https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_clm_no_trainer.py
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Figure 7: Illustration of the transformer model for the baseline training (left), TokenBypass training
(right) and random-LTD training (middle). Compared to TokenBypass, random-LTD requires no
criterion on the dropped tokens and trains well for all middle layers. The box with dash line is a
repeated block. For both (a) and (b), the block is repeated by l − 2 times, while for (c), the block is
repeated by l/2. In the box, “Output tokens of layer i” is the same as “Input tokens of layer i+ 1”.
Table 13: Comparing random-LTD (w/o MSLG) and TokenBypass under various constant dropping
schedule. Baseline achieves a perplexity of 16.11±0.04.

Token saving ratio 1.88% 12.75% 23.72% 34.59% 45.45% 56.43%

random-LTD (w/o MSLG) 16.15±0.01 16.83±0.06 17.95±0.08 20.02±0.05 23.35±0.16 30.65±0.78
TokenBypass 16.4±0.04 17.3±0.06 18.59±0.19 23.09±0.23 28.56±0.24 35.91±0.26

intermediate layer (e.g., 6L for BERT-base), and (3) the dropping criterion based on “token loss” may
not be accessible for some tasks, like classification problems.

Acknowledging that we are inspired by their excellent work and trying to solve their limitations, we
believe random-LTD consists of three differences: (1) drop tokens starting from the 2nd layer of the
model, (2) propose a linear increasing dropping schedule to close the training and inference discrep-
ancy, and (3) the new random dropping criterion (which has lower overhead and can be easily applied
to tasks without “token loss”, such as vision transformer). Next, we provide more direct comparisons
between random-LTD and TokenBypass on GPT-2 finetuning and GPT-3 pretraining tasks. Note that
because this study was performed in parallel with other experiments, the hyperparameter choices are
different from the experiments in main paper.

GPT-2 finetuning on PTB with various constant dropping schedule. To better demonstrate the
benefit of random selection per layer, we provide a study with various constant dropping schedule.
Particularly, from the second layer to the last second layer, we use one of the sequence lengths from
921, 819, 716, 614, 512, 409, of which the corresponding token saving ratio are shown in Tab. 13.
We finetune GPT-2350M (24 layers) on the PTB dataset with constant learning rate 5e-5 and Adam
optimizer for 15 epochs (batch-size 8). The results are the best validations (average of three runs and
one standard deviation) of random-LTD (without Monotonic Sequence Length Growth, MSLG) and
TokenBypass.

As shown in Tab. 13, for all cases random-LTD has better performance than TokenBypass, even
without one of the key contributions, Monotonic Sequence Length Growth (MSLG). This further
verifies the conjecture we made in the main paper: “However, several works [50, 31, 51] have shown
that MHA focuses on different tokens at different layer depths and the attention map aligns with the
dependency relation most strongly in the middle of transformer architectures. Therefore, TokenBypass
used in [21], i.e., fully skipping middle layers, may hinder the learnability/generalization of the
architecture during pretraining/inference.”
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Table 14: Comparing random-LTD and TokenBypass (both with our proposed MSLG applied) under
various token saving ratios. Baseline achieves a perplexity of 16.11±0.04.

Token saving ratio 8% 16% 24% 32% 40% 47% 52% 55%

random-LTD 15.91±0 15.86±0.06 15.86±0.01 15.85±0.02 16.05±0.06 17.02±0.05 18.41±0.04 20.01±0.06
TokenBypass (w/ MSLG) 16.1±0.02 16.09±0.05 16.21±0.03 16.54±0.01 17.06±0.04 18.64±0.04 23.12±0.22 25.77±0.57

Table 15: Comparing random-LTD and TokenBypass (both with our proposed MSLG applied) on
GPT-3 pretraining.

Validation loss

baseline 8.22
random-LTD (37.76% token saving) 8.26
TokenBypass (w/ MSLG, 37.76% token saving) 9.62

GPT-2 finetuning on PTB with our proposed MSLG. We are also curious if MSLG can help boost
the performance of TokenBypass. Therefore, we also perform the comparison between random-LTD
(with MSLG) and TokenBypass (with MSLG) on GPT-2 finetuning. We start at sequence length
from 128 and linearly increase to full sequence 1024, with a different total steps to achieve different
token saving ratios shown in Tab. 14. The rest of the hyperparameters are the same as the previous
experiment.

Note that under MSLG it is hard to control the overall token saving ratio to be the same
as constant dropping schedule case. But comparing Tab. 14’s 24%/47%/55% with Tab. 13’s
23.72%/45.45%/56.43%, we can clearly see the benefit of MSLG. Meanwhile, comparing the
results of random-LTD and TokenBypass (with MSLG), it is clear that random-LTD still has better
performance than TokenBypass for all cases. This shows that the other components of random-LTD,
particularly the layerwise dropping mechanism, has its unique advantage over accumulated token
loss for auto-regressive generative models.

GPT-3 pretraining. To directly compare the two techniques on pretraining tasks, we pretrain a
GPT-3 350M model with 30B tokens. Due to limited time and resource, this is a smaller model and
10% of data compared to our other GPT-3 pretraining experiments. And due to the same reason we
only compare the validation loss at the end of pretraining, but our experience shows that this metric
has strong correlation with downstream task zero/few-shot evaluation performance. Based on the last
GPT-2 finetuning experiment, here we again apply MSLG to TokenBypass. Results in Tab. 15 shows
that under the same token saving ratio, random-LTD provides significantly better model quality than
TokenBypass.

Other downstream tasks. TokenBypass cannot be easily extended to various downstream tasks. The
reason is that the TokenBypass criterion is based on the “token loss”, but downstream tasks, e.g.,
classification and regression (GLUE benchmark), do not have “token loss”. Therefore, we did not
find an easy way to apply TokenBypass on those tasks.

20


	Introduction
	Design
	Evaluations and Conclusion
	Appendix
	Background and Related Works
	Additional details for curriculum learning
	Additional details for efficient data routing via random-LTD
	Composing CL and random-LTD, tuning strategy, usage guidelines

	Evaluation
	GPT-3 and GPT-3 MoE pretraining
	BERT-large pretraining
	GPT-2 and ViT finetuning
	GPT-3 pretraining experimental setup and detailed results
	BERT-large pretraining experimental setup and detailed results
	GPT-2 finetuning experimental setup
	ViT finetuning experimental setup
	Comparing random-LTD with the TokenBypass work


